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Abstract This paper presents a family of algorithms for producing, from (v, v, . . . , Vp-1),
all initial prefixes z; = vgfv16---6v; (1 =0,1,...,n — 1) in parallel in interconnection
networks such as the omega network and hypercube, where 8 is an associative binary
operator. Fach algorithm can be embedded in the switches and interconnections of
the network, and can be executed in O(log, n) time steps provided that the network
connecting n processors is constructed by using an s x s switch. The objective of these
algorithms is thus not necessarily to improve the time and space required to execute
them, but to attain a communication pattern that fits the topology of the network.
Because one type of network can be made equivalent to, or can be embedded in, another
type of network, a family of algorithms can be derived from one basic algorithm. In
the basic algorithm, in principle, every processor p; multicasts v; to the processors py
(k=i+1,i+2,...,n—1). En route to p;, v; ( =0,1,...,i — 1) are combined with
each other in the switches to calculate the (: — 1)-th initial prefix z;_; that is recéived
by p;, which thus computes the i-th initial prefix z; = z;_10v;.

Key words Parallel prefix operation, algorithm embedding, embedding in networks, com-
bining network, multistage networks, hypercube.
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1 Introduction

The network is the key component of a mul-
tiprocessing system, and should be used effi-
ciently as computing power for parallel com-
putation. However, the primitives for efficient
parallel computation are not yet clear, and
should be determined and supported at the ar-
chitecture level, especially in the network. One
such primitive is the parallel prefix operation
on (vg,V1,...,Vn_1), which computes the i-th
initial prefix 0i_jup = vobvif---0v; for all i
(0 < i < n—1), where 6 is an associative bi-
nary operator [3]. The parallel prefix operation
is effective in many algorithms such as the eval-
uation of polynomials [1], the solution to recur-
rence equations [2], boolean circuits [3], sorting
and merging, and graph [8] and list manipula-
tions [9]. A parallel prefix algorithm, which is
here referred to as the mask shuffling algorithm,
was first suggested by Stone [1] for polynomial
evaluation. Since then, many of parallel prefix
algorithms have been proposed, and these can
be classified, in principle, as recursive doubling
[2, 4, 6, 7], and as tree sweeping [3, 5, 8].

The mask shuffling and recusive doubling al-
gorithms cannot easily be embedded in multi-
stage (or indirect connection) networks such as
the omega network [10], because it is in general
difficult to provide necessary data to every net-
work switch, where the main calculation of these
algorithms is embedded. On the other hand, the
tree sweeping algorithm needs two sweeps of the
tree; in the first sweep, a partial result is left in
each node, and, in the second sweep, the partial
result is recombined with another partial result
in the node. Hence, the second partial results
must return via the same route in the reverse
direction in the network. This algorithm can
thus be embedded in a multistage network with
recombining capability.

This paper presents a family of new parallel
prefix algorithms that can be easily embedded
in indirect (multistage) networks, without the
recombining capability, such as the omega net-
work, as well as in direct networks such as the
hypercube. Hence, the purpose of these algo-
rithms is not necessarily to reduce the time and
space required to execute them, but to attain a
communication pattern in the algorithms that

fits in with the topology of the network.
The rest of this paper is organized as follows.
Section 2 outlines the properties of represen-

" tative networks, presents the principle behind

the family of algorithms, and proposes two ba-
sic parallel prefix algorithms that are equivalent
to each other, but cannot be embedded in the
networks. Section 3 presents, as extensions of
the basic algorithms, a family of parallel prefix
algorithms that can be embedded in the indi-
rect and direct networks. Section 4 concludes
this paper.

2 Foundations

2.1 Owutline of Networks

Representative networks, i.e., the omega net-
work, delta network, indirect binary n-cube, and
hypercube, and the relationships among them
are outlined here. A common structure of mul-
tistage networks is shown in Fig. 1.

processor 0 1 2 3 vt n2 nl
| | | | [

r interconnection 0 I

4] 1 2[ JL n-21 |n-1

stage 0 L,;rl s Loz

[ 1 2 3 n-2 n-1
[ interconnection 1 |
0 1 2 3 n-2 n-1
stage 1 T n/2-1
[} 1 2 3 n-2 In-1
0| |1 2I |3 n-Z‘ n-1
stage (log n-1) 0 1 c n/2-1
[ 1 2 3 n-2 n-1
I interconnection log 1 J
T I I
processor o 1 2 3 v n2 n-l

Fig. 1. A common structure of multistage networks.

In the following, it is assumed that a 2x 2 switch
is used in multistage networks. A multistage
network is then composed of m = logy n stages,
each stage comprising n/2 switches, where n is
the number of processors in the system. It is
also assumed that the input and output of the
network are the same n processors.

— 156 —



1) Indirect (or Multistage) Networks: In the
omega networlk, every interconnection (see Fig.
1), except the last one, implements a shuffle
function; an address A = Gm-1Gm-2""" Q0 in bi-
nary mapped as
shuffle(Qm-1Gm-2 - * - Q) = Gm-20m-3 """ G0m—1:
The last interconnection equals an identity func-
tion; id(A) = A. The network switch im-
plements a replacey function that replaces the
least significant bit (LSB) of an address with
a given bit b; replacey(am-1am—2- - a0,b) =
Gm—1Gm—2 - - - a1b. A packet is sent from a source
processor with address S = S$m_1Sm—2-""90
to a destination processor with address D =
dim—1dm—g - - - do by recursively applying Sg+1 =
Teplaceg(shuﬁle(sk),clm_l_k) with k from 0 to
m — 1, where Sy = S and S, = D.

As described above, the omega network re-
places spy-1-k With dp-1-k in stage k. Ac-
cordingly, viewing the omega network from an-
“other angle, the destination address D can be
attained if a cuben_1—p function is recursively
applied (0 € k < m — 1) to the source ad-
dress S, where cuber(Gm—10m—2-"-0k- " ag) =
Um—1Gm_2 - @5 ---ap (14]. That is, assuming
that cubeli(A,t) is a function which executes
cubey(A) only when ¢ = 1, and that S@ D =
T (= tm-1tm—z---to) (©: exclusive OR), then
Dpyy = Cubelm_l_k(Dk,tm_l_k), where Dy = S
and D,, = D. The omega network can therefore
be embedded in the hypercube as described in

The delta network [12] and the indirect bi-
nary n-cube (ICube) are equivalent to the omega
network with renumbering [11]. That is, with
shuffied S, the delta network is equivalent
to the omega network; Delta(shuffle(S), D) =
Omega($, D). Similarly, with reversed S and D,
the ICube is equivalent to the omega network;
ICube( reverse(S),reverse(D)) = Omega(S, D).

2) Direct Network (Hypercube): The hyper-
cube [13] is a direct connection network where
2™ (= n) switches are interconnected by direct
links to organize an m-dimensional hypercube;
the switch with address S is interconnected
with m switches with addresses cube;(S) (v =
0,1,...,m —1). Only one processor is attached
to a switch. A packet is routed from a processor
S to a processor D in r steps, where r is the

expression is

Hamming distance between S and D. That is,
assuming that r bits tone(r—1), tone(r—2)7 -+« , Lone(0)
of the routing tag T (= S & D) are equal to 1,
the packet is routed from the switch with ad-
dress Dy to switch Dyy1 = cube one(r—1-k)(Dk);
where Dy = S and D, = D. This routing
method is in principle the same as the method
with cubel in the omega network, Diy1 =
cubelm-1-k(Dg;tm—1-k). The omega network
can thus be embedded in the hypercube.

2.2 Principle for Embedding

This section focuses on embedding in the
omega network, and hence on the shuffle func-
tion (topology), since representative networks
can be made equivalent to, or can be embed-
ded in the omega network as described in the
previous section. Assume that the omega net-
work can upwardly multicast v; in p; to p
(k =4,i+1,...,n—1). When each processor
p; upwardly multicasts v; (i = 0,1,...,m — 1),
p; Teceives vg, v1, -+, Vi, and hence can compute
the 4-th initial prefix z; = 6i_qur. This triv-
ial algorithm requires O(n) computation steps,
however suggests the possibility of a nontrivial
one; if v’s can be combined in the network to
produce partial initial prefixes, the computation
steps will be reduced to O(logn).

To upwardly multicast and combine v’s in the
network, let’s introduce two functions, © and
o. Assume that V, V® (1 < k < m), W,
W®), and X are n-dimensional vectors of which
elements respectively equal wvj, U,(k), Wi, w,(k),
and z; (0 < i < n—1). Then, O(V,W) is a
function that returns (V, W®), where wld) =
worpfwap 1 and wg}c)ﬂ = wopfwap16ver (0 <k <
n/2 —1). Note that n = 2™. Another function
o(V,W) = (o(V),o(W)) returns (V(l),W(l)),
where ’Uk') = Ushuffle=1(k) and wkl = Wshuf fle-1(k)
(0 <k <n—1). That is, o(V, W) shuffies the
indexes of V and W. With these two functions,
n initial prefixes X are produced in parallel from
V as follows, where the composition f(g(z)) of .
two function, f and g, is represented as f o g.

[Theorem 1] Let (V@) w0)) be the result of
j application of @ oo to (V,W), (©00)(V,W),
with initial V = (vp,v1,...,vn-1) and initial W
of 0 (wy = 0 for all k). Then, the i-th initial
prefix x; = 6}_yvx is equal to w{™ou{™; that is,
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X = wmgym),

(Proof) Because the index (or address) 4 of v;
is composed of m bits, and because shuffle™ (i) =
i, V0" = V. It is thus sufficient to prove that
w?’” = z;.1, the (1 — 1)-th initial prefix. At the
s-th application of © (after the s-th application
of ), the arguments v{) and ugle equal respec-
tively such v, and v, as g = cube,,_4(p). This is
because shuffle™*(2k) = cuben_s(shuffle™(2k +
1)). Hence, v, affects wgﬁll) (= wé?@wéfc)ﬂ%p).
'To probe the index j of v; that affects w.E""), let’s
start the probing from the last application of ©.
Assuming that ¢ = a,, 1053 - - ag, in the m-th
application, the index j of the v; that may affect
the wz(»m) equals j = a,,_1@y,—9---A5. The wgm)
and w§m) (iorj=2kandjori=2k+1) maybe
affected in the (m — 1)-th application by the v’s
whose indexes equal @p,—1am—g - - G1Z (z means
don’t care). Similarly, the v’s with indexes
Om-1Gm—3 -+ @¢2Z -+ - T in the (m — k)-th appli-
cation, and with indexes @;,—1zz - - - z in the Ist
application, may affect the value w,(m). Of these
Um—1Gm—y - Gpzz -2 (k =m—1,m-2,...,0),
v’s with indexes satisfying @y = 0 really af-
fect the w,(m). Consequently, assuming that bit
Qone(ky (T —1 > k > 0) of i equals one, the v's
with indexes a,,_1@m_s- - * Qone(k)~10one(R) LT - -+ T
(k = r—1,r —2,...,0), which are equal to
t~1,i—2,...,0, are combined to produce wgm).
That is, wgm) = 0iztvp = z;_1, and therefore
z; = w{™u{™. (Q.ED.)

With this theorem, the time steps required
to perform the parallel prefix operation is
O(2logyn), because 2 steps are required in
the ©. In general, conmsidering a chunk of
s data in place of the two-data chunk, wqy
and w1 (and vy and vopy), O(V, W) is ex-
tended so as to return (V, W) where wg,lca_] =
(Oizowat+)0(B g vt) (0 < k < nfs—1,0 <
J < s—1). Since the first and second terms are
computed independently by using, for example,
the recursive doubling algorithm in log, s steps,
wg,{)ﬂ is calculated in logy s + 1 steps. Hence,
with theorem 1, the parallel prefix operation is
carried out in O((logy s +1)log, n) time steps in
the general case.

As described in the proof of theorem 1,
shuffle’(p) = 2k and shuffle?(q) = 2k + 1, pro-

vided that ¢ = cuben_;(p) (1 < j < m). Ac-
cordingly, by using the cube function, the paral-
lel prefix operation can be carried out in the
following way. A functions ©;(V,W) that is
used in place of © and o is defined to pro-
duce (V,WW) such that wgl) = w;fw, if bit
j (note that the LSB is bit 0) of i equals 0,
otherwise, wz(l) = wifwbv,, and ¢ = cube;(i)
(m—1<j <0). That is, ©; applies © to w;
and w, (and v,). Notice that © is equal to .
[Theorem 2] Assume that (VO), W) is the
result of j applications of ©; to (V,W) with
k from m — 1 to m — 7, (Omjo- 00,90
Om-1)(V, W), with initial V = (vg, vy, ...  Un—1)
and initial W of 0. Then, all initial prefixes X
are given by X = Wmgy (m),
(Proof) The proof is omitted, because this
theorem is equivalent to theorem 1, and the
proofs are also equivalent.

2.3 Basic Algorithms

Two basic parallel prefix algorithms, a recur-
sive shuffling and recursive cubing algorithms,
are presented here. These algorithms can be
executed in parallel by n processors, but they
cannot be embedded in the network.

procedure recursive_shuffling();
{for j:=0 to logn-1 do
{forall i:= 0 to n-1 do in parallel
{new_V[shuffle(i)]:= VI[i];
new_Wishufle(i)]:= W[i;}
forall i:= 0 to n-1 do in parallel
{if bite(i) = 0 then
Wli]:= new_WIi] § new WIi+1];
else
Wli]:= new_WIi] 0 new_WIi-1]
¢ new_V[i-1];
V[i]:= new_VJ[i};}}
forall i:= 0 to n-1 do in parallel
X[il:= V[i} ¢ WIi];}

Fig. 2. The recursive shuffling
algorithm. :

The recursive shuffling algorithm (Fig. 2) is a
straightforward implementation based on theo-
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rem 1. This algorithm uses five arrays of n ele-
ments, V and new_V for v’s, W and new_W for
w’s, and X for z’s. Initially, elements of V[i] is
set equal to v;, and those of other arrays are set
to zero. The first forall statement corresponds
to the function o, and the second forall carries
out the same function as ©. The last forall ex-
ecutes z;_160v; to leave z; in X[i]. The recursive
cubing algorithm shown in Fig. 3 is an imple-
mentation of theorem 2. The first forall state-
ment corresponds to ©;.

An example of the recursive shuffling algo-
rithm when n = 8 is shown in Fig. 4. V and
W are initial vectors, and the two vectors above
the double lines show the result of o (V) W)
(0 < k < 2). Notice that the output V{*+D
of ©(c(V®), o(WH)) equals the input o(VH),
and hence the first vector denoted V*+1) above
the double lines means both the first input and
the first output of ©, of which output WD ig
shown under the double lines.

procedure recursive_cubing();
{for j:= logn-1 down to 0 do
{forall i:= 0 to n-1 do in parallel
{if bit;(i) = O then

lnevv Wlil:= W[i] § W]cube;(i)];
new_WI[il:= W[i] § W]cube;(i)]

0 Vicube;(i)];}
forall i:= 0 to n-1 do in parallel
WIi]:= new_WI[i];}
forall i:= 0 to n-1 do in parallel
X[i]:= V[i] & W[i};}

Fig. 3. The recursive cubing algorithm.

The 5-th initial prefix s, for instance, is com-
puted as follows. In the first application of O,
the partial inputs (vog, vUops1, W, and Wok11)

hen k = 1 M= = (=
when are vy Ushuf fle-1(2) vl ( v1),

m

- (0) (0) -
U3 = Vs, Wepypsie-1(2) = Wi, and Wshuffle-1(3) =

ws. Hence, wgl) = wifws; = 0, and wél) =
w1fwsfv; = vy. Similarly, in the second appli-
cation of © and when k = 3, the partial inputs
are vz (= U( )), 1)7 (= U(l)) v (= wgl)), and v

(= wgl)), and w{? and w® are thus equal to

U10'U3 (= 96’(12,‘4.1) and ’016"0301)5 (= 0%’02,‘.4_1), re-
spectively. Then, in the third application and
when k = 2, vy, vs, Ofve;, and 63v2i+1 are the
partial inputs, and the result wf') and wg3) thus
equals O3v; and 6fv;. Finally, the fifth initial
prefix z5 is achieved by w{0v = (62v;)6vs.

k=0 | 1 2 : 3

v Vo Vv : vy A7) \A Vs : Vg vy
wW o 0:0 ©0:0 O0i0 o0

(o]
VO v v i wm Vs V2 Ve V3 V7
0 0:0 0 0 0 0 0
(¢] 8 +
WP 0 wmi0 w0 vwuiO0 W
[+
VO vy v iV, Vg Vi V3 lVs Vg
0 o Vo Vv, 0 0 v vy
© @ 1 2. T 2.
WP 0 Vo i6vy Bgvui 0 Vi 8oV, Opvan
o
v® v Vi V2 V3 Vs Vs Vs V7

T ) 7.

Oyva OgVai,a} Bovay eovg-»_l
Tl 2 3 ) 6.

w® 0 v 16y Bgv; 1 6gv;  Bpv; ovi 8y

H H H
X X X X X3 1 X4 X5 | Xg Xq

Fig. 4. Parallel prefix operation with functions ¢ and ©;
(@-shuffle}'(V, W) produces x;=8f4v, (0SiS7).

3 Embedded Algorithms

3.1 The Algorithms for the Omega Net-
work

A parallel prefix algorithm that can be em-
bedded in the omega network, the omega tra-

" verse algorithm, is shown in Fig. 5. This al-

gorithm uses two-dimensional arrays for V and
W. The arrays A[j,2*i] and Afj,2*i+1] (A =V
or W; 0 <j<logn—-1;,0<4<n/2-1)"
are implemented in switch ¢ of stage j. Al
1,i] and Aflogn,i] are data in processor p;, and
V[-1,i] and W[-1,i] are initialized to v; and 0,
respectively. The italic statements show the
operations performed via the interconnections
(Fig. 1), and the rest except for the last state-
ment are executed in the switches; the last state-
ment X[ ]:= V[] 8 W[] is executed in the proces-
sors. The first forall statement in the for-loop
corresponds to the function ¢, which is thus im-
plemented in the interconnection of the original
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omega network. The second forall in the for-
loop implements the function ©. Hence, this
algorithm is equivalent to the recursive shuffling
algorithm, and can compute all initial prefixes
in parallel in 2logyn + 1 time steps; +1 is for
computing X[].

procedure omega._traverse();
{for j:=0 to logn-1 do
{forall i:= 0 to n-1 do in parallel
{V[j,shuffle(i)]:= V[j-1,if;
W/j;Shzbfﬁcle(i)/:: W[j-1,i]:}
forall i:= 0 to n/2-1 do in parallel
(Wlj.25]= W2 0 W 2¥1;
Wj,2%i+1]:= W[j,2%1] 6 V[j,2%i];}}
forall i:= 0 to n-1 do in parallel
{V[log n,ij:= V[logn-1,i];
W/log n,ij:= Wflogn-1,i];
X[i]:= V[logn,i] § Wlogn,i);}}

Fig. 5. The omega traverse algorithm.

An example of this algorithm is the same as
the one shown in Fig. 4, provided that V, W,
and X are in the processors, that v%), ngkﬂ (0<
k<3, 1<j<3)and© are implemented in
switch k of stage j —1, and that ¢ is implemented
by the interconnection (function shuffle).

Since Delta(shuffle(S), D) = Omega(S5, D) as
discussed in section 2, a delta traverse algorithm
(omitted for the space) is the same as the omega
traverse except when j = 0, where shuffle(S)
is performed by n processors by using normal
packets. The number of time steps required for
the parallel prefix operation in the delta traverse
is 2logyn + 2.

3.2 The Algorithm for the Indirect Bi-
nary n-Cube

ICube(reverse(S),reverse(D)) =
Omega(S, D), so the ICube traverse algorithm
shown in Fig. 6, where use of arrays V, W, and
X is the same as in Fig. 5, reverses the indexes
of v; in the first and last statements. These re-
verses are performed by the processors. The sec-
ond forall statement performs the function id of
interconnection 0 of the ICube, and the first and

second foralls in the for-loop correspond to the
O in every switch and the shuffle”! interconnec-
tion, respectively.

procedure indirect _binary_n_cube._traverse();
{forall i:= 0 to n-1 do in parallel
V]-1,reverse(i)]:= V[-1,i];
forall i:= 0 to n-1 do in parallel
{V[0,i]:= V[-1,i];
W[0,i]:= W[-1,i];}
for j:=0 to logn-1 do
{forall i:= 0 to n/2-1 do in parallel
{W[j,2%i]:= W[j,2*] ¢ W{j,2¥%i+1);
W(j,2*i+1]:= WI[j,2%] 0 Vi, 2*i];}
forall i:= 0 to n-1 do in parallel
{V[j+1,shuffie”t (i)]:= V[j,i];
W/j+1,shuffle™ (i)]:= W[j,i];}}
forall i:= 0 to n-1 do in parallel
X[reverse(i)]:= V[logn,i] § W[logn,i};}

Fig. 6. The indirect binary n-cube
traverse algorithm.

processor
0 1 2 3 4 5 6 7
vo v vy vy V4 Vs Ve v,
I Gﬁ f‘f Qﬁ ? Gi f? ?7
stage | Vo A V2 Y6 M Vs V3 V1
olo o 00 o0 0
0 Yo 0 V2 0 M 0 Y3
v T 7 3 ) 5 3 7
0 i 2 5 ¢ 7
N v v, vy Va 3 Vs V7
1 0 0 0 0 Vo V2 Vi ¥
1 3 T 2
0 Yo 0 v, Govai Bovy B0Vais BoVainn
G 3 5 7
0 i 2 ) 5 I3 7
Yo v \N Vs A\ V3 3 V7
i 1 4
2 0 0 6oVzi BgVain Vo Vi e%:"zi O0Vaint
3 4
0 Yo Oovi  ovi %, azn"'. 6y Bgv,
0 P 3

4 5 [ 7
l 6
0% %V, B0V g i Vor 5 v Xseg"i Gge“v‘

Xo X1 2 X3 X4 X5 X¢ X

Fig.7. Parallel prefix operation with the indirect
binary n-cube traverse algorithm.

Hence, without the reverse of the indexes, this
algorithm can be embedded in the ICube. The
number of time steps required for executing the
parallel prefix operation is 2logyn + 2.
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An example of this algorithm when n = 8 is
shown in Fig. 7, where the notation is almost
the same as in Fig. 4. The interconnection
functions except for the first are shuffle™. Let’s
trace to get the fourth initial prefix z4. Proces-
sor 4 sends vy to processor reverse(4) = 1, that
sends v4 to switch 0 in sta%e 0. In the switch,
W(0,1] (corresponding to w!) of theorem 1) be-
comes equal to vg, and is sent with v to input
4 (= shuffle}(1), where 1 means output 1 of
stage 0) of switch 2 in stage 1, where W[1,4]
(wf)) is set equal to vofvy (= Ofvy;). Similarly,
this value is sent with vg to input 2 of switch
1 in stage 2 to produce W[2,2] (wgg’)) of G3v;,
which is sent with vy to processor 1. Processor
1 combines the two received values to produce
(63v;)0vy = Ofv; = 24, and sends it to proces-
sor reverse(l) = 4. Consequently, processor 4
receives the 4-th initial prefix z4.

3.3 The Algorithm for the Hypercube

An algorithm which can be embedded in
the hypercube is shown in Fig. 8. This hyper-
cube traverse algorithm is in principle the same
as the recursive cubing shown in Fig. 3. Ini-
tially, v; and 0 are held in V[-1,i] and W{logn,i]
of processor p;, respectively. The first forall
statement initializes the switches; p; sends v;
and w of 0 to switch ¢ belonging to p;. The
for-loop is equivalent to the for loop in Fig. 3.
However, to decrease the amount of communi-
cation between switches ¢ and cube;(1), switch ¢
sends W[j,i] 8 V[0,i] or W[j.i] to W[j-1,cube;(i)]
in switch cube;(i), depending on bit j of ad-
dress 7 (bit;(i)). Hence, in the second forall of
the for-loop, if bit;(i) equals 1, W[j-1,i] becomes
equal to WIj,i|dWij,cube;(1)]6V[0,cube;(i)], or
WIj,iJ0W{j,cube;(i)] otherwise. ~The for-loop
thus performs the function ©;. In the last forall
statement, the i-th initial prefix value z; is sent
to X[i] in p;. This algorithm performs the par-
allel prefix operation in 2logyn + 2 time steps.

An example of the hypercube traverse algo-
rithm when n = 8 (3-dimensional cube) is shown
in Fig. 9, where (a), (b), and (c) show the op-
erations by ©;(V=9), W) for j of 2, 1, and
0, respectively. A line with an arrow along the
edge means that a value is transferred from the
starting vertex to the ending vertex. The edge

with only one transfer in figures (a) to (¢) means
that O is sent in the opposite direction to that
shown by the line with the arrow. The value in
parentheses near vertex ¢ means w; (W/[i] shown
in Fig. 3) after the application of ©;.

procedure hypercube_traverse();
{forall i:= 0 to n-1 do in parallel
{V[0,i]:= V[-1,i];
Wllogn-1,i]:= Wllogn,i];}
for j:= logn-1 down to 0 do
{forall i:= 0 to n-1 do in parallel
if bit;(i) = 0 then
Wij-1,cube;(i)]:= W[j,i
9 VI{0,i);
else
Wii-Leube;(i)]:= Wi
forall i:= 0 to n-1 do in parallel
Wi-1,i]:= W[i,i] § W[i-1,i};}
forall i:= 0 to n-1 do in parallel
X[i]:= V[0,i] § W[-1,i};}

Fig. 8. The hypercube traverse

algorithm.
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Fig. 9. Parallel prefix operation with the
hypercube traverse algorithm. The
computing proceeds from (a) to (d).

For instance, the operations to attain z4 are as
follows. In (a), vertex 4 receives vy from ver-
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tex 0, and produces wy = vg. Similarly, relating
vertices 5 and 6 set ws and wg equal to v; and
ve. In figure (b), vertex 4 sends wyfvy = vyfuy
to vertex 6, receives wg (= vy) from it, and pro-
duces wybws = vobvy (= Oivy;) as the new wy.
Similarly, the new ws equals the f}uva;y; that is
received by vertex 4 in figure (c). Accordingly,
result w4 becomes equal to 63v;. Finally, in fig-
ure (d), z4 is attained by combining w, and w;
w4¢9v4 = 9§vl

4 Conclusions

A family of parallel prefix algorithms, that
can be embedded in the switches of the cube-
type networks, i.e., omega network, delta net-
work, indirect binary n-cube, and hypercube,
have been presented. These algorithms are
based on two basic algorithms, the recursive
shuffling and recursive cubing algorithms. These
two algorithms are equivalent. The number of
time steps required to execute the parallel prefix
operation in the network is O((log, s+ 1)logsn),
where n is the number of processors in the sys-
temn, and the network is composed by using an
s X s switch.

The recursive shuffling algorithm alternately
executes two functions, o (or shuffle) and O,
and hence is straightforwardly embedded in the
omega network by implementing the latter func-
tion in each switch; the former is the inter-
connection function of the original omega net-
work. The recursive cubing algorithm can be
constructed by using the function cube in place
of shuffle. The delta network and indirect bi-
nary n-cube are equivalent to the omega network
with renumbering, and hence the algorithm for
the omega network can be easily modified so as
to be embedded in these networks. The algo-
rithm for the hypercube is achieved based on
the basis of recursive cubing.
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