Frrs vy -5 - - EER—-

(1992 5 29)

kel A NGE =5 7w = 1)
BB SO 5 ADOEKRS

LIy 3 L Bz

R LIRS

FP MO ER 0% BER 4 SLRET OS5 LIV TEH
T 5, KIFE DI) SEENHELIE Giovannetti D LEAF IIJU\’C
WY, BRRmEFEROFHE 2 &0 7T — 5 7 o— % KL /=R
ﬁmﬁﬁ+@fﬁﬁrﬁx1m o CHIZEY, MHETTS T
AEBET Oy S AOHECHET AT -7 70 —0%EERT,

Semantics for Logic Program

with FP Functions Equality
Based on Dataflow

Susumu Yamasaki and Tomoyuki Hiro

Department of Information Technology,
Okayama University, Okayama, Japan

This paper is concerned with FPLOG- a logic language with
equality between terms involving FP functions. Its syntactic aspect
follows that of LEAF (Giovannetti et al., 1991). On the basis of
dataflow computing for FP functions as well as definite clause sets,
the semantics for the language FPLOG is defined as denoting a sub-
stitution manipulator formed by an equation sct with evaluations
of equalities without term rewriting rules. So far it is shown the
dataflow approach might be means of integrating logic and func-
tional languages from semantic point.

1. Introduction

The integrated languages of logic, cquation and
function have been intensively studied. Among
them, Prolog-with-Equality, Lqlog, ‘Tablog, LEAF
and Logic Programming with Equations might be
thought of as the logic language with computing
mechanism for equation and/or function (DeGroot
et al., 1986; van Emden ct al., 1987). Following the
characteristic of these languages, exploiting plenty
of expressiveness of FP functions, and extracting
dataflow as substitution manipulation involved in a
logic program, we define a language FPLOG, a logic
language with FP functions equality and its seman-
tics based on dataflow.

In the logic language, the substitution is of signif-
icance, as it is directly concerned with deductions as
computing. There were approaches to deal with an-
swer substitutions over a sequence domain, caused
by deductions (Fitting, 1985; Debray and Mishra,
1987; Baudinet, 1988). Based on virtual botiom-
up inference, there is another approach to treat se-
quences of substitutions from the point to interpret
a logic program as denoting a dataflow, or to trans-
form a logic program into a dataflow realizing its
denotation (Yamasaki, 1990). Adopting the latter
approach with algebraic manipulation on substitu-
tions, this paper proposes a new treatment with se-
mantics for a logic program based on dataflow. In-
tuitively each atom is represented by a substitution
applied to a standardized-atom. The standardized
atom consists of a predicate symbol or an FP func-
tion symbol with equalily, and individual variables
without function constructor symbols. It is inter-
preled as denoling a sequence of substitutions to
form atoms such that the sequence is associated with
a functional representing and reflecting a bottom-
up inference or alom generation. The functional
is expressed only in terms of algebraic substitution
manipulation. To get the functional, each definite
clause might be regarded as a iranslator of substitu-
Lion sequences to a substitution sequence, realizing a
bottom-up inference in which the head is generated
by assuming the substitutions (representing atoms)
to be unifiable with the atoms in a body. The treat-
ment is united with computing for equality.

In Section 2, the syntax of FPLOG is given, as

well as the idempotent substitution set with a rcla-.

tion. In Section 3, the resolution deduction will be
represented in terms of substitution manipulation,
for the real atom form to be replaced. In Section
4, a functional over a sequence domain based on
the idempotent substitution set is associated with
a given logic program with FP functions equality.
Tt is interpreted as dataflow to virtually realize the

deductions for a logic program. The evaluation of

cquality will be arranged to be in solidarity with
the deduction. In Section 5, the fixpoint seman-
tics of the above functional is mentioned such that
it is sound and complete for the deduction and the
evaluation of equality if we permit the renaming of
variables.

2. Logic Program with FP Func-

tions Equality-FPLOG-

We deal with a logic program as a set of definite
clauses in which FP functions might be exploited to
form predicates with equality. Here we mean the
functions in FP system (Backus, 1978) by FP func-
tions. Its syntax is given by modifying that of LEAF
(Giovannetti et al., 1991). Because the top level con-
structor is always arranged {or programmed) to be
an FP function.

A term is recursively defined: (i) a variable is a
term, and (ii) f(t;,...,%) (k¢ > 0) is-a term if f is
a k-place function symbol and ¢; are terms.

An FP-term is either (i) a term, or (ii) an expres-
sion F(uy, ..., u,), where F is an FP function and
u; are FP-terms.

An atom is either an FP-atom as defined below, or
an expression P(ly, ..., {,), where P is a predicate
symbol and ¢; are terms.

An FP-atom is an expression F(uy, ..., u,) = u
for an FP function F, where F(uy, ..., u,) and u
are FP-terms. By the top level FP function of such
an FP atom, the function F' is meant.

A definite clause is a form A « By ... B, {n >
0), where A, By, ..., and B, are atoms.

A logic program is a set of definite clauses, where
for each FP-atom in a body of any clause there ex-
ists an FP-atom in the head of a clause such that
the syntactic structure of the top level FP function
is the same. '

FPLOG is a language consisting of the logic pro-
grams in the above sense as well as their semanlics.

Example 2.1. A simple example for an FPLOG
program is

Sum(z,0) — length(z) =0,
Sum(z,y) «— Sum(u,v),tl(z) =y,
A +FP(1(x)yv) =9
length(z,) = y1 «
zg) =g+ ,
tlzs) =43 —
+FP(xhx5) =Y =

where Sum stands for a predicate symbol, 0 for
a O-place function symbol, z,y,u,v, 21, 31, T2, Y2,

T3, Ya, T4, Ts, Y4 for variables, and length, 1 (se-
lector), t1 (tail), +rp (add) are FP functions to be
evaluated. The program is intended to express the
summation of the values of clements in a list.

As stated in Introduction, the scmantics for
FPLOG will be defined such that each logic pro-
gram, which might involve FP [unctions, is regarded
as a substitution manipulator based on dataflow. It
comes up with us, mainly because the I'P function
can be easily realized by a dataflow. To establish the
semantics, we investigate properties of substitutions
which are usually effects in resolution deductions,
but might be means to dismiss real alom forms.

For example, A «— B ... B, might be represented
by the tuple (¢, 8y, ..., 8,) for { P(E), Q1(%1), ...,
Qn(%,) } such that 4 = P(Z)ep, and Qi(Z;) 6; = B
1 < i < n, where ¥ and Z; are newly provided tuples
of variables, and ¢, 4;, ..., and 6, are substitutions,
Note new variables are adopted for the simplicity of
treatments with substitution manipulations.

A substitution is a function from the set Var
of variables to the set Term of terms. Dom(f),
for a substitution #, means the domain of ¢, that
is, {z | 8(z) # = for £ € Var }. Il Dom(f) =
{zy,...,2a}, 0'is Tepresented by { z; | 6{z1), ...,
z, | 8(z,) }. I[Dom(6) is empty, that is, 0(z)
z for any z € Var, 8 is especially denoted by e. A
substitution is said a permutation if it is a bijection
from Var to Var.

The composition of substitutions ¢, §, denoted by
f, is a substitution which means the application of
¢ to the result after applying §.

We take a class of idempotent substitutions, which
have favourable properties as in Eder (1985) and
Palamidessi (1990).

Definition 2.2. A substitution 4 is said idempo-
tent if 86 = §. Sub means the set of idempotent
substitutions. For 8, € Sub, § <X ¢ means there
exists a substitution p such that ¢ = pf. § ~ ¢ for
8,0 € Subiff § X ¢ and p X0

In Eder (1985), it is shown il § ~ ¢ then there
exist permutations e, B such that af = » and Be
=4.

3. Substitution Manipulations for

Deduction

In this section, in terms of substitutions we repre-
sent the resolution deduction, which is thought of as
computing mechanism for the logic program except
the evaluation process of FP functions. .

For an nonempty subset Af of atoms, we define

mgu(At)
= {o€Sub | ¢ is a most general unifier of
any two atoms A, and Ay€AL}.

When At is empty, we regard mgu(At) as {e}.
For the lemma to state there exists an idempotent
unifier which is most general for a unifiable set, sce
Eder (1985).
The following definition is intended Lo express si-
multaneous unification.

Definition 3.1. consis: Sub x Sub — 2°** and

comb: Sub x Sub — 25%° are defined as follows.
{p € Sub|3oy,09:
010y = a2y = ﬂ};
{peSublp is in consis(fy,6s)
and p is most general }

comb(f, 6,) is denoted by 8, + ;.

consis(f;,62)

comb(8y,8,)

As an example, let 8, = {z | f(y)} and §; =
{y19(z)}. Then {z | f(9(2)), v | 9(2)} € b1 + Bu.

As easily seen, (; + 62) + 63 = 8 + (03 + 63),
which will be represented as §; + 65 + f3. We define
G +...+6, ={e}ifn=0.

It is easy to see:

Lemma 3.2. Forgiven 8§y, ..., 0, € Sub, 0, +...+
§,, /~ consisis of just one equivalence class. Also 8,
by =6+ ...+ 0,6 ~0,1<i<n

Note the comb function is closely related with {
(least upper bound) of two equivalence classes of
idempotent substitutions under the partial order <,
which is induced on Sub/ ~ from =X (Palamidessi,
1990). According to Eder (1985) or Palamidessi
(1990), we can have a method to get an idempo-
tent substitution in 6; + ...+ 8, for given 4, ...,
6.,

+: Sub x Sub — 2°*® might be extended to act
on 25%b x 254k by:

0, + ©2 = Up, co, s1€0, 1 + .

It follows (9]_ + 02) + 93 = @1 + (62+ 93), which
will be represented by ©, + O, + ©;. We regard
0, +...+0,={eifn=0

The primary aim to take the comb function is to
formulate the manipulation for the unit resolution
deduction just only in terms of idempotent substi-
tutions.

A unit (resolution) deduction from a set S of
clauses is a sequence of definite clauses Gy, ..., G,,
where each G), is either in S or inferred by unit res-
olution from some G; and G; (4,7 < h).

Unit resolution is an infercnce to derive Cf «—
D6 ..
Dy ...Dy and E &, where § € mgu({D;, E}). Tn
the usual case, E is regarded as having no common
variables with C « D, ... D by renaming of vari-
ables. So the domain of § might be restricted to the
set of variables occurring in C «. Dy ... D,. Then
the restriction of the domain of a substitution is ex-
ploited.

To restrict the domain of the substitution to some
appropriate set, we have the following definition.

For a substitution ¢ and a set of atoms {4, ...,
Am} (m > 1), a restriction of o with respect to {A;,
vovy Am}, that is, [0](a,,..4.): Var = Term is de-
fined as follows.

o(z) if 2 occurs in either
A17 ..y O Am,

otherwise,

[o)iar,.am)(z) = {

z

for any z € Var.

Definition 3.3. Assume © is a set of substitutions,
and {A1, ..., An} (m > 1) a set of atoms. We
define

{[6li4,...4m) | 6 € O}
if © is nonemply,
if © is empty.

[Oliartm} = {

empty

Note if ¢ € Sub, the [0](4,,..an) € Sub. It is easy
to see the following:

Lemma 3.4. [o](4,,.4m} X 0. I o ~ 8, then
[elian,ntmd ~ [Ol(a1)

To represent an atom in terms of an adequate sub-
stitution, we interpret each atom as a standardized
form with attached substitution. That is, we in-
tend that an atom P(fy,...,1,) is denoted by § =
[8)ip(orrzm)y for P(21,..0sZm) (21,..., Tm: vari-
ables) such that P(zy, ..., T,) 8 = P(t1, ..., tm)-
An FP-atom F(uy, ..., u,) = u is denoted by ¢ =
[‘P]{F(m yn)=y} for F(y, .-, y{l) =¥ (:l/,’ Yiyeear Yn?
variables) such that F(yi, ...,)= F(u, ..., tn)
and ¥ = u. An atom P(z4, ..., Tm) of F(y, ...,
Yn) = ¥ is referred to as a standard form.

For an atom C, St(C) means a standard atom of
C such that S¢(C) involves a unique tuple of vari-
ables different from others, and St(C) ¢ = C for
some substitution ¢, on the assumption any two
atoms with the same predicate symbol or the top
level FP function have the same standard atom.

D10 D418 ... Dif from two clauses C «—

To come up with a'substitution manipulation for
deductions, we firstly has a basic lemma, which is
exploited to represent a sel ‘of most general unifiers
by means of ‘+’.

Lemma 3.5. Assume ®1 [eiioayy € Sub
and @2 = [palga)) €. Sub, for a standard atom
Q(Z), whether it is an FP-atom or not. Then

mgu({Q(&)e1, QE)e2}) = [o1 + Pa)(a@)en,a(e)en) -

Proof. Assume o is a most general unifier
of Q)¢ and Q(z)ps. Then (Q(2)ey)o
(Q(2)p2)o. It follows from ¢, = [1](qez)) and s
= [pa)ioeey that op; = o@s. Dom(o) suggests
o = [op1](@e)er,)} = [0¢2lie()oa@)es)- That
is, o € [p1 + @2l{Q(z)e1,Q(2)es)- On the other hand,
assume that o € o1 + ©2)(g(s)p1,0(2)e2}. Then ¢ =
[relie@n e = [p202)a@)er,)e) for some
p1 and p, such that pjp; = pas € @1 + @q. Tt fol-
lows ¢ = [p](a(z)en.0(0)0) = [P2)i@@)er,@(5)0s) 20d
(Q(@)e1)o = (Q(2)pa)o. That is, ¢ is a unifier of
Q)1 and Q(Z)pa. o should be most general in
the set of unificrs, as p1p1 = patps € o, + w2 and o

= [meilie@e @) = [P292)(0@)en 0@}

Following the above lemma, we have a lemma to
paraphrase the (unit) deduction by means of ‘“+’.

Lemma 3.6. A’ « might be deduced by unit de-
duction from a definite clause set {A « By ... B,
B} «, ..., Bl, <}, where each B! has no common
variable with A « B; ... B, iff A’ = A#f, unless
A'#£ Bi(1<i<n),ford €foy + ...+ a.)a) such
that o; = [oi0]ys,) (1 < i < n), where oy is a most
general unifier (mgu) oy of B; and B! for some B.

Proof. Assume 8 € [o1 + ...+ 04](a). Then 6 =
[6o)(ay for some 6y € oy + ...+ o,. It follows 6y
= poy = ...= p,0, for some py, ..., p,. Since B
@; = Bify for some p; (1 < 1 < n), Af — might
be deduced from {Afy < By ... Byfo, B —, ...,
B! « }. By Lifting Lemma (See Chan et al., 1973),
Af' « is derivable from the given definite clause set,
for 0’ = [8']{4) X 8. However, because of most gen-
erality of 8, such that 6y = p10y = ...ppo, for some
p1, ooy Py 0 =[B](ay = 6. On the other hand,
assume A’ « might be deduced from the given def-
inite clause set. Then there exist 8, 6 such that
8, simultaneously unify B; and B} (1 < i < n), 6o
is most general, § = [fp)(4) and A’ = Af. 1t fol-
lows there exist substitutions py, ..., p. such that
8o = pilorodpy = +.-= Pa[ono](p.). (Note B; has
no common variables with B;.) Finally 8 € [010);p,)
+ ...+ [U”g](pn} =gy + ...+ 0,,;.

By means of Lemma 3.6, we have:

Theorem 3.7. Assume a definite clause set
{QE)e «— QuE ...Qm(Em)0m, Qu(E)Yr —,
ooty Qun(Em)¥m — }, where each Qu(%;)¢; has
no common variables with Q(Z) ¢ «— Q,(%,) 6,
-+ Qm(Zm) fm. Then (Q(2)p)o « (o = [o](qe))) is
derivable by unit deduction from the definite clause
set iff ¢ € [p1 + ...+ Gmlig@)e) such that ; € [4;
+ Yiliouzney, 1< i< m.
Proof. By Lemma 3.5, ¢; is a restriction of an mgu
of Qi(%:) 8; and Q;(Z;) i, with respect to Q;(%;)
6; (1 <1< m). It follows from Lemma 3.6 that
(Q(E)p)o « (0 = [0]io(z1e}) is derivable iffl ¢ € [
+ .t Pmlie@)e)

4. Denotation of FPLOG Based on

Dataflow

We look for a method to give the denotation of
FPLOG. Since an FP function might be realized
by dataflow computing, the semantics for FPLOG
is expected by extending the result in Yamasaki
(1990), and by assuming the evaluation mechanism
for the FP-atom with a substitution, which is exe-
cuted based on dataflow by adopting the way as in
Hankin et al. (1987) with the first and nezt [unc-
tions in Ashcroft ct al. (1976).
For an assumed logic program L:

(41){

we are supposed to-obtain the denotation of the
standard form St(C;) for C;, | SU(C;) | (1 <1 < k)
over a sequence domain such that for each p € w (the
set of natural numbers) St(C;) (| SI(C:) | (p)) « is
deducible from L or undefined, with atoms affected
by substitutions. Note | St(C;)} | is a sequence and
the sequence is regarded as a partial function from
the set of natural numbers to-the set of idempo-
tent substitutions. To denote time delay in a se-
quence, we exploit hiaton (denoted by) as in-Park
(1983). Then we take a sequence domain (Sub U
{7})*°, which consists of all finite and infinite se-
quences from Sub U {r}, where u € (Sub U {r})*
is a partial function from w to-Sub U {r}:such that
u € (Sub U {#})* iff u(p) € Sub U {r} whenever
u(g) € Sub U {r} and p< q.

Theorem 3.7 induces the recursive relation among
the denotations of the standard forms.

Assume for C; + D;; ... D;,, that C; = St(Ci)ei,
D;; = SDi;)0:5 (1 i<k 17 < m), and
| St(D:;) | {g;) = v¥:;. Then we may define

Cl Lad Dll~~'D1,nn

Ck“‘ Dkl Dy,

| SUC) | (p)

€ {o:(p)pi | 0:i(p) € [pin + - - + Pimidisucion b

where ¢;; € [0;; + ¥i}p.), 1 £ 7 < ni, when the
{p+1)=thitem (an output) in a sequence | St(C;) |
is supposed to be decided by the inputs, that is,
the (g, + I)—the item of | S#(D;;) |, ..., and the
(gn; + 1)—th item of | St(D;,,) |-

Since [¢ix + ...+ @indisicies) consists of just
one cquivalence class of idempotent substitutions by
Lemmas 3.2 and 3.4, we might select an idempotent
substitution as the value of | St(C:) | (p) modulo ~,
for the above relation to be an equation.

To correlate the position of an output sequence
with the positions of input sequences by one-lo-one
correspondence, we take a bijection I,:
and a projection Jo,;: w™ — w such that J,:(qi,
«e+s m) = gi- The composition J,,; 0 I, is denoted
by I, that is, I, i(q) = Jmi(Im(q)). '

Next observe St(C;)(| St(C:) | (p)) — might be
interpreted as unifiable with some atom in a body
of another definite clause, if St(C;){] SU(C;) | (p)) is
defined as a real atom.

If C; is an FP atom, we should investigate the va-
lidity of the equality.

w — W,

Definition 4.1. We introduce Eval : SATOM x
(Sub U {r}) — Sub U {7} such that
Eval(F(zy,...,Tm) =1,¢)
_ 14 i[F(xlv"me)(p:zSa!
T | 7 otherwise,

where SATOM means the set of standard FP-
atoms, and T is a special symbol not in Sub.

Note F(zy, ..., Zm)¢ = zp holds if both sides are
equal either syntactically or in value. Also note the
above Eval might be executed by dataflow (as in
Hankin et al. with the first and next functions in
Ashceroft et al., for example) and 7 is interpreted as
time delay or hiaton as in Park (1983).

Definition 4.2. For a standard FP-atom A, we
define form(] A |)(p) = Eval(4,] A | (p)), where
| A| means the denotation of the FP-atom A. For
a standard non-FP-atom B, we set form(| B|) =
| Bl

Therefore if A is a standard FP-atom then form(|
A |) denotes a sequence in which each item is ob-
tained by evaluating the equality of the correspond-
ing itemin | A .

By means of the above observation and intention,
we have an equation set of sequence variables for a
logic program (4.1} in FPLOG, where the equation
set might be interpreted as denoting a dataflow.

Firstly the logic program [is. transformed to:

— St(Dy1)01,... S1(Dyn,)01m,

. St(cl)%
(4.2){

—

S’t(Ck)(pk Sl(Dk,l)gk,l e S‘t(Dk’n‘)gk.ﬂl
Now we set
(4.3) Pred(L) = {P,..., R},
) 1“P(L) = {Flj'-';l"l}y

where Pred(L) stands for the set of all predicate
symbols occurring in L, and FP(L) for the set of all
syntactic aspects of FP functions occurring in I, as
the top level.

To the denotation of St(C,), ..., S{(CL), we as-
sign form(u), ..., form(uz) by using sequence
variables in (Sub U {7})®, respectively. Some of
them might be merged as a denotation of an atom
involving the same predicate symbol in Pred(L) or
the same FP function in FP(L). Classifying the
predicate symbols and the top level FP functions,
V1, ..., Vp4 are assigned to the denotations of stan-
dard atoms.

Now we prepare for a device to gather more than
two sequences for the same standard atom. It might
be the case that St(C;) = St(C;) for i # j. A fair
merge is most adequate. For time delay 7, it will be
guaranieed lo be continuous (See Park, 1983).

In order to use the fair merge, we put for the j—th
predicate symbol or top level FP function

(4.9)
Stand(7)

{i] Cie~Diy...Din, €L and
St(C;) involves P; or F;}
{jl: ..)jNO(J')}’

where NO(j) is the cardinal number of Stand(y).

For 1 €7 < h+1, we have

(4.5) v; = fairmergeNO9(form(u;,),
ey form(ujNom)),

where fairmerge’?@) is a function to provide an
output sequence by merging NO(j) input sequences
without neglecting any part of any input.

Note form(uj;;) will denote an infinite sequence
by means of .

By means of Theorem 3.7 as well as (4.5) for (4.2),
we might have, for 1 < i<k,

(4.6)
ui(p) € {oi(p)ei | o:(p) € Ti(p)} for
2,(])) = [[9",1 + i, (Ins.l(p))]{D;,,] +...+ !
i, + ”t'n,-(Inm.‘(P))]{D‘._ni}]{s‘t(c;)w)
if Ti(p) is defined and nonempty

w(p) = 7 otherwisc, :

where v;; is the denotation of St(D;;).

For the reason each form(u;) is thought of as an
input by means of some v;, and renaming of vari-
ables in a substitution is necessary for it to be an-
other input, as well as for the reason we intend to
have an equation from (4.6), (4.6) is revised:

For 1 <i<k,

(4.7)
u(p) = [Pi(P)Ui(P)W]{sz(c.-)}
for o3(p) € [6i1 + vi, (Tnin(P))ipi) +-- -+
[bim: + v'.n;(jﬂi,ﬂi(p))]{p.-_",}
if [Jpiy+ -+ Jpyn,) is defined and
nonempty,
w(p) =7 otherwise,

where p;(p) is a permutation such that [a:(p)](scipi}
~ [pi(pYoi(p))iseciyesy and some term (involving
no variable in L nor involving variables in stan-
dard atoms for L) is assigned to every variable in
St(C.')‘p;.

(4.7) as well as (4.5) is an equation set for a logic
program I (in FPLOG). It is interpreted as realizing
dataflow for L, in its operational form over sequence
variables as well as by means of the function form.

5. Semantics for FPLOG

Assume a logic program in the form (4.1) or (4.2).
Then we have constructed (4.7) as well as (4.5),
based on Theorem 3.7. (4.5) and (4.7) might state
the substitution generation (caused by deductions
and evaluations of equalities described by FP func-
tions), which virtually represent the atom genera-
tion by dismissing its real form.

(4.5) and (4.7) are described by the fixpoint se-
mantics, which is concerned with the original logic
program. '

Firstly we need a partial order on (Sub U {r})*.

Definition 5.1. A partial order < on Sub U {7} is
induced by: 7 < # and § < 6 for any 8 € Sub. A
partial order on (Sub U {7})* is defined by: » C
v for 1,0 € (Sub U {r})= iff u(p) < v(p) for any'p €
w such that u(p) is defined.

Lemma 5.2. Assume (4.5)-and (4.7) for alogic pro-

gram in (4.2). Then (4.5) and (4.7) define a contin-
uous functional fr: ((Sub U {r})®)s*+ — ((Sub
U {7})*)¥+*+ such that there is a least fixpoint of
L.

Proof. In (4.7), w(p) € Sub U {7} for any p
€ w, that is, u; is infinite. u(p) depends on
U, (La (D), - vin,(Jaimi(P)) by one-to-one corre-
spondence. Thus the item of each position in a se-
quence for u; one-to-one corresponds to the tuples of
items of some positions in sequences for vy, . .., Vay-
This means (4.7} is continuous. On the other hand,
form(w;) provides an infinite sequence in pointwise
accordance with u;. For infinity, the fairmerge
function might be continuous (Park, 1983). There-

fore {4.5) is continuous, depending on v, ..., u.

Notation 5.3. Assume (4.7) as well as (4.5) for
a logic program L in (4.2). (uf, ..., uf, v, ...,
vl 1) means the least fixpoini of the functional to
be defined by (4.5) and (4.7).

By means of Theorem 4.7, and Definitions 4.1 and
4.2, we have:

Theorem 5.4. For a logic program L in (4.2) with
(4.5) and (4.7), Pi(z1)¥h « is deducible from L if 4
= v{ (p) for any p € w such that v{(p) # 7, and only
if ¢ ~ v](g) for some q. Also Fy(zjn,...,%jm;)¥;
= z;¥; « holds for L if ¢; = vj‘-f(p) for any p € w
such that v_,-f(p) # 7, and only il ¢; ~ vf(q) for some

q.

Outline of Proof. Theorem 3.7 guarantecs (4.7) as
well as (4.5) is sound for the unit deductions. Since
by Lemmas 3.2 and 3.4, + is an invariant opera-
tion for the operands of equivalent substitutions. In
(4.5), the fairmerge permits all the items in any se-
quence to be transferred, and the form denotes the
evaluations of equalitics for FP-atoms. Thus (4.5)
and (4.7) are complete for the unit deductions as
long as renaming of variables might be permitted.

Therefore the semantics for FPLOG is provided
by the least fixpoint of fy, defined by (4.5) and (4.7).

6.

The syntax of FPLOG, which is alogic program with
FP functions equality is similar to that of LEAF.
However, its semantics has characteristic aspect in
that each predicate denotes a sequence with each
item of which a real atom might be interpreted as
being generated by deductions and evaluations of
equalities, and the logic program denotes a func-
tional as substitulion manipulator over a scquence
domain. Finally the whole logic program reflects
and represents dataflow computing for deductions
and evaluations of equalities. This primary con-
clusion is owing to the fair merge in Park (1983),
compared with the dataflow languages (Kahn, 1976;

Concluding Remarks

Ashcroft et al., 1976).

The problem of how to establish the rewriting and
cvaluation system in which syntactically different
FP functions might occur is still left for study from
semantic points. However, we might have the con-
clusion that the operational semantics for FPLOG
might be given by dataflow computing for the de-
ductions as well as the evaluations of equalities. The
dataflow computing for the deductions is an alterna-
tive to the finite deduction as in Aptet al. (1982) by
means of elaborate, algebraic substitution manipu-
lation with an interpretation of definite clauses as
representing a functional over a sequence domain.

In this paper, the process of extracting functional
from FPLOG means the construction of dataflow
over sequences denoted by predicates, but not the
construction of a function for each predicate as in

Debray et al. (1989).

Acknowledgement

The first author is much indebted to the late Profes-
sor David M.R. Park and Dr.Stephen G.Matthews
for their comments on dataflow. computing during
the author’s visits to University of Warwick. This
work is partially supported by the Japanese Ministry
of Education, Science and Culiure.

References

1. Apt,K.R. and van Emden,M.1IL., Contributions
to the theory of logic programming, J.ACM 29,
pp.841-864, 1982.

. Ashcroft,E.A. and Wadge, W.W., Lucid-A for-
mal system for writing and proving programs,
SIAM J. Comput. 5, pp.336-354, 1976.

3. Backus,J., Can programming be liberated
from the von Neumann style? A function
style and its algebra of programs, C.ACM 21,
pp-613-641, 1978.

. Baudinet,M., Proving termination properiies
of PROLOG programs: A semanlic approch,
Proc. of 3rd Annual Symposium on Logic in
Computer Science, pp.336—347, 1988.

5. Chang,C.L. and Lee,R.C.T., Symbolic Logic
and Mechanical Theorem Proving, Academic
Press, 1973.

6. Debray,S. and Mishra,P., Denotalional and
operational semantics for Prolog, in “Formal
Description of Programming Concepts I11 (
Wirsing,M., ed.), Proc. IFIP TC 2/WG 22,
North-Holland, pp.245-270, 1987.

10.
11.
12.

13.

14.
15.

16.

117.

. Debray,S. and Warren,D.S., Functional com-

putations in logic programs, ACM Trans. on
Programming Languages and Systems 11, 3,
pp.451-481, 19891.

. DeGro;)i,D. and Lindstrom,G. (eds.), Logic

Programming: Functions, Relations and
Equations, Prentice-Hall, 1986.

. Eder,E., Properties of substitutions and uni-

fiers, J. Symbolic Computation 1, pp.31-46,
1985. '

van Emden,M.H. and Yukawa,K:, Logic pro-
gramming with -equations, J. Logic Program-
ming 4, pp.265-288, 1987.

Fitting,M., A deterministic Prolog fixpoint se-
mantics, J. Logic Programuning 2, pp.111-118,
1985.

Giovannetti,E. el al., Kernel-LEAF: A logic
plus functional language, J. of Computer and
System Sciences 42, pp.139-185, 1991.

Hankin,C.T.D. and Glaster,ll., Applicalive
languages and dataflow, in “Functional Pro-
gramming: Languages, Tools and Architec-
turcs” (Eisenbach,S., ed.), Ellis Horwood,
pp.128-140, 1987.

Kahn,G., The semantics of a simple language
for parallel programming, Proc. IFIP ’74,
pp-471-475, 1974. .

Palamidessi,C., Algebraic properties of idem-
potent substitutions, Lecture Notes in Com-
puter Science 443, pp.386-399, 1990.

Park,D., The “fairness” problem and nonde-
terministic computing networks, in “Founda-
tions of Computer Science IV”(de Bakker,J.W.
and van Leeuwen, ., eds.), Mathematisch Cen-
trum, Amsterdam, pp.133-161, 1983.

Yamasaki.S., Recursion equation sets comput-
ing logic programs, Theoretical Computer Sci-
ence 76, pp-309-322, 1990,

