AP AN /ﬁ—-%‘ - EE - EEE -
(1992 5 29)

Minimal quel Semantics
of Generalized Logic Programs

Kiyoshi Akama

Faculty of Engineering, Hokkaido University

GLP theory is an axiomatic theory of generalized logic programs which are the sets
of definite program clauses consisting of generalized atoms. In this paper we propose
a definition of interpretations for GLP theory. An interpretation is defined to be a
subset of the interpretation domain (which corresponds to the Herbrand base in the
usual theory). This definition does not refer to inner structures of atoms such as predi-
cates, terms, functions and variables. This enables us to develop a very general, elegant
“and powerful theory of logic programming. In this paper we also define models and

logical consequences, and develop the minimal model semantics of generalized

logic programs.
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1 Introduction

1.1 Specialization Systems

Instead of starting with usual concrete definitions of atoms and substitutions, we adopt
abstract definitions of them and are constructing an axiomatic theory of logic program-

ming. We call it GLP theory (theory of generalized logic programs). '
We defined the structure called specialization systems in terms of very simple axioms

as follows:

Definition 1 A specialization systemis a 4-tuple < A, G, S, u > that satisfies the following
conditions.

1. u: S — partial.map(A)
2. Vs1,82 € S,3s € S 1 pu(s) = pfs2) o p(s1)
3. 3s€S,Vae A: p(s)(a)=a

4. GC A

Elements of 4 are called atoms. G is called the interpretation domain. Elements of § are
called specializations. The specializations that satisfy the third condition are called identity

specializations.
We defined generalized logic programs on specialization systems.

Definition 2 A logic program on a specialization system T is a (possibly infinite) set of
definite program clauses on .4, that is a clause of the form : H « A,,...,A,, where
H, A;,..., A, are atoms in A.

GLP theory does not refer to predicates, variables, constants, functions and substitutions
which are the basic components of ordinary logic programs.

1.2 Interpretations

The purpose of this paper is to give the definition of interpretations, models and log-
ical consequences for generalized logic programs, and to develop the minimal model
semantics of generalized logic programs.

The problem to be solved first in this paper is to introduce a general definition of in-
terpretations for c-formulas on specialization systems. In the usual theory of logic, an
interpretation is defined as follows.

Definition 3 An interpretation I of a first order language L consists of the following:

e A non-empty set D, called the domain of the interpretation.
o For each constant in L, the assignment of an element in D.
¢ For each function in L, the assignment of a mapping from D™ to D.

o For each predicate in L, the assignment of a relation on D”.

This definition refers to constants, functions and predicates. Since we do not assume such
structures in atoms on specialization systems, this definition can not be used to define
interpretations in GLP theory.



1.3 Herbrand interpretation

We first review a Herbrand interpretation, a Herbrand base and a Herbrand model. We
assume that L is a first order language.

Definition 4 The Herbrand universe Uy for L is the set of all ground terms, which can
be formed out of the constants and functions in L. In the case that L has no constants,
we add some constant to form ground terms.

Definition 5 A Herbrand interpretation for L is an interpretation that satisfies:
e The domain of the interpretation is the Herbrand universe Ug.
e Constants in L are assigned to themselves in Up.

e If f is an n-ary function in L, then the mapping F from (Ug)" into Ug such that
F(ts,...,ta) = f(t1, ..., ts) is assigned to f.

Definition 6 The Herbrand base By for L is the set of all ground atoms which can be
formed by using predicates from L with ground terms from the Herbrand universe as

arguments.

Definition 7 Let S be a set of closed formulas of L. A Herbrand model for S is a Herbrand
interpretation for L which is a model for 5.

In Herbrand interpretations, the assignment to constants and functions is fixed. So we
can regard a Herbrand interpretation as a subset of the Herbrand base. For any Herbrand
interpretation, the corresponding subset of the Herbrand base is the set of all ground atoms
which are true with respect to the interpretation. Conversely, given an arbitrary subset of
the Herbrand base, there is a corresponding Herbrand interpretation.

We also know the following proposition.

Proposition 1 If S is a set of clauses, then,
S is unsatisfiable <+ S has no Herbrand models.

Based on these observations, we will define interpretations as the subset of the interpre-
tation domain of specialization systems. '
2 Interpretations

In the following discussion we fix a specialization system [' =< A,G,S, p >.
In order to discuss the meanings for c-formulas on < A,G,S, 4 >, we define interpreta-
tions, which determine the truth or falsity of all c-formulas.

Definition 8 An interpretq.tion I on G is defined as a subset of interpretation domain G.
An interpretation I is often regarded as a mapping from G to V = {true, false}, that
is,[{(g) =true & g€ 1.

Interpretations determine the truth or falsity of any c-formula on A in the following way.



Definition 9 Let V be {true, false}. Negation - is associated with a mapping ~: V — V.
Conjunction A and disjunction V are associated with mappings A : V XV — V and
V:VXV -V, respectively. We use -, A and V not only as logical connectives, but also
as the associated mappings. The three associated mappings are defined by the following

table.
z Y . TAyYy zVy

true true false true true
true false false false true
false true true false true
false false true false false

The two associated mappings A and V are extended to the operation of any number (pos-
sibly infinite) of inputs which are given by a partial mapping to V.

Definition 10 Let S be any set and v be any partial mapping from S to V' = { true, false
}. We define [Av(s) | s € S is true iff v(s) is true for all s € S such that v(s) is defined
and [Vo(s) | s € §] is true iff v(s) is true for some s € S such that v(s) is defined.

We begin with a mapping which determines the truth or falsity of p-formulas on G.

Definition 11 An interpretation 7 on ¢ determines the mapping val; from PF(G) to
V = {true, false} by the following formulas, where ¢ € G and z,y € PF(G)..

1. vali(g) = I(g)
| 2. vall(ﬂm) = "I'Ual[(iL')
3. val(z Ay) = valr(z) A vali(y)

4. val(z V y) = valy(z) V val;(y)

Definition 12 For any element s in S, the partial mapping inst, from PF(A) to PF(G)
is defined as follows, where a € A and z,y € PF(A).

. inst,(a) = p(s)(a) --- u(s)(a) is defined and u(s)(a) € G

—

2. inst,(a) = undefined - - u(s)(a) is undefined or u(s)(a) ¢ G
3. inst,(~z) = -inst,(z)

4. insty(z A y) = inst,(z) A inst,(y)

5. inst,(z V y) = inst,(z) V inst,(y)

inst,(x) is defined iff, for any atom a which appears in z € PF(A), u(s)(a) is defined and_
is an element in G.

The following mapping determines the truth or falsity of each c-fornn‘xla on A.‘

Definition 13 An interpretation I on G determines the mapping value; from CF(A4) to
V = {true, false} by the following formulas, where z,€ PF(A) and z,y € CF(A).



1. valuer(Vz) = [ Aval;(inst,(2)) | s € S|
2. valuey(3z2) = [Vvals(inst,(z)) | s € S|
3. wvaluer(—z) = —walue(z)

4. values(z A y) = valuer(z) A valuer(y)
5. valuer(z V y) = valuer(z) V valuer(y)

In the definition of the usual theory universal and existential quantifiers bind all variables
in universal and existential closures. On the other hand in the definition of c-formulas in
GLP theory we do not use the concept of variables. Can we give well-defined semantics
to universal or existential closures without referring the concept of variables? Definition
13 answers yes to this question because universal (existential) closures are equivalent in
the usual theory to the conjunction (disjunction) of all ground instances of them and that
ground instances of them can be generated by specializations in GLP theory.

We give one example using I's =< As, G5, S5, ps >. It is defined as follows 1.

1. As = {z,v,2,p,4,7, 5, }

2. Gs = {p,q,1, 5,1}

3. S5 = {e,a,b,¢c,0}

4. ps is a mapping from Ss to partial‘_map(As) which is defined by: ‘
ps(e) =< As, As, {(z, ), (1, 9), (2, 2), (9, 9), (2, 9), (1, 7), (s, 8), (8, )} >

Let z be a p-formula y V (-z) on I's. From the definition Vz is a c-formula. Now consider
valuer(Vz) for an interpretation I = {p, q}. There are five specializations(e,a,b,c and o) in

Ss.
1. inst.(z) is undefined because us(e)(z) = = and us(e)(y) = y are not in Gs.
2. insta(2) = (g V (~p)) |
3. insty(z) is undefined because p5(b)(z) and us(b)(y) are undefined.
4. insto(z) = (s V (=q)) |
5. inst,(z) is undefined because us(o)(z) and ,uf,(d)(y) are undefined.
Then from definition 13,
valuer(Vz) = val;(q V (=p)) A vali(s V (—g))

When I = {p, ¢}, we know valr(q) = true, val;(p) = true, and val;(-p) = false. Thérefore
valr(qV (—p)) = true. Similarly, as val;(s) = false, val;(q) = true, and val;(~q) = false,
then walf(s V (—q)) = false. Therefore, '

valuer(Vz) = false

1t was used also in [2].



3 Models and Logical Consequences

The concepts of models and logical consequences are also defined by using the mapping
valuey in the same way as in the usual theory of logic programs.

Definition 14 An interpretation I on G is a model of a subset E of CF(A) iff value;(e) =
true for any element e in E. The set of all models of E is denoted by Model(E). An
interpretation J on G is a model of an element e of CF(A) iff I is a model of {e}. The set
of all models of e is denoted by Model(e).

Assume that P = {y « 2,2z <} is a program on the specialization system I's. Then all
models of P are {p,q,r,s} and {p,q,r,s,t}.

Proposition 2 The interpretation I on G is a model of a subset E of CF(A) iff I is a
model of all elements in E.

Proof I € Model(E) &  Ve€ E:values(e) = true
& Vee E:1e Model({e})
& Ve€ E:I¢€ Model(e)

Definition 15 Let E; and E, be subsets of CF(A). E; is a logical consequence of E;
(E:r = E,) iff, for any interpretation I on G, if I is a model of E, then I is a model of
Ep. A c-formula e € CF(A) is a logical consequence of E; (E; = e) iff B, |= {e}. E, is a
logical consequence of a c-formula e € CF(A) (e k= By) iff {e} k= E..

4 Minimal Model Semantics

We prove that there is a minimal model of any logic program on a specialization system.
The meaning of a logic program on a specialization system should be the minimal model
of it [1].

Proposition 3 (Model Intersection Property) If {M; | j € J} is a non-empty set of
models of a Horn clause h, then the interpretation [NM;|je J]is also a model of h.
Proof See appendix.

Proposition 4 If there is a model of a set of Horn clauses P, there is a minimal model
Mp, and
Mp=[OM|M € Model(P)]. , A

Proof Let {M; | j € J} be the set of all models of P. From the assumption this set is not
empty. Let & be any element of P. From proposition 2 M; is a model of h. As h is a Horn
clause and {M; | j € J} is a non-empty set of the models of h, then using proposition 3,
the interpretation Mp = [NM; | j € J]is also a model of h. Since h is any element of
P, then using proposition 2 Mp is a model of P. Since M p 1s a subset of any element of
{M;|j € J}, and {M; | j € J} is the set of all models of P, Mp is the minimal model of
P and Mp =[NM | M € Model(P)].



Theorem 1 Every logic program P has a minimal model Mp, and

Mp =[NM|M € Model(P)]
Proof Let ¢ be any element of a logic program P. As cis a program clause, we can assume
¢ =V(H V B), where H is the head of ¢, Bis By VB; V...V B, and n > 0. And let an
interpretation M on G be defined by M(g) = true for all g € G,

valuey(c) = wvaluey(Y(H V B))

[Avaly(inst,(HV B)) | s € §]

[A(valp(inst,(H)) V valy(inst,(H V B))) | s € §]
[A(true V valp (inst,(H V B))) | s € §]

= true.

il

i

Then M is a model of ¢. As cis any element of P, M is a model of P. From these P is a
set of Horn clauses which has a model. Using proposition 4, we conclude that there is the
minimal model Mp of P, and that Mp = [N M | M € Model(P)].

Assume that P = {y «— z,z <} is a program on the specialization system I's. The
minimal model of P is {p, g,, s}.

5 Concluding Remarks

In this paper, we have defined interpretations as a subset of the interpretation domain.
Based on the definition of interpretations, we also defined models and logical consequences
for GLP theory. We have developed the minimal model semantics of generalized logic
programs. In this theory we do not use the notions of predicates, variables, terms and
substitutions which are used in the usual logic programming theory. This theory is very
general and can be applied to many declarative knowledge representation systems.
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Appendix This is transformed as follows.

[Proof of Model Intersection Property] & valy (insts(—a)) = true
Assume that {M; | j € J} is a non-empty set & valpy; (ng) = true

of models of a Horn clause h. Let h = (VL), & valyy, (9) = false

L=IL3VIV:---VLI,and M =[NM; |je ] S M;Fg

From the definition of models, — Mg

& valp(g) = false
< valp(—g) = true
& valpr(insty(—a)) = true
& valp(insts(Ly;)) = true

& Vj € J :valuep; (VL) = true — valp (insty (L)) = true

& Vi€ J :[Avaly,(inst,(L)) | s € S] = true

In both cases (1) and (2), we have valy(inst;(L)) =

Let s be any element of S where inst;(L) is true. Thisis proved for any s € S where inst,(L)
defined. Then, is defined, then

Vi € J : valuey, (h) = true.

‘We transform this formula.

Vj € J : valy, (insty(L)) = true. [Avalps(inst, (L)) | s € S| = true.
As L=L;V L3V ---V Ly, this is equivalent to This is transformed as follows.

Vi€ J, 3k valy; (insty(Ly)) = true. & valuey (VL) = true

F C et I literal bi & valuepyr (h) = true
or any j, let Ly; be one of literals L which — _ »r € Model(h)

satisfies valys, (insts(Ly)) = true, then & (NM; |5 €] € Model(h)
(F)Vj € J : waln (insty(Ly;)) = true

Here the following two cases are possible.
(1) For all 4, Ly, is a positive literal.
(2) For some j, Ly, is a negative literal.

e Case (1) A Horn clause has at most one
positive literal, then there is an atom L;
such that Ly, = L; for any j. Letting g =
inst,(L;), (f) is transformed as follows.

Vj € J : [valy; (inst,(Ly;)) = true]
& Vj € J : [valy,(inst, (L)) = true]
& Vj e J:[valpy;(g) = true]
sVieJ:[M;3yg]

S Mg

& valp(g) = true

< valpr(inst,(L;)) = true

— valpr(inst, (L)) = true

o Case (2) Assume Ly; is a negative literal
—a, and let inst,(—a) = —g. Then from

(),

valy; (inst,(Ly,)) = true



