TaTT LT el A SR
1991, 11. 22

< AFTu b LENHE T2 —ZDEH

FEE Y IEEME 26E BEE
R BRI SRR

HoFEL <AFFa bt e BTAZXR—Z (MTS) &k E T A AR R FHEPECEE L DD
THB FTIARR—ARXE X AMEOHEECT — FHHORBEEHCTE TSI ITF4TE D
LaLadtbif A e) oSS EcoZ L Bn b, HBEE ECREMAFETRAENTHRD L »
FTARR—REEEF B C LB TE AV, MTS REBHH A FIML T 7ARX—2 ¥ HH L. Bl
D—BEREC DO v F a3, b T v b arRFHe—BHREOTEEE- T B
YWo—BHEREoPRILEBEOAF —vIELTHTE 5,

Exploiting Multiprotocol to Implement Distributed Tuple Space
Shigeru CHIBA Kazuhiko KATO Takashi MASUDA

Department of Information Science, University of Tokyo
7-3-1 Hongo Bunkyo-ku TOKYO 113

Abstract Multiprotocol Tuple Space (MTS) is a distributed implementation of Tuple Space.
Although Tuple Space provides primitives convenient for describing several types of communication
and data-sharing, its naive implementation in distributed environments is less efficient than the im-
plementation on shared-memory machines. MTS is a replication-based implementation and provides
several different replication-maintenance protocols that exploit weak consistency. These protocols
achieve efficient replication-maintenance according to communication patterns.

—117—

5-13

1 Introduction

As distributed computing systems advance, numerous
distributed applications are being developed. They run
on workstations connected to networks such as Ether-
net. For the natural modeling of the distributed appli-
cations, the programmer needs application specific com-
munication form and data-sharing scheme. For example,
these applications require various forms of communica-
tion and data-sharing schemes such as remote procedure
calls, streams, and sharing many kinds of data (integer
arrays, graph structures, etc.) The programmer should
choose the most appropriate scheme from them. Be-
cause it is difficult to combine many communication fa-
cilities in one application, it is preferred that the system
provides a single flexible facility, which can model many
communication forms and data-sharing schemes.

One approach to provide the flexible facility is to im-
plement distributed shared memory (DSM) [14]. It is
used in the same manner as ordinary shared memory in
a tightly coupled multiprocessor machine. It is, however,
not easy to describe communication through DSM be-
cause it requires complex synchronization. Furthermore,
DSM uses strict consistency, in which the value returned
by a read operation is up-to-date. This hinders efficient
implementation of DSM because up-to-date values do
not naturally exist in distributed environments. Several
works have introduced relaxed consistency [2, 8] or much
weaker consistency [7] into DSM. In relaxed consistency,
a memory Is consistent if there are some legal sched-
ules of operations. Relaxed consistency is identical to
strict consistency from the viewpoint of a programmer.
Weak consistency is substantially different from strict
consistency. Weak consistency provides new semantics
for DSM. These systems, however, have problems. The
former needs information about application semantics.
The latter makes programmers conscious of the different
consistency.

Another approach is to use Tuple Space [6], which al-
lows programmers to describe several types of commu-
nication and data-sharing [4, 13, 15]. It can use relaxed
consistency because atomic operations of Tuple Space
are synchronous while read and write operations of DSM
are asynchronous. Because relaxed consistency allows
different schedules for operations, we can schedule the
operations to execute them most efficiently. Multiproto-
col Tuple Space (MTS) [5], which this paper presents, is
a distributed implementation that exploits this benefit.
It is a replication-based implementation and provides
several protocols for maintaining replications. These

protocols are weakened to different degrees. They are
selected while keeping the consistency, and improve the
execution speed of Linda programs [6] (Linda is a lan-
guage that has Tuple Space operations as its primitives.)
This is because Tuple Space can use relaxed consistency.
Naive implementations cannot sufficiently exploit the
benefit of Tuple Space. If a central server is responsible
for access to Tuple Space, it becomes a bottleneck. If we
simply use replications that are maintained by a single
protocol, keeping them consistent decreases efficiency.
MTS improves efficiency by using multiple protocols.

This paper presents MTS and discusses how consis-
tency is maintained by each protocol that MTS provides.
Then, it shows typical examples in which the protocols
are selected according to communication patterns.

2 Multiprotocol Tuple Space

MTS is a replication-based implementation of Tuple
Space in distributed systems, such as workstations con-
nected via Ethernet. It does not require that the un-
derlying network has hardware support for multicast-
ing. Each node (workstation) has a replication of Tu-
ple Space. There is no central server responsible for
updating the replications, but any node can modify a
state of Tuple Space and update the replications, us-
ing reliable point-to-point messages. It is assumed that
rﬁessages are delivered in the order in which they are
sent. The replications are updated according to the pro-
tocols. MTS provides several protocols that guarantee
weakened replication-consistency, as well as a protocol
that guarantees strict consistency. This section briefly
describes Tuple Space and the protocols of MTS.

2.1 Tuple Space

Tuple Space is global memory shared by processes run-
ning in a parallel environment. It was proposed for the
distributed language Linda [6]. Tuple Space contains tu-
ples, which are lists of typed fields. For example, a tuple
("Tokyo", 3) consists of a string field and an integer
field. '

A process manipulates tuples in Tuple Space by three
atomic operations, here called TS operations. Out gen-
erates a new tuple in Tuple Space, Read reads a tuple,
and In removes a tuple from Tuple Space. Because In
reads a tuple and simultaneously deletes it, a tuple is
never read after it is removed by In. Tuple Space is
addressed associatively. In and Read remove or read a

— 118 —

tuple that matches their templates. For example, the
following operation

In(“Kyoto", ?i, ?j)

removes a tuple whose first field is the string "Kyoto"
and whose second and third fields have the same types
as the variables i and j. If there is a tuple matching
this template, that tuple is removed. Its second field is
assigned to i, and its third to j. If there are several
matching tuples, In chooses one of them arbitrarily. In
and Read wait for a newly-generated tuple if no tuple
matches their templates.

The original Tuple Space includes other operations:
Eval, Readp, and Inp. Eval generates a new process.
Because process generation is an issue indifferent to in-
terprocess communication, this paper does not deal with
Eval. Readp and Inp are nonblocking operations: if
no tuple matches their templates, these operations fail
and do not block. This paper does not deal with them
because they are extended operations and not essen-
tial parts of Tuple Space. Such nonblocking operations,
which inspect the “present” state of Tuple Space, are
inappropriate for distributed environments, where the
most recent operation is not defined.

2.2 Description of Protocols

Of the three TS operations, only Read requires no up-
date of replications. A node in which a Read is executed
searches its local replication and does not modify the
replication. On the other hand, Out and In require up-
dates of replications. A node in which they are executed
must pass the result of these operations to all replica-
tions. The node sends messages to other nodes and all
replications are updated according to protocols. MTS
provides one protocol for Out and three protocols for In.

When a tuple is generated at a node P, the node P
multicasts ‘out’ messages to the other nodes. The nodes
that receive those messages update their own replica-
tions. No reply messages are returned to node P. One
execution of Out requires one multicasting.

Next, we look at the three protocols: the strict pro-
tocol, the nonezclusive protocol, and the weak proto-
col. These are shown in Figure 1. They guarantee
replication-consistency with different degrees of weak-
ness. The next section discusses the consistency of Tuple
Space in detail.

The strict protocol guarantees that replications are
strictly consistent. It is based on the 2-phase lock algo-
rithm and makes In complete after a tuple is removed

from all replications. Messages are multicast twice and
reply messages are returned after the first is received.

When a node P attempts to remove a tuple, it mul-
ticasts ‘lock’ messages to the other nodes in order to
lock the tuple. The nodes receiving these messages re-
ply with an ‘accept’ message if the tuple has not yet
been locked or has been locked by a node without pri-
ority than node P; otherwise those nodes reply with a
‘refuse’ message. If all replies are ‘accept’, then node P
removes the locked tuple from its local replication, mul-
ticasts ‘remove’ messages, and executes the next step.
The nodes receiving ‘remove’ messages remove the tu-
ple from their own replication. If one of the replies is a
‘refuse’ message, then the removal fails and node P tries
to remove another tuple (rollback).

An In that is executed according to the nonexclusive
protocol is not mutually exclusive. The nonexclusive
protocol keeps consistency only when two In’s never try
to remove the same tuple simultaneously. Other Read’s
can try to read it simultaneously. Although this proto-
col guarantees weaker consistency, it requires fewer mes-
sages than the strict protocol. In the nonexclusive pro-
tocol, messages are multicast once and replies to them

are returned.

When a node P attempts to remove a tuple, it multi-
casts ‘delete’ messages to the other nodes and removes
the tuple from its local replication. The nodes receiving
those messages remove the tuple from their own replica-
tions and return replies. Note that this protacol assumes
that no conflict of In’s occurs. Node P executes the next
step after receiving all replies.

The last protocol is the weak protocol, which guar-
antees the weakest replication-consistency and requires
the fewest messages. In this protocol, messages are mul-
ticast once and no reply is returned, A node that at-
tempts to remove a tuple multicasts ‘erase’ messages to
the other nodes and then removes the tuple from its lo-
cal replication. The nodes receiving those messages also
remove the tuple from their own but do not reply to the
‘erase’ messages.

The weak protocol only informs the other nodes of the
removal of a tuple. It is, hence, not mutually exclusive.
This protocol executes an In and goes onto the next step
before a tuple is removed from all replications, so the
weak protocol cannot guarantee the consistency when
other Read’s try to read simultaneously the same tuple
that the In removes. This will be discussed again later.

—119—

The strict protocol The nonexclusive protocol The weak protocol
" Node P 1 { NodeP 1 [NodeP)
delete
sz - Other
. R “*+--m nodes
] E
L) L _J \ J

Figure 1: Three Protocols for In

3 Consistency of Tuple Space

Tuple Space is appropriate for communication facilities
in distributed systems. Its semantics suits a distributed
environment, where it is not known which event is the
most recent. This section first discusses consistency
of distributed shared memory systems and compares it
with the consistency of Tuple Space. Then we formally
show the consistency of Tuple Space and the character-
istics of the protocols of MTS.

Typical distributed shared memory systems [14] use
strict consistency, in which the value returned by any
read operation is up-to-date. This consistency allows
only one node at a time to perform a write operation to
an object, and a replication (a memory page) is updated
or invalidated as soon as a write operation is done. It
requires lots of message exchanges between nodes to de-
cide which node can perform a write operation. When
anode repeatedly reads data which another node writes
frequently, data may be transferred from the write-node
to the read-node every read operation. Enforcing strict
consistency, hence, decreases the efficiency of the sys-
tem.

Several methods have been proposed to avoid the in-
efficiency of strict consistency, Munin [2] provides a de-
layed update queue, which uses relaxed consistency. In
relaxed consistency, a memory is consistent if there are
some legal schedules that satisfy a causal relationship
between read and write operations. Because a causal
relationship is a partial order in distributed systems,
this consistency allows the system to delay updates of
replications. With the delayed update queue of Munin,
updates are queued and do not propagate until synchro-
nization occurs. This makes it possible to combine sev-

eral updates into the same network packet. The de-
layed update queue, however, can lose consistency if
synchronization does not occur correctly. When op-
erations executed on the same node between one syn-
chronization and the next are both write and read op-
erations, the consistency may be broken. Figure 2 il-
lustrates an incorrect synchronization. W(X) means
a write operation, and R(X) means a read operation
on an object X. P and @ are nodes; P executes
W(A), W*(A), R(B), and W(C) sequentially, and @ ex-
ecutes W (B), W*(B), R(A), and W(D). If the first syn-
chronization is after W(A) and W(B), and the second
one is after W(C) and W (D), the consistency will be
broken. R(B) reads the value written at W(B) and
R(A) reads the value written at W(A) because W*(A)
and W*(B) are still queued. R(B), therefore, precedes
W*(B) and R(A) precedes W*(A). There is no legal
schedule that satisfies this causal relationship.

—— W(A) = Wi(A) — RE®) — W(C) T~

- Y i
—= W(B) —F—= W*(B) — R(A) — W(D) T

Sync Sync

Figure 2: Delayed Update Queue

Introducing relaxed consistency into a distributed
shared memory system, whose atomic operations are
read and write, raises the difficulty of deciding when
replications should synchronize. TORIS [8] solves this

—120—

problem by exploiting an optimistic concurrency con-
trol of transactions in database systems [9]. It treats
several read and write operations as a transaction, and
updates by write operations do not propagate until the
transaction is committed. A synchronization occurs at
a commit operation. When a transaction is committed,
the validity of updates (whether they break consistency)
is checked. If the updates are invalid, the transaction is
aborted and the program execution is rolled back. A
defect of TORIS is that an application must be respon-
sible for restoring the local state of a program when a
rollback occurs.

These implementations that exploit relaxed consis-
tency have the defects discussed above. This is because
the read operation in distributed shared memory sys-
tems is asynchronous. It gets the most recent value of
an object, but the most recent value is not defined ex-
actly. The result of a read operation depends on the
global state of the distributed shared memory rather
than the local state.

On the other hand, it is straightforward to implement
Tuple Space exploiting relaxed consistency. The Read
operation in Tuple Space is synchronous, and a tuple
read by Read is chosen arbitrarily when several tuples
match the template of that Read. Hence, Read can be
executed with incomplete local information, that is, even
if its local replication does not contain all tuples and it
chooses a tuple from the subset of all tuples', it is cor-
rectly executed with respect to the semantics of Tuple
Space. Each node can execute a Read even when its
replication does not contain all tuples. The result of
Read does not depend on the global state. The seman-
tics of Tuple Space matches relaxed consistency. The
implementation this paper presents, MTS, exploits this
advantage to carry out Linda programs efficiently. MTS
maintains relaxed consistency with the least number of
message exchanges. Some protocols that MTS provides
guarantee more relaxed, weak consistency. MTS uses
the protocols together in executing a program and main-
tains relaxed consistency.

3.1 Definition of the Consistency of Tu-
ple Space

To represent causal relationships between TS opera-
tions, we defines a history. A history of TS operations
is an irreflexive partial order with an ordering relation
< defined as follows:
1. Let A and B be TS operations. If A and B are
executed sequentially and A precedes B, then A <

B.

2. Let A,y be Out, and let B be Read or In. If B
manipulates a tuple generated by A,y:, then Ay, <
B.

The first condition specifies a causal relationship be-
tween two TS operations that are successively executed
in the same node, while the second one specifies inter-
node communication through Tuple Space. The defini-
tion of the relation < is similar to the “happened before”
relation [11].

The specification of Tuple Space intuitively suggests
that Tuple Space is consistent if:

1. An Out precedes a Read and an In that manipulate
a tuple generated by that Out,

2. An Inis never followed by a Read that reads a tuple
removed by it, and

3. Two different In’s do not remove a tuple generated
by the same Out.

To discuss the consistency of a history, we define a se-
quential history. This is a history in which the ordering
relation < is a total ordering. From the intuitive con-
ditions, it is derived easily that a sequential history is
consistent if it satisfies the following condition:

Condition 1: Let A;, be In and let B be Read or In.
If B follows A;, (ie. Ain < B), then B does not
manipulate the same tuple as A;,.

Note that a history always satisfies the first of the in-
tuitive conditions. Because a history is an irreflexive
partial order, if Aou: < B (B manipulates a tuple gen-
erated by Aou:); then B £ Aoy (Aoyt does not follow
B). A consistent sequential history is a legal schedule
of TS operations. We define a history to be consistent
if there is a legal schedule of TS operations. This defi-
nition of the consistency is a relaxed consistency. This
is formally defined as follows:

Consistency: A history H is consistent if there is a
consistent sequential history S such that <y C~<s.

It can be determined whether a given history is consis-
tent by using a Tuple Space operation graph. This rep-
resents causal relationships that a history contains and
the relationships that a consistent history can hold, A
Tuple Space operation graph TG(H) for a given history
H is a directed graph whose nodes are TS operations in
H and whose edges satisfy the following conditions: For
all edges A — B,

1. the history H contains A < B, or
2. A and B manipulate the same tuple and Bis In.

—121—

The second condition means that an In should follow
any Read that read the same tuple removed by the In.
If A and B manipulate the same tuple and both 4 and B
are In’s, then TG(H) includesedges A — Band B — A
from the second condition. Hence, if TG(H) is acyclic,
there is a consistent sequential history corresponding to
a given history H. The following proposition shows a
way to determine whether a given history is consistent,
and also shows a condition for a history to be consistent.

Proposition. A given history H is consistent if and
only if TG(H) is acyclic.

Proof: If TG(H) is acyclic, then this graph can be

topologically sorted by the ordering relation <. The
sorted ordering S satisfies the expression <y C<s
because T'G(H) contains all edges of a history H.
The ordering S is a consistent sequential history
because Condition 1 is satisfied from the definition
of TG(H) and the fact that TG(H) is acyclic. The
history H is, therefore, consistent.
Conversely, suppose that a given history H is consis-
tent, that is, there is a consistent sequential history
S corresponding to H. If there is two TS operations
A, B that manipulate the same tuple and B is In,
then A < B in the sequential history S. Hence,
B £ A in the history H. The graph TG(H) is,
therefore, acyclic.

3.2 Replication Consistency Protocols

To keep the consistency discussed above during program
execution, updates of a replication by Out and In have
to be propagated to all nodes according to protocols.
MTS provides several protocols; each protocol restricts
the behavior of a program execution to differing degrees.
For example, the strict protocol for In prevents a tuple
from being removed by two different In’s.

To represent a restriction by a combination of the pro-
tocols in MTS, a feasibility graph G(H) is defined for a
history H. I,J, and K are sets of In’s that use the
strict, nonexclusive, and weak protocols, respectively.
Nodes of G(H) are TS operations in H, and its edges
are P — @ such that:

1. P < Q in the history H,
2. @ uses the strict protocol (Q € I) and P, Q manip-
ulate the same tuple; or
3. P is Read, Q uses the nonexclusive protocol (Q €
J), and P, @ manipulate the same tuple.
If an underlying network system preserves the order in
which messages are sent (MTS protocols assume this),

a number of edges P — @ are added to the feasibility
graph G(H). Q is an In that uses the weak protocol
(Q € K). Let R,S be TS dperations executed in the
same node as P, (@, respectively, and suppose that 2

follows P (i.e. P — R) and S precedes @ (i.e. S — Q).

4. If the feasibility graph includes R — S, the edge
P — @Q is added to the graph.

If a history H is feasible, then the feasibility graph
G(H) is acyclic. The protocols prevent a program from
executing in a way corresponding to a cyclic feasibility
graph. Because the protocol for Out puts no restriction
on the behavior, there is no item describing this proto-
col in the definition of a feasibility graph. The strict
protocol guarantees that an In is executed exclusively
and that the In is completed after all replications are
updated. Thus, an In P follows any other TS operation
@ that manipulates the same tuple. Because a feasible
history does not include an edge @ — P, the feasibility
graph is acyclic. The nonexclusive protocol guarantees
only that an In is completed after all replications are
updated. An In P follows any other Read @ that reads
the same tuple. A feasible history, hence, does not in-
clude an edge Q — P if Q is a Read. It may include an
edge @ — P if Q is In. Thus, if a history is feasible, the
feasibility graph is acyclic. Although the weak protocol
gives no restriction, it indirectly restricts the program
execution because the message derivation order is pre-
served. Suppose that an In P was executed at a node
according to the weak protocol. If that node executes
another TS operation and sends a message to another
node, then the message sent by P must arrive there be-
fore the latter message arrives. After this arrival, any
In or Read @ do not manipulate the tuple that P re-
moved. Histories are, hence, infeasible if () manipulates
this tuple after that arrival. The feasibility graphs that
correspond to feasible histories, therefore, do not include
an edge Q — P.

The consistency of Tuple Space is kept during a pro-
gram execution if a given combination (I, J, K) satisfies
the following condition:

Condition 2: TG(H) is acyclic for all histories H

whose feasibility graph G(H) is acyclic.

Because a history is feasible if its feasibility graph is
acyclic, Condition 2 means that, for any feasible his-
tory H, TG(H) is acyclic, that is, the behavior of the
execution is consistent. To keep the consistency, the
combination of the protocols has to satisfy Condition 2.
MTS improves communication through Tuple Space by
using as weak protocols as possible under Condition 2.

—122—

Condition 2 proves that the strict protocol guarantees
the consistency in any case. If any In uses the strict
protocol, the program is never executed inconsistently.
Because TG(H) becomes equivalent to G(H) when all
Ins use the strict protocol (J, K = @), feasible histories
are also consistent.

4 Discussion about Protocols

Selecting the protocols allows us to optimize the exe-
cution of Linda programs in distributed systems. Al-
though Linda can describe parallel programs flexibly
by supporting generic many-to-many communication,
its flexibility becomes an obstacle to faster execution
of Linda programs in distributed environments. Naive
implementations of Tuple Space, in which the nonex-
clusive and weak protocols are unavailable, requires un-
necessary message exchanges. For example, it requires
them to guarantee the exclusiveness of In even when
no conflicts of In’s occur. In such a case, however, MTS
does not guarantee it, and reduces message exchanges by
using the nonexclusive protocol. Flow-analysis of a pro-
gram determines the best combination of the protocols
under Condition 2 in the previous section. This section
shows typical examples where it is clear that they satisfy
Condition 2.

The first example is Server-Clients communication.
In the client-server paradigm, many clients request and
get replies from a single server. The weak protocol
is suitable in this case. For example, an electronic
mail system uses this type of communication. A node
that attempts to send mail executes Out and gener-
ates a tuple that contains a receiver’s address and the
contents of the mail. If you send a mail to a per-
son ‘Chiba’ in the Information Science Department,
the generated tuple is ("Chiba", "info science",
"...message..."). This tuple is removed by a node
whose domain name matches "info science" or which
is a transmitter to that department. The sender node
is a client and the receiver node is a server. Note that
there is only one server corresponding to each domain,
while there are many clients. Figure 3 shows a skeleton
of Server-Clients communication. All In’s included by
both server() and client() can use the weak proto-
col without breaking the consistency. Because there is
a single server, the In of the server never conflicts with
another In. Because client._id is an identifier unique
to a client, the In of a client never causes a conflict ei-

ther. Tuples that no other TS operation manipulates

can be removed by In according to the weak protocol.
/* C-Linda program */
server()
int cliemt_id;

while(1){ -
in("request", 7 client_id, 7 argument);

c;v:\{’.("reply", client_id, result);
}
client()
{ int client_id = unique identifier;

out(“"request”, client_id, argument);
in("reply", client_id, 7 result);

Figure 3: Server-Clients Communication

/* C-Linda program */
server()

int index = 1;
o{xé("token", 1);
while(1){.
in("request", ? index, ? argument);

c.n.n.:("reply", index, result);

++index;

}

client()

{
int index;
in("token", ? index);
out("token", index + 1);
out("request", index, argument);
in("reply", index, ? result);

}

Figure 4: Merged Stream

This example assumes that a server picks requests
at random. When a server reads a streamn from many
clients (merged stream), the weak protocol cannot ap-
plied to In. Figure 4 is a skeleton of this case. The
stream consists of a series of numbered tuples. The sec-
ond field “index” of a tuple is an index number. To
get successively incrementing index number clients read
and update a tuple whose first field is “token”. This
tuple represents the end of the stream. If many clients
attempt to get an index number simultaneously, it must

—123—

/* C-Linda program */
P1()
{

int i;

out(*X", 1);

while(1){
in("X", 7 i); out("X", i + 1);

}
P2()
{
int x, y;

out("Y", 1);
while(1){
read("Y", ? y); read("X", 7 x);
if(x > y){
in("Y", ? y); out("y", x);

¥
¥

P3()

{
int x, y;
while(1){

read("Y", ? y); read("X", 7 x);
assert(x >= y);

Figure 5: Shared Variables

be read and updated correctly. The In that ‘Temoves
this tuple, hence, cannot use the weak protocol but the
strict protocol because it must have access to the index.

The last example, in Figure 5, shows a case using
the nonexclusive protocol. In may use the nonexclusive
protocol instead of the weak protocol when other Read’s
read the removed tuple. Figure 5 shows an example,
which was originally presented in [1] (the original exam-
ple did not use Tuple Space). The tuples ("X, num-
ber) and ("Y", number) are used as shared variables X
and Y, whose values are number. Process P1 increases
(the value of) X, and process P2 attempts to keep Y equal
to X. Process P3 verifies that X is greater than or equal to
Y. This verification always succeeds because P3 reads Y
before X. If the In of process P1 uses the weak protocol,
an inconsistency may occur. Suppose that P1 removes
a tuple ("X", 3) and generates a tuple (X", 4). Pro-
cess P2 reads the tuple ("X*, 4), removes a tuple ("Y",
3), and generates a tuple ("Y", 4). The ‘out’ message
from P2, which represents generation of the tuple ("¥",
4), may arrive at the node containing process P3 before
the ‘erase’ message, which represents removal of the tu-
ple ("X", '3), arrives from P1. If process P3 reads the

tuples ("Y", 4) and ("X, 3), then the assertion of
that process fails. Figure 6 represents the history in
this situation. If the nonexclusive (or the strict proto-
col) is used, the assertion never fails because process P1
does not generate (X", 4) until messages representing
the removal of ("X", 3) arrive at all nodes.

P1

— ol & —
o T .

P2 .
out read it
N X T T e

P3_ tead read
(‘7.34) (x.3)

Figure 6: History

5 Experiment

A prototype of MTS is implemented on Sun SPARC
workstations (SunOS 4.0) connected with Ethernet.
Processes communicate with each other through the
UNIX sockets with TCP/IP. A socket is not connected
for every message sending but is connected once before
a program execution begins. Two processes, such as a
Tuple Space server (called TS server below) and a client
process, run on each host. They communicate with each
other also through a socket. A program using Tuple
Space runs on a client process. When a TS server re-
ceives, from a client process, a request for carrying out
a TS operation, the server executes it. The server main-
tains a replication on its host and other hosts according
to protocols. A protocol for executing In is specified by
a client process.

This experiment uses a fixed-size (44-byte) tuple
whose elements are integers, and it measures the time
during which a tuple is passed from one client process
to another. The result of this measurement is compared
with the time during which the same amount of data is
passed directly through a socket instead of through Tu-
ple Space. Because a socket internally buffers passed
data, the experiment uses the following “ping-pong”
program, in which two processes exchange tuples 100
times, to decrease the influence of buffering. Further-
more, to force immediate delivery of data, an option

TCP.NODELAY of TCP is set [12].
process Ping;
begin
or i = 1 to 100 do begin

—124—

Out("ping", i);
In("pong", i);
end;
end;

process Pong;
begin
or i = 1 to 100 do begin
In("ping", i);
Out("pong”, i);
end
end;

Table 1 lists the transfer time for one data passing, in
which one Out and one In are executed. The transfer
time is measured for three cases where In’s use either
the strict, nonexclusive, or weak protocol respectively,
and for a case of the UNIX socket. For the case of the
UNIX socket, transfer time is the time during which
data is sent by one client process and received by an-
other. The time was measured at night, when several
other user processes run. Ping and Pong processes run
on different hosts, and there is no other client process
that uses Tuple Space. The weak protocol performs
significantly faster than the other two protocols. The
nonexclusive protocol is not much faster than the strict
protocol. This is probably because the TS server that
sends ‘remove’ messages in the strict protocol does not
wait until the messages are received but continues to
execute. Although passing data with a socket is much
faster than with the weak protocol, the rates are com-
parable considering that data is passed through two TS
servers in the weak protocol.

Table 1: Transfer time of one data passing (in msec)

of replications 2 3 5
strict 9.0 9.9 145
nonexclusive 8.3 8.9 13.1
weak 5.5 6.0 7.8
socket 1.5

6 Conclusions and Future Work

Tuple Space is suitable for communication facilities in
distributed systems. It enables flexible description of
many types of communication and data-sharing. It has
the advantage that it can be implemented with relaxed
consistency. This paper presents MTS, which is an im-
plementation that exploits this advantage. It permits
efficient execution of Linda programs in a distributed
environment. In our experiment [5], MTS improves ex-

ecution of Linda programs by up to about 40%. MTS
provides for TS operations several protocols that guar-
antee different degrees of weakened consistency. Using
the protocols together optimizes execution of Linda pro-
grams. Although some protocols guarantee weaker con-
sistency than relaxed consistency, MTS provides relaxed
consistency from the viewpoint of a programmer. For
this purpose, the protocols must be selected for each TS
operation under the conditions described in section 3.
There are several research activities of replications
maintained with weak consistency [10, 16]. They ex-
ploit application semantics to make consistency weaker.
They maintain their replication with coarse-grained op-
timization, while MTS maintains with fine-grained op-
timization. ISIS [3] is a system whose communication

primitive is message broadcasting, and provides differ-

‘ent degrees of weakened broadcast protocols. In this

system, a programmer selects appropriate protocols and
broadcasts messages accordingly. This system optimizes
message broadcasting with application semantics.

We plan to develop a compiler that analyzes a Linda
program and assigns an appropriate protocol for each TS
operation. In our prototype MTS, a programmer must
select a protocol for each In. Complete fine-grained op-

timization requires flow-analysis by a compiler.

7 Acknowledgments

We thank Satoshi Matsuoka for his valuable suggestions
that helped us to clarify and organize our work. We also
thank the members of the Masuda Research Group for
their helpful comments and discussion during the course
of this work.

References

[1] Bal, H. E. and A. S. Tanenbaum, “Distributed
Programming with Shared Data,” in Proc. of the
International Conference of Computer Languages,
pp. 82-91, 1988.

Bennett, J. K., J. B. Carter, and W. Zwaenepoel,
“Munin: Distributed Shared Memory Based on
Type-Specific Memory Coherence,” ACM SIG-
PLAN Notices, vol. 25, no. 3, pp. 168-176, 1990.

Birman, K. P.and T. A. Joseph, “Reliable Commu-
nication in the Presence of Failures,” ACM Trans.
Comp. Syst., vol. 5, no. 1, pp. 47-76, 1987.

(2

[3

=

—125—

[4] Carriero, N. and D. Gelernter, “Linda In Context,”
Commun. of the ACM, vol. 32, no. 4, pp. 444-458,
1989. .
Chiba, S., K. Kato, and T. Masuda, “Optimiza-
tion of Distributed Communication in Multiproto-
col Tuple Space,” in The Third IEEE Symposium
on Parallel and Distributed Processing, 1991.
Gelernter, D., “Generative Communication in
Linda,” ACM Trans. Prog. Lang. Syst., vol. 7, no. 1,
pp- 80-112, 1985.
Hutto, P. and M. Ahamad, “Slow Memory: Weak-
ening Consistency to Enhance Concurrency in Dis-
tributed Shared Memories,” in Proc. of the 10th
International Conference on Distributed Comput-
ing Systems, pp. 302-309, 1990.
Krieger, O. and M. Stumm, “An Optimistic Al-
gorithm for Consistent Replicated Shared Data,”
in Proc. of 1990 Hawaii International Conference
on System Sciences, vol. 2, pp. 367375, CS Press,
1990.
Kung, H. T. and J. T. Robinson, “On Optimistic
Methods for Concurrency Control,” ACM Trans.
Database Syst., vol. 6, no. 2, pp. 213-226, 1981.
{10] Ladin, R., B. Liskov, and L. Shrira, “Lazy Replica-
tion: Exploiting the Semantics of Distributed Ser-

5

[6

(7

(8

[9

vices,” in Proc. of the Workshop on Management
of Replicated Data, pp. 31-34, IEEE, 1990.

{11] Lamport, L., “Time, Clocks, and the Ordering of

Events in a Distributed System,” Commun. of the

ACM, vol. 21, no.-7, pp. 558-565, 1978.

Leffler, S.J. et al., The Design and Implementation

of the 4.8BSD UNIX Operating System. " Addison-

Wesley, 1989.

[13] Leler, W., “Linda meets Unix,” IEEE Computer,
vol. 23, no. 2, pp. 43-54, 1990.

[14] Li, K., Shared Virtual Memory on Loosely Coupled
Multiprocessors. PhD thesis, Dept. of Computer
Science, Yale Univ., 1986.

[15] Matsuoka, S. and S. Kawai, “Using Tuple Space
Communication in Distributed Object-Oriented

12

Languages,” in Proc. of Object-Oriented Pro-
gramming Systems, Languages, and Applications,
pp. 276-284, 1988.

[16] Triantafillou, P. and D. Taylor, “Using Multiple
Replica Classes to Improve Performance in Dis-
tributed Systems,” in Proc. of the 11th Inierna-
tional Conference on Distributed Computing Sys-
tems, pp. 420428, 1991.

—126—

