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Abstract

Program dependences are dependence relationships holding between statements in a program that are
determined by control flow and data flow in the program, and therefore, they can be used to represent the
program’s behavior. A dependence-based program representation has many applications in various software
development activities including program optimization, parallelization, understanding, testing, debugging,
and maintenance. However, although a number of dependence-based program representations have been
proposed for sequential programs, until recently, there is no dependence-based representation proposed for
concurrent programs. A major reason for this situation is that using the usual control dependence and data
dependence in sequential programs is inadequate to represent the full behavior of a concurrent program
because of the existence of interprocess synchronization and communication in the program. In addition to the
usual control and data dependences, this paper proposes three new types of basic program dependences in
concurrent programs, named the selection dependence, synchronization dependence, and communication
dependence, and two new program representations for concurrent programs, named the Process Dependence
Net (PDN) and Process Influence Net (PIN). The paper also shows some potential applications of the
representations in development of concurrent software.



1. Introduction

Program dependences are dependence
relationships holding between statements in a
program that are determined by control flow and
data flow in the program, and therefore, they can be
used to represent the program’s behavior. There are
two types of basic program dependences proposed in
the literature, i.e., the control dependence that is
determined by control flow of a program, and the
data dependence that is determined by data flow of a
program. Informally, a statement S is control
dependent on the control predicate C of a conditional
branch statement (e.g., an if statement or while
statement) if the value of C determines whether S is
executed or not. A statement Sg is data dependent on
a statement Sy if the value of a variable computed at
S, directly or indirectly has influence on the value of
a variable computed at Sg [8,17].

Since grasping program dependences between
statements of a program is indispensable to many
software development activities, a dependence-based
program representation has many applications in
various software development activities including
program optimization, parallelization,
understanding, testing, debugging, and maintenance
(1,8,9,11,13,16-19]. For example, program
dependence graph [8,16], which explicitly represents
both control and data dependences in a sequential
program, has been developed as an impertant
program representation tool used in compiler
construction and software testing, debugging, and
maintenance. However, although a number of
dependence-based program representations have
been proposed for sequential programs, until
recently, there is no dependence-based
representation proposed for concurrent programs.

In general, a concurrent program consists of a
number of processes, and therefore, it has multiple
control flows and multiple data flows. These control
flows and data flows are not independent because of
the existence of interprocess synchronization and
communication in the program. Moreover, a process
in a concurrent program is usually allowed to
nondeterministically select a communication partner
among a number of processes ready for
communication with the process. It is obvious that
only using the usual control and data dependences is
inadequate to represent the full behavior of a
concurrent program.

In addition to the usual control and data
dependences, this paper proposes three new types of
basic program dependences in concurrent programs,
named the selection dependence, synchronization
dependence, and communication dependence, which
are determined by interaction between multiple
control flows and multiple data flows in the program,
and two new program representations for concurrent
programs, named the Process Dependence Net (PDN)
and Process Influence Net (PIN), which are arc-
labeled digraphs to represent the five types of basic

program dependences in the programs explicitly.
The paper also shows some potential applications of
the representations in development of concurrent
software.

2. Terminology

Definition 2.1 A digraph is an ordered pair (V, A),
where V is a finite set of elements, called vertices,
and A is a finite set of elements of the Cartesian
product VXV, called arcs, i.e., ACV XV is a binary
relation on V. For any arc (vi,v9)€A, vy is called the
initial vertex of the arc and said to be adjacent to vg,
and vy is called the terminal vertex of the arc and said
to be adjacent from vq. A predecessorof a vertex visa
vertex adjacent to v, and a successor of v is a vertex
adjacent from v. The in-degree of a vertex v, denoted
in-degree(v), is the number of predecessors of v, and
the out-degree of a vertex v, denoted out-degree(v), is
the number of successors of v. A simple digraph is a
digraph (V, A) such that (v,v)¢ A for any v€V. [

Definition 2.2 An arc-labeled digraph is an n-tuple
(V, Ay, Ag, ..., Ap—1) such that every (V, Ay (i=1, ...,
n-1) is a digraph. A simple arc-labeled digraph is
an arc-labeled digraph (V, Ay, Ag, ..., Aq—1) such
that (v,v)¢A; (i=1,..,n—1) forany veéV. [J

Definition 2.3 A pathin a digraph (V, A) or an arc-
labeled digraph (V, Aj, Ag, ..., Ay—1) is a sequence of
arcs (ay, ag, ..., ag) such that the terminal vertex of a;
is the initial vertex of aj4+; for 1Si=€—1, where
;€A (1=i=0) or 2;€A1UAQU..UA, ;) (1SiS0),
and € (€2 1) is called the length of the path. If the
initial vertex of a; is v, and the terminal vertex of ag
is v,, then the path is called a path from v to v, orv-
v, path for short. A path in a digraph or an arc-
labeled digraph is said to be simple if it does not
include the same arc twice. A pathin a digraphoran
arc-labeled digraph is said to be elementary il it does
not include the same vertex twice. []

Definition 2.4 A nondeterministic parallel control
flow net is a 10-tuple (V, N, Py, Py, Ac, AN, Ap,,
Ap,, s, 1), where (V, Ac, AN, Ap) is a simple arc-
labeled digraph such that AcCVXV, ANCNXYV,
Ap CPpX V,Ap CVXPy, NCV is a set of elements,
called nondeterministic selection vertices, PrCV is a
set of elements, called parallel execution fork vertices,
PCV is a set of elements, called parallel execution
join vertices, s€V is a unique vertex, called start
veriex, such that in-degree(s)=0, t€V is a unique
vertex, called termination vertex, such that out-
degree(t)=0, and for any veV (v¥*s, v#t), there
exists at least one path from s to v and at least one
path from v to t. Any arc (vi,v2)€Ac is called a
sequential control arc, any arc (vi,vo)€ A is called a
nondeterministic selection arc, and any arc
(vi,v2)€Ap UAp, is called a parallel execution arc. O

A usual (deterministic and sequential) control flow
graph can be regarded as a special case of
nondeterministic parallel control flow nets where



both nondeterministic vertex set N and parallel
vertex set P and are the empty set.

Definition 2.5 Let u and v be any two vertices in a
nondeterministic parallel control flow net. u forward
dominates v iff every path from v to t contains u; u
properly forward dominates v iff u forward dominates
v and u#v; u strongly forward dominates v iff u
forward dominates v and there exists an integer k

sequential control arc,
nondeterministic selection arc, or
parallel execution arc

l sequential control arc

vi:a,b,c:= x,y+1,z2+2

D(vj)={a, b, ¢}
Utv)={x,y,z}

vi: keyboard ? char

R(vj)={keyboard}
D(v;)={char}

vi: screen ! char

S(v;) ={screen}

U(v;)={char}

vi: SKIP vi: STOP
Fig.1  Representations of primitive processes

of Occam 2 programs

(k= 1) such that every path from v whose length is
greater than or equal to k contains u; u is the
immediate forward dominator of v iff u is the first
vertex that properly forward dominates v in every
pathfromvtot. (]

Definition 2.6 A nondeterministic parallel
definition-use net is a 7-tuple (Ng, Zv, D, U, Z¢, S,
R), where N is a nondeterministic parallel control
flow net (V, N, Pp, Py, Ac, AN, Ap_, Ap,,s, t), Ly is
a finite set of symbols, called variables, D: V->2Ey
and U: V-22v are two partial functions from V to
the power set of Ly, Z¢ is a finite set of symbols,
called channels, and S: VoXgand R: VoZ¢ are two
partial functions from V to Z¢. [J

Note that all above definitions are graph-
theoretical, and therefore, they are independent of
programming languages.

3. Nondeterministic Parallel Definition-
Use Nets of Occam 2 Programs

We select Occam 2 [12] programs as the target
programs for showing how to represent a concurrent
program by a nondeterministic parallel definition-
use net.

Fig. 1 shows various primitive processes of Occam
2 programs and their representations in a
nondeterministic parallel definition-use net. Note
that each unspecified arc in Fig. 1 should be replaced
by a sequential control arc, nondeterministic
selection are, or parallel execution arc in a complete
nondeterministic parallel definition-use net. Fig. 2
shows various constructions of Occam 2 programs
and their representations in a nondeterministic
parallel definition-use net.

In fact, Fig. 1 and Fig. 2 give the rules that can be
used to transform an Occam 2 program into its
nondeterministic parallel definition-use net. As an
example, Fig. 3 shows a fragment of Occam 2
program and Fig. 4 shows its nondeterministic
parallel definition-use net.

4. Basic Program Dependences in
Concurrent Programs

Based on the nondeterministic parallel definition-
use net of a concurrent program, we can define
various types of basic program dependences in the
program. 2

Definition 4.1 Let (V, N, Py, Py, Ac, AN, Ap,,
Ap,, s, t) be the nondeterministic parallel control
flow net of a concurrent program, u€V, and
vE€((V—(NUPgUPF)). u is directly strongly control
dependent on v iff there exists a path from v to u such
that the path does not contain the immediate forward
dominator of v. uis directly weakly control dependent
on v iff v has two successors v’ and v” such that u
strongly forward dominates v’ but does not strongly
forward dominates v”. [J
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Vi PAR

vo SEQ )

v3 inputl ? x;y

v4 IFp

v5 (x<0)OR (y<0)

vg errorl ! 14 :: “minus operator”
i ce!0.0

vg y=0

v errorl 11 :: “zero divide”
V10 cel0.0

Vi1 TRUF

V12 clx/

viz  SEQ v

Vi4 input2?7n

vis5 sum:= 0

vig WHILE n<>0

vi7 input2 ? data

vig sum, n:= sum+data, n—1
vig ALT

Va0 ¢ ? factor

vl result ! sums«factor

vy ce ? factor

Va3 error2 ! 14 :: “invalid factor”
vo4 STOP

Fig.3 A fragmentof Occam 2 program

R(vg)={inputl}
Diva)={x, y}

Ulvs)={x, y}

S(vg) =
{errorl}

S(vy

.
.
.
.
.
.
.

.

P

. . . R
. AR
SNaswsmnamanan . =

Ulvia)={x,y}

D(vgp) ={factor}

S(vgy) ={result}
 Ulva)=

Note that according to the above definition, if u is
directly strongly control dependent on v, then u is
also directly weakly control dependent on v, but the
converse is not necessarily true.

Informally, if u is directly strongly control
dependent on v, then v must have at least two
successors v’ and v” such that il the branch from v to
v’ is executed then u must be executed, while if the
branch from v to v” is executed then u may not be
executed. If u is directly weakly control dependent
on v, then v must have two successors v’ and v” such
that if the branch from v to v’ is executed then u is
necessarily executed within a fixed number of steps,
while if the branch from v to v” is executed then u
may not be executed or the execution of u may be
delayed indefinitely. The difference between strong
and weak control dependences is that the latter
reflects a dependence between an exit condition of a
loop and a statement outside the loop that may be
executed after the loop is exited, but the former does
not.

R(v14) ={input2}
D(vi4)={n}

R(vy7)={input2}
D(vy7)={data}

2)={c}

D(vyg)={sum, n}
U(vyg) ={sum, data, n}

R(vgg) ={c} R(vag) ={ce}

D(vgg) ={factor}

S(veg) ={error2}
{sum, factor}

7N

.
.

.
.

Fig. 4 The nondeterministic parallel definition-use net of Occam 2 program in Fig. 3



For example, in Fig. 4, vertices vg, v7, and vg are
directly strongly (weakly) control dependent on
vertex vs, vertices vg, vip, and vig are directly
strongly (weakly) control dependent on vertex vg,
vertices vi7, vig, and vig are directly strongly
(weakly) control dependent on vertex vyg, and vertex
v1g is directly weakly control dependent on vertex vig
but not directly strongly control dependent on vyg.

Definition 4.2 Let (V, N, Py, Py, Ac, AN, Ap,,
Ap,, s, t) be the nondeterministic parallel control
flow net of a concurrent program, u€ V,and véN. uis
directly selection dependent on v iff there exists a
path from v to u such that the path does not contain
the immediate forward dominator of v. [J

Informally, if u is directly selection dependent on
v, then v must have some successors such that if the
branch from v to one of the successors is executed
then u must be executed, while if other branch is
executed then u may not be executed.

For example, in Fig. 4, vertices vgg ~ vg3 are
directly selection dependent on vertex vig.

Definition 4.3 Let (Ng, vy, D, U, Z¢, S, R) be the
nondeterministic parallel definition-use net of a
concurrent program, and P=((v1,vg), (vg,v3), ...,
(vn_1,vn)) be a path in Ng. Then
D(P)=D(v))UD(vg)U...UuD(vy,). I

Definition 4.4 Let (N¢, Zv, D, U, Z¢, S, R) be the
nondeterministic parallel definition-use net of a
concurrent program, and u and v be any two vertices
in Ng¢. u is directly data dependent on v iff there is a
path P from v to u in Ng¢ such that
(DWNU)-DP)= . O

Informally, if u is directly data dependent on v,
then the value of a variable computed at v directly
has influence on the value of a variable computed at
u.

For example, in Fig. 4, vertices vs, vg, and vyg are
directly data dependent on vertex vg, vertices vig and
vig are directly data dependent on vertices vi4 and
vig, vertex vyg is directly data dependent on vertices
vis and vy7, and vertex vg is directly data dependent
on vertices vig and vgg.

There are some efficient algorithms to compute the
control and data dependences in a sequential
program based on the control flow graph of the
program [2,8,11,17). Those algorithms can also be
modified to compute the control, selection, and data
dependences in a concurrent program.

Definition 4.5 Let (Ng, £y, D, U, ¢, S, R) be the
nondeterministic parallel definition-use net of a
concurrent program, and u and v be any two vertices
in Ng. uis directly synchronization dependent on v iff
any of the following conditions holds :

1) (v,u)is a parallel execution arc,
2) S(v)=R(u), and

3) there exists a vertex v’ such that v’ is directly
synchronization dependent on v, u properly forward
dominates v’, and S(v")=® and R(v")=® for any
vertex v” in any v-u path. [J

Informally, if u is directly synchronization
dependent on v, then the start or termination of
execution of v directly determines whether or not the
execution of u starts or terminates.

For example, in Fig. 4, vertices v, vs, V14, V15, and
vy are directly synchronization dependent on vertex
vy, vertices vog and ve; are directly synchronization
dependent on vertex vig, vertices vgg and vgg are
directly synchronization dependent on vertices vy
and vyg, and vertex vg4 is directly synchronization
dependent on vertices vy, v10, V12, V21, and vag.

Definition 4.6 Let (N¢, Ly, D, U, Z¢, S, R) be the
nondeterministic parallel definition-use net of a
concurrent program, and u and v be any two vertices
in N¢. uis directly communication dependent on v iff
any of the following conditions holds:

1) there exist two vertices v’ and v” such that u is
directly data dependent on v, R(v)=8(v"), and v” is
directly data dependent on v, and

2) there exist three vertices v', v”, and v"” such that u
is directly data dependent on v’, v” is a successor of v/,
R(v”)=S(v""), and v"” is directly data dependent on v.

Informally, if u is directly possibly communication
dependent on v, then the value of a variable
computed at v possibly directly has influence on the
value of a variable computed at u.

For example, in Fig. 4, vertex vgj is directly
communication dependent on vertex vj.

5. Process Dependence Net and
Process Influence Net

We now propose two dependence-based
representations for concurrent programs, which are
arc-labeled digraphs to represent the five types of
basic program dependences in the programs
explicitly. .

Definition 5.1 The Process Dependence Net (PDN)
of a concurrent program is an arc-labeled digraph (V,
Con, Sel, Dat, Syn, Com), where V is the vertex set
of the nondeterministic parallel control {low net of
the program, Con is the set of control dependence
arcs such that any (u,v)€Con iff u is directly weakly
control dependent on v, Sel is the set of selection
dependence arcs such that any (u,v)€Sel iff u is
directly selection dependent on v, Dat is the set of
data dependence arcs such that any (u,v)€Dat iff u is
directly data dependent on v, Syn is the set of
synchronization dependent arcs such that any
(u,v)€Syn iff u is directly synchronization dependent
on v, and Com is the set of communication
dependence arcs such that any (u,v)€Com iff u is
directly communication dependenton v. [J



Note that the above definition of PDN is not
constructive. A transformation algorithm is
indispensable in order to transform a concurrent
program into its PDN. )

For example, Fig. 5§ shows the PDN of Occam 2
program in Fig. 3.

Definition 5.2 The Process Influence Net (PIN) of a
concurrent program is an arc-labeled digraph (V,
Con, Sel, Dat, Syn, Com), where V is the vertex set
of the nondeterministic parallel control flow net of
the program, Con is the set of control influence arcs
such that any (u,v)€Con iff v is directly weakly
control dependent on u, Sel is the set of selection
influence arcs such that any (u,v)€Sel iff v is directly
selection dependent on u, Dat is the set of data
influence arcs such that any (u,v)€Dat iff v is
directly data dependent on u, Syn is the set of

> control dependence arc

"=~ selection dependence arc

> data dependence arc

CERERD 2

»

synchronization influence arcs such that any
(u,v)€Syn iff v is directly synchronization dependent
on u, and Com is the set of communication influence
arcs such that any (u,v)€Com iff v is directly
communication dependenton u. [J

It is obvious that the PIN of a concurrent program
isa “reverse” of the PDN of that program.

6. Applications of PDN and PIN

As dependence-based representations of
concurrent programs, the PDN and PIN have many
potential applications in concurrent programming.

The most direct application of PDN is slicing
concurrent programs because the explicit
representation of various program dependences in a

synchronization dependence arc

communication dependence arc

Fig.5 The PDN of Occam 2 program in Fig. 3



concurrent program makes the PDN very ideal for
constructing slices of the program.

Definition 6.1 A static slicing criterion of a
concurrent program is a 2-tuple (s, V), where s is a
statement in the program and V is a set of variables
used at s. The static slice SS(s, V) of a concurrent
program on a given static slicing criterion (s, V)
consists of all statements in the program that
possibly affect the beginning or end of execution of s
and/or affect the values of variables in V. Statically
slicing a concurrent program on a given static slicing
criterion is to find the static slice of the program with
respect to the criterion. (J

Note that there is a difference between the concept
of program slice given above for concurrent programs
and that given in the literature [1,9,11,13,19] for
sequential programs, i.e., the above definition
includes a condition on the beginning or end of
execution of s, and therefore, it is meaningful even if
V is the empty set. This makes the concept useful in
analysis of deadlocks and livelocks in concurrent
programs.

It is obvious that once a concurrent program is
represented by its PDN, the static slicing problem of
the program is simply a vertex reachability problem
in the net.

Definition 6.2 A dynamic slicing criterion of a
concurrent program is a quadruplet (s, V, H, 1),
where s is a statement in the program, V is a set of
variables used at s, and H is a history of an execution
of the program with input I. The dynamic slice DS(s,
V, H, D) of a concurrent program on a given dynamic
slicing criterion (s, V, H, I) consists of all statements
in the program that actually affected the beginning
or end of execution of s and/or affected the values of
variables in V in the execution with I that produced
H. Dynamically slicing a concurrent program on a
given dynamic slicing criterion is to find the dynamic
slice of the program with respect to the criterion. (J

Note that for a concurrent program, two different
executions with the same input may produce
different behavior and histories because of
unpredictable rates of processes and existence of
nondeterministic selection statements in the
program. This is the reason why we use a program’s
execution history H produced with an input I to
define the concept of dynamic slicing criterion.

The dynamic slicing problem of a concurrent
program can be reduced to the vertex reachability
problem in its PDN with the program’s execution
history information that can be collected by an
execution monitor [7].

Definition 6.3 A static forward-slicing criterion of
a concurrent program is a 2-tuple (s, v), where sis a
statement in the program and v is a variable defined
at s. The static forward-slice SFS(s, v) of a
concurrent program on a given static forward-slicing
criterion (s, v) consists of all statements in the
program that would be affected by the beginning or

end of execution of s and/or affected by the value of v
ats. Statically forward-slicing a concurrent program
on a given static forward-slicing criterion is to find
the static forward-slice of the program with respect to
the criterion. [J

Definition 6.4 A dynamic forward-slicing criterion
of a concurrent program is a quadruplet (s, v, H, I),
where s is a statement in the program, v is a variable
defined at s, and H is a history of an execution of the
program with input I. The dynamic forward-slice
DFS(s, v, H, ) of a concurrent program on a given
dynamic forward-slicing criterion (s, v, H, 1) consists
of all statements in the program that are actually
affected by the beginning or end of execution of s
and/or affected by the value of v at s in the execution
with I that produced H. Dynamically forward-slicing
a concurrent program on a given dynamic forward-
slicing criterion is to find the dynamic forward-slice
of the program with respect to the criterion. [J

It is obvious that once a concurrent program is
represented by its PIN, the static forward-slicing
problem of the program is simply a vertex
reachability problem in the net, and the dynamic
forward-slicing problem of the program can be
reduced to the vertex reachability problem in the net
with the program’s execution history information.

We now discuss applications of the PDN and PIN
in development of concurrent software. Some of them
are direct applications of the PDN and PIN and
others are applications of program slicing based on
the PDN and PIN.

In understanding a concurrent program, we often
want to know which statements in which processes
might affect a statement of interest and/or which
statements in which processes would be affected by
the execution of a statement of interest. Obviously,
once a concurrent program is represented by its PDN
and PIN, the needs can be satisfied by slicing the
program based on its PDN and/or forward-slicing the
program based on its PIN.

Since the PDN and PIN of a concurrent program
represents both control and data flow properties in
every process and synchronization and
communication properties in interprocess interaction
in the program, it can also be used to define
dependence-coverage criteria, i.e., test data selection
rules based on covering program dependences, for
testing concurrent programs. How to define and
evaluate the dependence-coverage criteria is a
challenging research problem since there is no
effective coverage criterion for testing concurrent
programs until now.

Static and dynamic slicing are useful in concurrent
program debugging because they can be used to find
all statements that possibly or actually caused the
erroneous behavior of the execution of a concurrent
program where an error occurs.

A program error is a difference between a
program’s actual behavior and the behavior required



by the specification of the program. A “bug” relative
to an error is a cause of the error. Debugging is the
process of locating, analyzing, and correcting bugs in
a program by reasoning about causal relations
between bugs and the error detected in the program.
It begins with some indication of the existence of an
error, repeats the process of developing, verifying,
and modifying hypotheses about the bug(s) causing
the error until the location of the bug(s) is
determined and the nature of the bug(s) is
understood, corrects the bug(s), and ends in a
verification of the removal of the error [3,15]. In
general, about 95% of effort in debugging has to be
spent on locating and understanding bug because
once a bug is located and its nature is understood, its
correction is often easy to do {15]. Therefore, the
most important problem in debugging is how to know
which statements possibly and/or actually cause the
erroneous behavior of the execution where an error
occurs.

Debugging a concurrent program is more difficult
than debugging a sequential program since a
concurrent program in general has multiple control
flows, multiple data flows, synchronization and
communication among processes, and
nondeterministic selections. Most current debugging
methods and tools for concurrent programs provide
programmers with only facilities to extract
information from programs and display it in textual
or visual forms, but no facilities to support the
localization, analysis, and correction of bug in an
automatic or semi-automatic manner [14]. Until
recently, there is no systematic method used for bug
location and analysis in debugging concurrent
programs.

Having the PDN as a representation for
concurrent programs, static and dynamic program
slicing based on the PDN can provide us with a
systematic method to support the bug location in

debugging concurrent programs. Once we detected "

an error in an execution of a concurrent program that
occurred at statement s, then we can find the static
slice SS(s, V) of the program based on the PDN of the
program. The static slice 8S(s, V) covers all
statements might cause the error occurred at
statement s, i.e., all “possible candidates” of bugs.
Since the PDN of a concurrent program covers all
possible synchronization and communication
dependences, a static slice of the program is perhaps
still a large set of statements and include many
statements that are actually irrelevant to the error
being debugged. If we have an execution monitor
that can collect execution history information of the
program being debugged, then we can find the
dynamic slice DS(s, V, H, I) of the program based on
the PDN and the information that which statements
are executed actually during the execution where the
error occurs. The dynamic slice DS(s, V, H, I) covers
all statements actually caused the error occurred at
statement s in the execution, i.e., all “actual
candidates” of bugs.

However, the static and dynamic slices of a
program only cover those “candidates” of bugs but
neither locate the bugs nor give some hints on the
nature of the bugs. In order to develop more powerful
debugging methods and tools to support bug
localization, analysis, and correction in concurrent
program debugging, we are constructing an
entailmental logic calculus [4] for causal reasoning
about bugs in concurrent programs and developing a
knowledge-based approach to debugging concurrent
programs. The PDN will serve in the approach as the
basis for representing knowledge about causal
relations in concurrent programs.

In concurrent program maintenance, it is
necessary to know which statements in which
processes would be affected by a statement modified
in maintenance and/or which statements in which
processes affect the modified statements. The needs
can be satisfied by slicing or forward-slicing the
program being maintained. The obtained slice will
be very useful in maintenance of concurrent
programs in the sense that they are helpful for us to
know which statements are affected by the modified
ones and which statements affect the modified ones.

Because the PDN and PIN of a concurrent program
represents both control and data flow properties in
every process and synchronization and
communication properties in interprocess interaction
in the program, it can also be used to define metrics
for measuring complexity of concurrent programs.
For example, we can consider the following
dependence-based and slice-based metrics for
measuring the complexity of a concurrent program:
(1) how many statements and/or processes a
statement or process in the program is directly
dependent on, (2) how many statements and/or
processes a statement or process in the program
directly influences, (3) how long dependence path a
process in the program or the program itself has, (4)
how many statements the largest slice of the
program has, (5) how many statements in a slice of
the program are found only in that slice, (6) how
many slices of the program includes some statements
in common, and so on.

N
7. Concluding Remarks

We have proposed three new types of basic
program dependences and two new program
representations for concurrent programs. Although
here we presented the program dependences and the
representation in terms of Occam 2 programs, the
concepts are general and easy to be applied to those
concurrent programs written in other high-level
concurrent programming languages such as Ada

[5,61.

As concurrent program representations useful in
understanding, testing, debugging, maintenance,
and complexity measure/metrics of concurrent
programs, the PDN and PIN may play an important



role in development of concurrent software. The
significance of the representations in concurrent
programming depends on how we develop the
representations themselves and apply them to
practices of concurrent programming. Having
effective tools to transform a concurrent program
into its PDN and PIN and to slice concurrent
programs is crucial to the applications of the PDN
and PIN in development of concurrent software. We
are developing a group of tools including a tool to
transform concurrent programs into their PDNs and
PINs, a tool to slice concurrent programs based on
their PDNs and PINs, a knowledge-base to store
knowledge about program dependences and
influences in concurrent programs, and a causal
reasoning engine based on entailmental logic to
reason about properties of bugs in concurrent
programs. All of the tools will use the PDN and PIN
as a unified representation for target concurrent
programs.

There are some future research problems. For
example, the five types of basic dependences
presented in this paper do not cover all possible
program dependences in a concurrent program. For
example, a statement S; in a process may
synchronization dependent on a statement Sy in
another process and Sg may control dependent on a
statement S3. Obviously, there is some dependence
between Sy and S3 that cannot be regarded as any of
the five basic types of dependences. An important
research problem is how to deal with all possible
program dependences in a concurrent program. The
size of the PDN and PIN of a practical concurrent
program is crucial to the application of the net in
practices. How to measure the size of a PDN or PIN
and how to reduce their sizes on the condition that
the dependence/influence information is preserved
are also important research problems.
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