Turs v —Gan e BHE- R 53
(1991, 11. 2D

JEFHHBEERRICDO W T

RHEPEF BT B

BILFEEA K FHEMRIER
IR AILX B 3-14-1

AR IIIEREEBEIC D L oL WITHEOBXR I T 3 ZonEfit oA
WhEE ., TNOOBoBRICO LT~ E, KEORKRIT, Skobhb
NOBRZICET A DMBOEBRDO—D Lt RERETDIDOTH S,

On Asynchronous Communication
Semantics

Kohei Honda, Mario Tokoro

Department of Computer Science,

Keio University

3-14-1, Hiyoshi, Kohoku-ku,
Yokohama, 223, Japen

This paper presents some theoretical results concerning asynchronous com-
munication semantics for a formal system based on a fragment of Milner’s
w-calculus. It compares two equational theories for the formal system, and
proves several basic results concerning their relationship.

On Asynchronous Communication Semantics
(An Abbreviated Version)

Kohei Honda and Mario Tokoro*

Department of Computer Science,
Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223,
Japan

October 1, 1991

1 Introduction

This paper presents some theoretical results concerning asynchronous communica-
tion semantics for a formal system based on a fragment of Milner’s m-calculus [15].
The formal system, which first appeared in its present form in [9], expresses asyn-
chronous communication not by adding extra machinery to the original synchronous
communication mechanism, but by reducing the original one. It is capable of ex-
pressing the synchronous communication framework quite concisely in terms of fewer
constructs (see [9]). This and other interesting findings prompted our investigation
to construct a theory of concurrent computation purely based on asynchronous mes-
sage passing.

This paper is an abbreviated version of [10] and presents some basic facts about
equational theories for our asynchronous formal system. To be more concrete, it
compares two naturally-arising equational theories for our formal system, one asyn-
chronous and the other synchronous, and shows relationship between these two.
Section 2 gives basic definitions. Section 3 is the main results of this exposition,
focusing on the equational theory called asynchronous bisimulation. After showing
that this bisimulation is a congruence relation for our system, we study the char-
acteristics of our equational theory in comparison with its synchronous counterpart
(which is a loyal recapitulation of usual synchronous bisimulation in process calculi)
and prove that the asynchronous bisimilarity is strictly more inclusive than the syn-
chronous bisimilarity. Section 4 gives some comparison. Finally Section 5 concludes
the paper. All the proofs are omitted: interested readers may refer to [10].

*Also with Sony Computer Science Laboratory Inc. 3-14-13 Higashi-Gotanda, Shinagawa-ku,
Tokyo, 141, Japan

2 Basic Definitions

Syntax and Structural Equivalence

The following is the syntax for m4-calculus. It is a subset of a fragmentary m-
calculus as presented in [15], expressing the notion of asynchronous communication
and retaining the same expressive power in spite of its reduction of a syntactic
construct. Let A/ be the infinite set of port names (or simply names), on which
a,b,c,z,y, etc. range over. @ etc. denotes sequences of names. P, etc. denote
terms (processes) in our calculus. The et of temms s dencted oo C,

Definition 2.1 Syntaz.

P = —av (a message)
| az.P (a receptor)
| {X(&)=ay.P}(w) (a recursively defined receptor)
| |a|P (scope restriction)
| PQ (concurrent composition)
| A

Next we have structural equivalence, an extended set of a-convertibility relation.
Indeed we can regard the syntactic objects as expressing some abstract entities which
are those objects modulo these equivalence. We also owe this construction mostly
to [15], though the below is much weaker as an equational theory.

Definition 2.2 Structural Equivalence.
= is the smallest equivalence relation induced from the following rules.

(i) P
(i) (P Q), R =P (Q,R)
(i) |2|P, Q@ =2|(P,Q) (z ¢ FN(Q))
)
)

@ (where P is a-convertible to Q)

(iv) LQ=Q,P
() {X(2)= y2.P}(3) =
yz.Pla/Z][{X(2)= yz.P}/X].
(vi) Suppose P=Q then P,R=Q,R . Then |z¢|P = |z|Q, |

Here we have an important fact concerning normal form representation. Let us
call the receptors and messages of the form az.P and « bv primitive terms. Also
|@| denotes basically a sequence of scope restricion, but as easily seen and without
proof this can be safely regarded as restriction by a set of names.

Proposition 2.3 For any P € C, we have a normal form representation such that,
for some m > 0,

P = |d|(ty, ta, ey bm)

where t; denotes primitive terms. n

Also we have;

Lemma 2.4 For any z and v,

P=Q = Plv/z]=Qv/z] W

Asynchronous Transition System

Now let us see the asynchronous transition system for our calculus. As labels we
have 7, | @, and T a where « is either in the form a|v| or av. The way of representing
the transition system is simple because of the use of normal form representation.
We will let T" etc. denote sequences of primitive terms. Also we use below a function
ov(v) where V is a set of names and v is a name, as denoting v itself if v is not
in V and else |v]. {@} denotes a set of names consisting of elements in @. As said
above, || can be regarded as restriction by a set of names, so that & — v| denotes
restriction by a set of names {w} — {v}.

Definition 2.5 Interaction of terms, denoted by —l>, is the smallest relation in-
ferred by:

OUT: [@|(T, —av, A) "2 % — o|(T, A) (a & {5})
IN: B)(T,) “EES G0, —av, A) (v,a & {@})
COM : |@|(T, «av,az.P,A) - |@|(T, P[v/z],A)

P/=P,, PP, P,=P,

STRUCT : 7
Pl' ———»Pé

The Synchronous Counterpart

Intuitively, our transition system defines behaviour of a configuration in response to
its interaction with the outside as asynchronous exchange of messages between them.
In this regard IN rule is essential in that it directly represents the asynchronous
character of experiments. It says that the experimenter can send any messages he
wants at any occasion. To see its uniqueness, it is instructive to formulate another IN
rule, which is more to the spirit of the foregoing synchronous experiments framework
and indeed almost the same one with that in [15]. !

Definition 2.6 Synchronous interaction of terms, denoted by -Lq, is the smallest
relation inferred by the same rules as Definition 2.5, with LN replaced by 4,
except IN rule which is reformulated as

IN: [@|(T,az.P,A) "m0 1000 Ple/o], A) (v,a & {@))

!There is another subtle difference from the original one in the treatment of bound names. See
[9] for a discussion.

Thus the synchronous “input” experiments can only proceed when some receptors
are ready to receive them. As an elementary comparison between —, and —, it
is easy to see the following.

Proposition 2.7 We let -4 represent all (P, Q) such that (P,{,@) is in the tran-
sition relation.

Ta Ta
—_— =
T T
—_— =
la 7 lo
—_—— D —, N

These two transition systems are fundamental machinery for our semantic in-
vestigation in the next section, based on which our semantic theories for term ex-
pressions are constructed.

3 The Theory of Asynchronous Bisimulation

The Asynchronous Bisimulation

In the synchronous communication setting of process calculi, several equivalence
notions have been proposed, i.e. bisimulations [14, 19], testing equivalences (or
failure equivalence) [8, 16], and trace equivalences (for comprehensive treatment,
see [1]). All of them can be defined over arbitrary labeled transition systems and
therefore is applicable to our system. Our construction here is based on bisimulation
because of its technical tractability. The similar result, however, might be obtained
for other equivalence theories.

Definition 3.1 Asynchronous bisimulation. Let us define =4 as L T

if | # 7 and if else as ——". Then P; and @)1 are asynchronously bisimilar, denoted
by Pi =, @ if and only if (P, Q1) € R where for any (P, Q) € R we have

(i) Whenever P - P, for some Q', Q L Q" and (P,Q)eER.
(i) R is symmetric. |

We call R as above an asynchronous bisimulation. Then =, is the union of all the
bisimulations. The closure property of bisimulation is useful for verifying various
theoretical and practical properties.

Substitutability of Term Expressions

Our bisimulation is quite consistent with the underlying formal system in that =,
enjoys substitutability, i.e. it is a congruence relation. First, Definition 3.1 almost
directly tells us that:

Proposition 3.2 =, is an equivalence relation. That is, it is symmetric, reflexive
and transitive.]

The substitutability property for concurrent composition and scope restriction
can be easily obtained.

Proposition 3.3 For any P,Q, R and z,

(i) PmeQ = |z|P=,|z|Q.
(ii) P~,Q = (P,R)~,(Q,R) [

What is more subtle is substitutability of expressions for a body of a receptor.
The following lemma is essential for proving it.

Lemma 3.4 For any P,Q,vand z, P =, Q = Plv/z]~, Q[v/z] |

Now we can show that asynchronous bisimulation is indeed preserved by prefix
operation in constructing a receptor, making =, a congruence relation (recursive
expressions can be handled using structural rules so that it is reduced to the case of
prefix operation).

Proposition 3.5 =, is a congruence relation. ||

Thus two asynchronously bisimilar agents can be used interchangeably as a
part of any composite systems as far as we are based on our asynchronous semantic
theory. Moreover another study not presented here shows that such a pair does
behave quite compatibly in any context (in the sense that they will effect their
environment identically). In this respect a version of testing equivalence is known
to be more general equivalence theory while being compatible in the bahavioural
sense. For the present purposes, however, the bisimulation-based theory is more
than enough.

Synchronous Bisimulation

Let us now have another equivalence theory for our system, this time based on —l>3.

The theory has a special position in our semantic construction, because it is a loyal

transportation of semantic theories for process calculi and because we can have the

corresponding theory in 7-calculus, which is not possible with the asynchronous one?

The new equivalence is called synchronous bisimulation and is defined as follows.

Definition 3.6 Synchronous bisimulation. Let us define _—L>3 as o, —ln
-

LAY # 7 and if else as —»,". Then P, and ()1 are synchronously bisimilar,
denoted by P, =~, Q) if and only if (P, Q) € R where for any (P, Q) € R we have

2While we do not present in this paper, it seems impossible to incorporate consistently asyn-
chronous communication semantics into synchronous communication-based process calculi, e.g.
m-calculus.

(i) Whenever P -4, P, for some Q, Q = Q and (P,Q)eR.
(ii) R is symmetric. n

The following holds for &2, in our formal system. We do not know yet whether
the same is also true for the fragment of m-calculus presented in [15]. For the full
calculus, we have a counterexample in [13] °.

Proposition 3.7 =, is a congruence relation. |]

The Inclusion Result

The =, is, though restricted to our syntactic construction, recapitulation of classic
bahavioural equivalence theory for processes. What is intriguing is to know how
much our asynchronous version differs from the synchronous one and in what way.
Is the asynchronous bisimulation, after all, meaningful equivalence relation? What
difference has the extraordinary IN rule conveyed to it? The first result concerning
the relationship between =, and ~, shows that =, at least includes =, , that is,
the asynchronous theory is no less generous than the synchronous one. The result
is almost immediate from our preceding propositions.

Proposition 3.8 For any P and @, wehave P~,Q = P=~,Q N

Thus we have shown that =, equates no less terms than =, does. The next
question is exactly how much it equates in addition to ~,. Does it equates the same
class of terms as ~,7 Or does it equate strictly more than the synchronous theory
does? If so, what class of terms does it equate more? The next two subsections try
to give answers to these questions.

The Strict Inclusion Result

Now that we know =,D=,, the next task is to find out if there are any pair of
expressions which are equivalent in ~, but not so in =,. The following shows that
such a pair does exist.

Definition 3.9 Z(z) which does nothing. We define a family of identity receptors
as

I(a) ¥ {X(z)= zy.(—aoy, X(2))}(a)

for an arbitrary port name a. |

*The counterexample is: z§ + §z ~ z|j but (zg + gz)ly/x) # (z|§)[y/z] . It seems that
the lack of subsequent beliaviour in our formal system may be more important than the lack of
summation. but details are to be seen.

Immediately we have

and also, for any n J 1,
—av, I(a) 5" —av, I(a) .

Thus the expression Z(a) behaves as if it were nothing. And this nothingness
of Z(a) turns out to be important for our study of the difference between two
equational theories.

Proposition 3.10 =, C=, but =, ¢ =, .

We will give the outline of the proof. The first half has been already verified.
For the second half, let us take the pair (Z(a), A) (a can be arbitrary) and show that
these two are not equivalent as far as =z, goes, but are in the theory of a2, so that
it becomes a counterexample to =, C ~,.
First, as Z(a) 2 but A A, (of course A has no derivation whatsoever!),
we know immediately Z(a) #, A .
Second, take a relation R = ((Z(a), P), P), where P is zero or more messages
without bound names. Then it is easy to show that this is a bisimulation as follows.
(1) In case I(a),P L, I(a), P,<—av . Then clearly P P e av
where ((Z(a), P, av), (P,—av)) € R. We can similarly verify when
I(a),P % I(a),P .

(2) Incase I(a),P -— @Q . then the only possibility is there is some P’
such that P = P, «-av. Then

(Z(a), —av, P') -5 (Z(a), —av, P') = (Z(a), P)

As obviously P == P, this case holds.
(3) The symmetric case can be proved trivially.

To know Z(a) =, A, take P ©A.

One remark is due here. Proposition 3.10 shows that the theory of =, thinks
that the term Z(a) is nothing, while the theory of =, treats it as something
different from nothing. This is semantic discussion. But then we should think
about computational behaviour of this expression Z(a) , to find out that (while it
may consume computational resources somehow) Z(a) behaves as nothing in any
computational context whatsoever. In other words, 7 may never giwe any nfluence
to its environment, situated anywhere*. Thus we find out:

(1) The computational meaning of Z{a) is better captured in the theory of
(2) While Z(a) is a meaningless grain of computation, as a grain of semantics
it plays an important role between two semantic theories.

4When fairness is to be considered, the statement should be reconsidered.

4 A Note on Other Asynchronous Communication-
based Formalisms

We finally note that our concept of “expression of pending messages by syntactic
terms” as found in the present exposition are almost concurrently discovered in the
context of process calculi-related formalisms by us (early 1990), by Meseguer [11],
and by Nierstrasz [18]. It is possible that the similar idea may have existed for some
years. We can even trace back the idea to the representation of asynchronous mes-
sages in the actor event diagram [5]. But semantic and computational significance
of asynchronous communication in the theoretical setting in contrast to synchronous
communication seems not to have been studied so much, in spite of the early work
such as [3] and the conceptual emphasis on it in the context of the study of the
actor model by Hewitt and his colleagues [7]. Please see, however, a recent no-
table work on asynchronous communication in the context of so-called concurrent
logic programming languages by de Boer and Palamidessi [4], which tries to capture
asynchronous communication using the notion of the common black board which
serves as a kind of global mail delivery system. The important difference is the
treatment of pending messages in their framework where they do not constitute a
part of systems’ states.

5 Conclusion

The study of the theoretical content of asynchronous communication has just started.
We hope that our investigation will lead us to clarification of the meaning of syn-
chrony and asynchrony in communication in a formal setting, thus providing a firm
foundation for theoretical and pragmatic development in the area of concurrent and
distributed computing. Lastly we would like to thank Professor Robin Milner for
discussions, Professor Peter Wegner for his kind suggestions, to Makoto Kubo for
his assistance in some of the proofs and for long discussions.

References

[1] Abramsky, S., Observational Equivalence as a Testing Equivalence, Theoretical Com-
puter Science, 53, 1987,

(2] Barendreght, H. The Lambda Calculus: Its Syntaz and Semantics. North Holland,
1984.

(3] Bergstra, J., Klop, J., and Tucker, J., Process Algebra with Asynchronous Commu-
nication Mechanisms, In Seminar on Concurrency, LNCS 197, 1984, Springer Verlag.

[4] Boer, F., and Palamidessi, C., On the asynchronous nature of communication in
concurrent logic languages: a fully abstract model based on sequences, In CONCUR
’90, LNCS 458, Springer-Verlag, 1990.

[5] Clinger, W. Foundations of Actor Semantics. AI-TR-633, MIT Artificial Intelligence
Laboratory.

(6]

(7]

(8]

(10]

(11]

(12]

(13]

(14)

(18]

[16]

[17)

(18]

[19]

(20]

(21]

(22]

Goguen, J., Sheaf semantics for concurrent interacting objects. To appear in Proc.
REX School on Foundations of Object-Oriented Programming, Noorwijkerhout, The
Netherlands, May 28-Junel, 1990.

Hewitt, C., Viewing Control Structures as Patterns of Passing Messages. Artificial
Intelligence, 1977,

Hoare, C.A.R., Communicating Sequential Processes. Prentice Hall, 1985.

Honda, K. and Tokoro, M., An Object Calculus for Asynchronous Communication,
In: Proc. of European Conference on Object-Oriented Programming, LNCS, Springer-
Verlag, July 1991. Extended version to appear as a Keio CS report.

Honda, K. and Tokoro, M., On Asynchronous Communication Semantics. To appear
in Proc. of ECOOP 91 Workshop on Object-based Concurrent Computing, LNCS,
Springer-Verlag, February 1992.

Meseguer J., Conditional Rewriting Logic as a Unified Model of Concurrency. SRI-
CSL-91-05, Computer Science Laboratory, SRI International, 1991. Also to appear in
Theoretical Computer Sctence.

Milner, R., Calculus of Communicating Systems. LNCS 92, Springer-Verlag, 1980.

Milner, R., Parrow, J.G. and Walker, D.J., A Calculus of Mobile Processes. Part I
and II. ECS-LFCS-89-85/86, Edinburgh University, 1989

Milner, R., Communication and Concurrency. Prentice Hall, 1989.

Milner, R., Functions as Processes. In Automata, Language and Programming, LNCS
443, 1990. The extended version under the same title as Rapports de Recherche
No.1154, INRIA-Sophia Antipolis, February 1990.

de Nicola, E., and Hennessy, M., Testing Equivalence for Processes. Theoretical Com-
puter Science, 34, 1983.

Nielson and Engberg, A Calculus of Communicating Systems with Label Passing. Re-
search Report DAIMI PB-208, Computer Science Department, University of Aarhus,
1986.

Nierstrasz, O., A Guide to Specifying Concurrent Behaviour with Abacus. in (21].

Park, D., Concurrency and Automata on Infinite Sequences. LNCS 104, Springer-
Verlag, 1980.

Tokoro, M., Computational Field Model: Toward a
New Computing Model/Methodology for Open Distributed Environment. In Proc.
of The 2nd IEEE Workshop on Future Trends in Distributed Computing Systems,
Cairo, 1990.

Tsichritzis, D., ed. Object Management. Centre Universitaire D’informatique, Uni-
versite de Geneve, July 1990.

Yonezawa, A., and Tokoro, M., ed., Object-Oriented Concurrent Programming. MIT
Press, 1986.

