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Deriving Denotational Models for Nonuniform Concurrency
from Structured Operational Semantics
(Extended Abstract)

Eiichi Horita
NTT Software Laboratories
3-9-11 Midori-Cho, Musashino-Shi, Tokyo 180 Japan

Abstract: Semantic models are studied for concurrent languages which are nonuniform in that
possible actions of agents depend on their current state. First, two operational models each based
on a branching time (BT) domain and a failures domain are defined from a labeled transition
system, which is defined by a sel of rules T for deriving transitions. Then, it is shown that a

denotational model based on a BT domain (resp. a failures domain) can be derived from 7, when -

7 fits into the so-called Guarded Struclured Operational Semantics format (resp. when 7 fits into
a more restricted format based on the one due to De Simone). Finally, the two denotational models
are shown to be equivalent to the corresponding operational model.



1 Introduction

The problem of deriving denotational (or composi-
tional) models for concurrent languages from a set of
rules for deriving transitions has been investigated in
[5], [10], [6] for BT models, and in [12] for failures mod-
els. The importance of such derivation lies in the fol-
lowing fact: By means it, we can obtain denotational
models for a class of concurrent languages only by ap-
plying a single method, without constructing models
for each individual language.!

All of the above works, however, have studied the
problem for uniform languages, i.e., for languages with-
oul states. In the present paper, the problem is stud-
ied for concurrent languages which are nonuniform in
that possible actions of agents depend on their cur-
rent state.? The main contribution of the present pa-
per is the extension of the results of [5] and [10] for
BT models, and the one of [12] for failures models, to
nonuniform languages.

Below an overview of the rest of this paper is given:
In § 2 mathematical preliminaries are given; the main
body of this paper consists of §§ 3 and 4; in § 3 (resp. in
§4) BT models (resp. failures models) are dealt with
separately.

In § 3, we first define an operational BT model O%
from a LTS A, which is defined by a set 7 of rules for
deriving transitions, along the lines of Plotkin’s Struc-
tured Operational Semantics ({9]). (We call 7 a transi-
tion system specification (TSS).) Then, a denotational
BT model D is derived from 7', under the assump-
tion that 7 fits into the Guarded Struclured Opera-
tional Semantics format (GSOS format) [2]. Finally,
the equivalence between OF and D is established (cf.
Theorem 1, the first main theorem of the present pa-
per).

The definitions and proofs in § 3 are obtained quite
straightforwardly from the counterparts (in {10], [6]) in
the uniform setting by observing the following:

For statements s, s’, states ¢,0’, , and
an action a, the transition (s,0) >
(s',0") in the nonuniform setting corre-

(o,a,0") ,
ERSALILA

H
sponds to the transition s
in the uniform setting with (c,a,0’)
viewed as an action.

In § 4, we first define an operational failures model
OF, from the LTS A defined by the TSS 7. Then, a de-
notational failures model Dg— is derived from 7, under
the assumption that 7 fits into a more restricted for-
mat than the GSOS format; the format introduced in
§4 is based on the format due to De Simone [11] with
certain additional restrictions specific to the nonuni-
form setting. Finally, the equivalence between OF and
’D,F} is established.

1In the present paper, we refer to semantic models for pro-
gramming languages simply as models.

2Here, the term ‘state’ is used, to denote the state of an agent,
which is in turn represented by a statement of a language.

A similar semantic equivalence problem for failures
models was investigated by Vaandrager in the uniform
setting [12]. However, the result of [12] in the uniform
setting cannot be so directly extended to the nonuni-
form setting as in §3. The approach taken in the
present paper is to impose certain syntactic restric-
tions on the format of 7 so that semantic operations
F which are derived from 7 as interpretations of syn-
tactic constructs should be distributive in the sense of
[3] (cf. Lemma 17 in § 4.3); from the distributivity, we
obtain the compositionality of OE(T), and thereby, the
semantic equivalence (cf. Theorem 2, the second main
theorem of the present paper).

2 Mathematical Preliminaries

The underlying mathematical structures of the models
introduced in §§3 and 4, are complete metric spaces.
The notions of complete metric space, contraction, non-
ezpansive mapping, closure, and isometry are assumed
to be known. A (complete) metric space (M,d) is
said to be a (complete) ultra-metric space iff Vo, y, z €
M[ d(z,z) < max(d(z,y),d(y, 2)) ]. The fact that ev-
ery contraction F' from a complete metric space to iiself
has a unique fized poini, known as Banach’s fized point
theorem, is conveniently used; the unique fixed point
is denoted by fix(F). (For the notions and fact above,
the reader might consult [4].) The phrase “let (z €) X
be - -” introduces a set X with variable z ranging over
X. We use the following notation in the sequel:

Notation 1 (1) The standard A-notation is used for
denoting functions: For a set A, a variable z,
and an expression F(z), the expression (Az €
A : E(z)) denotes the function which maps z €
A to E(z). We sometimes write (E(z))gea or
(E(z) : z € A) for (A\z € A: E(z)).

(2) For two sets X and Y, the set of functions (resp.
partial functions) from X to Y is denoted by
(X =Y) or by YX (resp. by (X «— Y)). The
set of natural numbers is denoted by w. Each
number n € w is identified with the set {i € w :
0 < i < n}, as usual in set theory.

(3) Let X be a topological space. For asubset Y C X,
the closure of Y is denoted by Y5, The collec-
tion of closed (resp. finite) subsets of X is de-
noted by pci(X) (resp. by pr(X)). For two met-
ric spaces X1, X, let us write X; = X to denote
that there is an isometry from X; onto X,. §

Notation 2 Let A be a set.

1) For n € w\ {0} and a;,---,a, € A, the n-tuple

1) , ; p
(ag, -, an-1) is defined inductively in terms of
ordered pairs as usual (cf. e.g. [4] §1.3).

(2) The empty sequence is denoted by e. The se-
quence consisting of ap, - -+, @1 € A, is denoted
by (ag, --,an—1). The set of finite sequences
of elements of A is denoted by A<“, and let
A% = A<¥\ {€}. The set of finite or infinite se-
quences of elements of A is denoted by ASY.
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Each sequence w € AS“ is regarded as a func-
tion whose domain is a member of w U {w}.
Thus, the length of w is dom(w); referring to its
length as lgt(w), one has w = (w(8))igige(w) =
(A € lgt(w) : w(i)). Fora € A, v € w U {w}, let
o’ = (X €v:a).

(3) For w; € A<, wy € AS¥, let wy - wy denote the
concatenation of wy and wy. Also, for py C A<¥,
p2C ASW’ let

p1-pa={wi w2 :w €p1 A wy € pa}.
(4) For p C ASY we A<, let
plwl={B €AY :w D ep).

A number of methods for constructing complex
complete metric spaces from simple ones will be used:
Lemma 1 Letn € w, and (X,d), (X;,d;) be complete
metric spaces (i € n).

(1) The product Hien[X"] ts a complete metric space
with a metric a?deﬁned as follows: For T, €
[ien[Xil, d(Z, &) = max{d;(£(),#(3)) : i € n}.

(2) Let A be an arbitrary nonempty set. The product
Ax X is a complete metric space with a metric d’
defined as follows: For (a,z,),(az,z2) € Ax X,
d((a1,21),(az,22)) = 1 if ay # ay; otherwise,
d'((a1,21), (a2, 22)) = (1/2) - d(21,23)-

(3) LetV be an arbitrary nonempty set. The function
space (V. — X) is a complete metric space with a
metric d defined as follows: For f,g € (V — X),
d(f,9) = sup{d(f(v),9(v)):v e V}. I

Proof. All standard (cf. [4]). M

In the sequel, products [;¢,, [X:] of complete met-
ric spaces and function spaces (V — X)) whose domains
are complete metric spaces are always considered as
complete metric spaces equipped with the metrics in-
troduced above.

We use another construction method:

Definition 1 Let (X, d)be ametric space. Forz € X,

Z € p(X), let dy(z,Z) = inf,ez(d(z,2)). For Y, Z €

9(X), the Hausdorff distance between Y and Z in-

duced by d, written du(Y, Z), is defined by:
dy(Y, Z) =
max{supyey(d.(y,Z)),supzez(d,(z,Y))}. ]

The following lemma follows immediately from the def-

inition of dy:

Lemma 2 Let (X,d) be metric space. Then,

(1) VY, 7 C X[ du(Y, 2) = (v, 2% ].

(2) (pa(X),dn) is also a metric space. |

The following fact was first established by de Bakker

and Zucker [1]:

Lemma 3 Let A be a set. Then there ezists a com-

plete ultra-metric space (P, d) such that ran(d) C [0,1]

and (P,d) = (pa(A x P),dy), where dy is the Haus-

dorff distance induced by the metric d' (on A x P) de-
fined in Lemmal (2). &

In the rest of this paper, we fix a set A of actions,
a set 3 of states.

3 Deriving BT Models

In this section, we first define an operational BT model
O from a LTS A, which is defined by 2 TSS 7. Then,
a denotational BT model D is derived from 7, un-
der the assumption that 7 fits into the GSOS format.
Finally, the equivalence between (’)E and D?- is estab-
lished.

The definitions and proofs in this section are ob-
tained quite straightforwardly from the counterparts
(in [10], [6]) in the wuniform setting by observing the
fact (1) in the Introduction.

3.1 Deriving Operational BT Model

First, an operational model OF for concurrency based
on the de Bakker-Zucker domain is induced by a LTS
A. In the rest of this subsection, we fix a LTS
A = (8,5,A,—), where S is a set of states of A and
—C (8xX)x Ax(SxX). The LTS A may in-
findtely branching. We write (s,0) = (s', ) to denote
((s,0),a,(s',0")) €, as usual ®
Definition 2 We call a LTS A = (S, T, A, —) image
finite iff for each s € S, (5,a,0') € T x A x I, the set
{s' €S :(s,0) > (s',0")} is finite. §-
Definition 3 Let (p,q¢ €) Py be the complete ultra-
metric space such that ran(d) C [0,1] and (Pp,d) =
(pa((X x A x T) x Pg),di;). (The existence of Py is
guaranteed by Lemma 3.) A mapping ®p from (S —
Pg) to (S — Pp) is defined as follows: For M € (8 —
Pg), s €S,

Pp(M)(s) =

{((o,a,6"), M(s)) : (5,0) = (s', ")} K
Lemama 4 The function $g is a contraction from
(S — Pp) 10 (S — Pg).

Thus, by Banach’s fixed point theorem, ®p has a
unique fixed point, which is defined to be the oper-
ational BT model:
Definition 4 Let OF = fix(®3). I
Then the following holds by definition:
Lemma 5 For every s € S,

AL

={((9,0,0"), OZ[s']) : (s,0) > (s',0") ). &

We define a nonuniform version of strong equiv-

alence, called nonuniform strong equivalence, along
the lines of Milner’s definition of strong equivalence

(cf. §5.7 of [8]).
Definition 5 First, for n € w, n-nested nonuniform
sirong equivalence, written ~NY, is defined induc-
tively as follows: (i) For every s3, sz, let 51 ~§Y s,.
(ii) For every sj,sq, let s; ~ny1 Sz iff V(4,7) €
{(1,2),(2,)},V(r,0,6") € T x A x 5[ (s5,0) >
(si,0) = 3] (s5,0) = (s},0') A sf ~8v s ).
Next, ~V is defined by: Vsy,s3[ s, ~NV 53 < Vn €
wlsi~3Y sy )] 1

3We use variables s, t to ranges over S, and o, a for £ and
A, respectively.
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Then one has the following proposition stating that two
states are related w.r.t. nonuniform strong equivalence
iff they have the same meaning in 08:

Lemma 6 Forsy,s; €S, one has
51~ 5y & OF[s1] = O4s2]- 0
Proof. The same as the proof of Lemma 7 of of [6],

except that the action set A in [6] is replaced by ¥ x
AxXxL N

3.2 Deriving Denotational BT Model

In this subsection, it is shown that denotational mod-
els for concurrency based on the de Bakker-Zucker do-
main can be derived from the TSS 7, when 7 fits into
the so-called Guarded Structured Operational Seman-
tics format [2].

First, semantic operations f (on processes) associ-
ated with syntactic constructs F', are defined on the
basis of a TSS 7 in the so-called SOS format.

The notion of SOS format is defined in Definition 10
below in a similar fashion to [10], with certain modifica~
tion in accordance with the nonuniform setting. With
the exceptions of not allowing negative antecedents and
omitting the restriction of guardedness, the notion of
SOS format is essentially the same as the GSOS format
[2.

For defining statements, the notion of a signature
is introduced:

Definition 6 A signature Srec = (Frec,arity) is the
pair of Frec (a set of function symbols) and a mapping
arity(+) : Frec — w which maps each function symbol
to its arity.® It is assumed that a set of symbols (Z €)
Z is predefined, and Fr. includes Z; the members of
Z are reserved for the names of recursive statements.
Let us put F = Frec \ Z, and § = (F,arity). For each
‘rew, let FO) = {F € F :arity(F) =r}. 1
The set of statements is defined as follows:

Definition 7 (1) Let A be aset of variables ranging

over statements. Let A{Srec, X) be defined to be

the set of terms generated by Srec, . Formally,

the set (S €) A(Srec, X) is defined by the follow-

ing BNF grammar:

S =X | F(So, -+, 5-1)| Z,
where r €Ew, F € F), and Z € Z.

(2) For S € A(Srec, X), the set of variables contained
in S, denoted by Var(S) is defined as usual. For
Y C X, let A(Sree, ) = {S € A(Stec, )
Var(U) cy} Elements of A(Srec, X)?, viz. terms
containing no variable are said to be closed.
Statements are defined to closed terms.

(3) Let A(S,X) be the set of terms generated by &,
X. Further let A(S, X) be the set of elements S
of A(S,X) such that for every X € & there is at
most one occurrence of X in S. I

In the sequel, syntactic identitly is denoted by ‘=". We

introduce the notions of syntactic and semantic evalu-

ations below.

4We refer to function symbols with arity 0 as constants.

Definition 8 A syniactic valuation is a partial func-
tion from X to A(Srec,X). Thus, (¢ €) (¥ «
A(Srec, X)) is the set of syntactic valuations. For
S € A(Srec, X), ¢ € (X < A(Srec, X)), the expression
S[¢] denotes the result of simultaneously replacing X
in § with {(X) (X € dom(())) Foraset I, X € &7,
Se (A(S,ec,«l’))" let §/X be the syntactic valuation
{(X(D), S’(z)) i € I}, which maps X(z) to S(i) (iel).
Thus S[5/X] denotes the result of replacing X(@) by
b(z) (ien). B
Definition 9 Let J be an interprelation of the sig-
nature S with some domain D. (Here an inferpreta-
tion refers to a mapping which maps each syntactic
construct to a semantic operation with an appropri-
ate domain and range in accordance with tis arity.)
A semantic valuation is a partial function from & to
D. Thus, (p €) (¥ — D) is the set of semantic val-
uations. For aset I, X € X1, j € DI, let S5/X be
the semantic valuation {(X(3), #(3)) : ¢ € I}, which
maps X(i) to 5(4) (i € I). For S € A(S,&) and
p € (X — D) with Var(5) C dom(p), let ST’ (p) de-
note the interpretation of S in J with the assignment
of z to p(z) (z € Var(S)); formally [S]7(p) is defined
by induction on the structure of S using the follow-
ing rules: (i) [X] (p) = p(X), (i) [F((Sihier))’ (0) =
J(F)(([[S]]J(p)),er) Also, for n € w, S € (A(S, )",
let [ST (p) = (IS (0))ien- W
The notion of SOS format is defined by:
Definition 10 Let (Xn)new; (Yalnew € (W — )
such that both (Xp)new and (Yn)new are one-to-one
and {Xn}new N{Yntnew = 0. For r € w, let X, =
(Xo,- -y Xr—1), and ¥, = (Yo, -+, Yooa).
(1) A transition rule (TR) is a pair of a sub-
set {((S,',0’,'),11,‘,(54,02))};51 of (A(Srec,z{') X
) x A %X (A(Srec,¥) X L) and an element
(S,(0,a,0"),5") of this set. A TR R =
({((S,00), ai, (S, o) Yier, (S, 0), 0, (57, 0)))
usually written as:
{(Si,0) = (S, ) ier
(S,0) 5 (5,0
(2) A TR Ris in the SOS format iff it is of the form:
{00 % (i obbier -
(F(X;),0) = (5,0)
where FF € F(O, I C r, and § € A(S,X) with
Var(S) C{Xi:ierfu{Y;:iel}
(3) Let (D €) Decl(Srec) = (2 — p(A(Sree, X))
The elements of Decl(Srec) are called declara-

tions. Let D € Decl(Srec). The recursion rules
under D is the TR’s of the form:

{(D(2),0) = (s',0")}
(Z,0) 5 (s'0)
where Z € Z. Let Rrec(D) be the set of recursion
rules under D.
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(4) A transition system specification (TSS) is a 4-tuple
(Srec, B, A, R) with Seec a signature, £ a set of
states, A a set of actions, R a set of TR’s. A
TSS 7 = (Srec, 5, A, R) is said to be in the SOS
format iff there is a declaration D such that (3),
(4) below hold:

Rrec(D) CR;

(3)
all elements of R \ Rrec(D) are in 4)
the SOS format. J

Note that given a TSS 7 = (Srec, T,A,R) in the
SOS format, a declaration D satisfying (3) and (4)
above is uniquely determined; we denote such a dec-
laration by Dz. In the rest of this section, a TSS
T = (Srec, T, A, R) in the SOS format is fixed, and let
us use S to denote A(Spec, X)° .

Definition 11 Elements of (S x ) x A X (S x X) are
called transitions. The notion of provability (or deriv-
ability) of transitionsis defined in the same way as Defi-
nition 2.3 in [5]. Let —= {((s,0),a,(s’,0’)) € (SxIT)x
A x(SxX):{(s,0),a,(s,d)) is provable from R}.
Then, let L(T), the LTS defined by T, be defined
by: L(T) = (S,A,Z,—). Let OE(T) : S — Pp be the
semantic model defined in §3.1 with 4 = L(7"). §

Notation 3 In the sequel of this section, we some-
times write O for OE(T), for short. Also, for nota-
tional convenience in the sequel, let us put Of5] =
{O[5(2)])ien, for n Ew and € S™. |

The following lemma, which plays a key role in this

section, shows how semantic operations can be derived
from 7.

Lemma 7 (1) Let Zg(S) be the set of interpretations
for the signature § with the domain Pg. For
F e FO) and J € Ip(8), one has J(F) :

(PB)" — Ppg by definition. The set Ip(S) is a
complete metric space with the metric d2 defined
by: d3(Jy, 2) = sup{dB(Jy(F), Ja(F)) : F € F}
(J1,J2 € Ip(S)), where for F € F), dB is the
metric on ((Pg)" — Pp) defined as in Lemma I
(8). Let IB.(S) = {J € In(8) : VYF €
S[ J(I) is nonezpansive |}. Then, (I8:(S),dB)
1s also a complete metric space.

(2) For a TR of the form (2) and § € (P)", 7 €
(PB)I, let

ﬂR(ﬁ;q)
= {(Xe, @) hier U {(Y, 410)) bier-
By means of pr(7,q), « mapping ¥p : IB:(S) —
IB.(S) is defined as follows: For J € I8:(S),
r€w, F e F, je (Pp), let Up(J)(F)(P) =
(T (J)(F)(P)), where
Gy (1)(F)(7) =
{((0,2,0"), [SY (or(7, D)) :
ReRA
{(Xi)gi) = (Yivng)}iel
(F(X.),0) = (5,0)
A€ (Pp) A
Vi€ I[ (03, ai, o2), 409) € 7(3) 1}.

(5)

Then, the mapping ¥p is a contraction. J

Proof. The same as the Proof of Lemma 8 of [6],
except that the action set A in [6] is replaced by ¥ x
AxE H

By means of ¥g, an interpretation K of & based
on the BT domain is defined by:

Definition 12 Let K be the fixed point of ¥g. §
Then, one has the following lemma by definition.
Lemma 8 For F € F) and e (Pg)", one has

K(F)(#) = (¥s (F)(F)(7)™, ©)
where Up(K)(F)(F- 7) is defined as in (5) with J re-
placed by K. Moreover, the mapping K(F) is nonez-
pansive. |

Remark 1 It is easy to see that if L(7) is image finite
and the rules R € R in SOS format satisfy the following
condition (%), then taking closure of right side of (6)
can be omitted. (*): Given F € FI), ¢ € %, a € A,
§€ 8", there are only finite number of rules of the form

(2) such that Vi € I,3(s,0)[ (5(3),0:) 3 (5,0) ]. X

Next, the denotational model D% is defined composi-
tionally from the interpretation K, with the meaning
of each recursive statement as the fixed point of a cer-
tain higher-horder mapping;:

Definition 13 A TSS T = (Srec, &, A, R) is saled to
be in the Guarded SOS format (GSOS format) iff it is
in the SOS format and there is 7y C F(o) satisfying
the following:

(i) For every F' € Fy, K(F) is a contraction from Py
to itself.

(ii) For every Z,Z' € Z, every occurrence Z’ in
D+(Z) is in a subexpression of the form F(---)
with some F € F;. |

Definition 14 Let Tp : (£ — Pg) — (Z — Pg) be
defined as follows: For every H € (£ — Pg), Z € Z,
K U H is an interpretation of Scec, and let Tp(H)(Z) =
[D(2)I¥ V¥, where [D(Z)[¥ U is the interpretation
of D(Z) € A(Srec, ¥)* in K U H. 1

The following lemma. follows immediately from the
definition of GSOS format:
Lemma 9 LetT be a TSS in the GSOS format. Then,
Tp is a contraction from (£ — Pg) to ilself. |}

For the fixed point of Ty, the denotational BT
model is defined by:

Definition 15 Let a TSS 7 in the GSOS format, and
let H(T) = fix(Tg). We define PB : S — Py as
follows: For every s € S, D2[s] = [s]¥VH(T), g

3.3 Equivalence between OF ) and D}

In this subsection, the semantic equivalence between
OE(T) and D¥ is established by showing that OE(T) is
compositional in the sense of Lemma 10 below:

Lemma 10 LetT be a TSS in the SOS format. Then,

(1) Forr €w, Fe F(M, 5§87, one has

_5.._



O F®] = K(FY(OF 1 [5])-
(2) Let H = (A2 € Z : OF13[2]). Then,

Vs € S O] = 17 1.1
Proof. The same as the proof of Theorem 1 of [6] with
minor modifications to the nonuniform setting. Ml
From Lemma 10 (2), the following lemma follows
immediately.

Lemma 11 VZ € Z] 02(7)[[2]] =DE[Z]]. 1
Proof. From Lemma 10 (2), one has the mapping
OE‘(T)I\Z =2 e Z: OE(T)[[Z]]) is also the fixed
point of Tp. Thus, O} 2 = fix(Ts) = H(T).
Consequently, for every Z € Z, one has C’)E(T)[[Z]] =
H(T)(Z) =D2[A]l- M

From this lemma the semantic equivalence follows
easily:
Theorem 1 Let T be a TSS in the SOS format.
Then, OE(T) =DE. |
Proof. By structural induction on s € S, one can
obtain the following for every s € S,

O%r)[s] = DR[s]. (7
In the induction base, i.e., for s € Z, we obtain (7)
immediately by Lemma 11; the induction step can be
easily established by applying the compositionality of
02 .+, (Lemma 10 (1)). W
gIfxus, we have a denotational characterization of
the operational model OE(T)[[S]; For an advantage of
having such a characterization, see [6] § 6.

4 Deriving Failures Models

In this section, we first define an operational failures
model Oi from a LTS A, which is defined by a TSS
7. Then, a denotational failures model DY is derived
from 7, under the assumption that 7 fits into a more
restricted format than the GSOS format; the format
introduced in this section is based on the format due
to De Simone [11] with certain additional restrictions
specific to the nonuniform setting. Finally, the equiv-
alence between OF and DY is established.

A similar semantic equivalence problem for failures
models was investigated by Vaandrager in the uniform
setting [12]. However, the result of [12] in the uniform
setting cannot be so directly extended to the nonuni-
form setting as in §3. (See the Introduction, for the
approach taken in the present paper.)

4.1 Deriving Failures

Model

First, an operational model for concurrency based on
a variant Pr of the failures domain [3] is induced by a
LTS A. First, the failures domain Pp is defined. The
domain Py is based on the original one [3], with cer-
tain modifications in accordance with the nonuniform
setting.

Operational

Definition 16 (1) The set of failures , written (g €)
Qr, is defined by:
Qr = (B x A x )< -R)
UZ x A x Iy,
where R = {{(¢, ")) : (0,) € £ x p(A)}.
(2) For g € Qr, let istate(q) = ¢ if ¢ = {(0,I)) with
some o, I'; otherwise ¢ = {(7,a,0"))-¢ with some
o, a, o, ¢, and let istate(q) = 0. For p € Pp
and o, let p{o) = {q € p : istate(q) = ¢}, and
act(p,0) = {a € A :30'[ pl{(7,a,0"))] # 0 ]}.
(8) We say p satisfies the disjoininess inaction con-
dition, written DIC(p), iff Vr € (¥ x A x
Dyl plr] # 0 = Vo,3G € p(p(act(p,0)))[ G #
DAVI[{(o,T)) €plr] & I € G[ TN =0 ]
(4) Let the domain of failure sets, written Pp, defined
by: Pr = {p € p(Qr) : DIC(p)}.
A metric dr on Pp can be defined in terms of trunca-

tions of sequences so that the following holds (cf. e.g.
Lemma 15 of [7]):

Lemma 12 The space (Pr,dr) is a complete metric
space. ||
On the basis of the domain Pg, the operational
failures model Op is defined by:
Definition 17 For (s,0) € Sx I, let Act(s,0) ={a €
A:3(s,0") €S x Z[(s,0) > (s,0") ]}
A mapping ®r from (S — Pr) to (S — Pr) is
defined as follows: For M € (S — Pg), s € S,
Bp(M)(s) =
{{(e,1)) : (6,T) € T x p(A)
AT NAct(s, o) =0}
U(U{((e,a,0")) - M(5) :
(5,0) = (s, ).
Lemma 13 The function ®p is a contraction from
(S—Pgp)to(S—Pr). K

Thus, by Banach’s fixed point theorem, ®f has a
unique fixed point, which is defined to be the oper-
ational failures model:

Definition 18 Let 05 be the unique fixed point of
Pr. I
Then the following holds by the definition of OF:

Lemma 14 For every s € S,

O4[s] =

{{(e,T)) e R:TNAct(s,0) =0}U

(Ull(o,a,) - ORTs' = (5,0) = (5,0 ) D N
4.2 Deriving Denotational Failures
Model

In this subsection, it is shown that denotational models
for concurrency based on the failures domain can be
derived from the TSS 7, when the TSS fits into to a
more restricted format, which is based the format due
to De Simone [11].
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Definition 19 (1) Letr e w, F € F), I Cr, § :
(-3, andg :Zx S -5 ATRRisa
rule for F' in the State-Restricted Copy-Free SOS
format (SRCF-SOS formai) wr.t. I, § and ¢’ iff
it 1s of the form: ‘

{(X,,§(1)(0’)) = (Yi,of)}iel (8)
(F(Xr),0) > (S,9'(0,(oh)ier))
where S € AY(8,X) with Var(S) C {X; : i €
r\I} U {Y;:i€I}. Let R(r,F,1,7,¢') be the
set of these rules.

{2) ATSST =(8,%,A,R) issaid to be in the SRCF-
SOS format iff there are mappings {§r)per and
(9%) Fer such that (9), (10), (11) below hold:

Vr €w,YF € FO[ Gr € (£ — 5)" ©)

Agp € [reperyEx BT = 2] |;

Rrec(D) C R, (10)
where R rec(D) is the set of recursion rules defined
in Definition 10;

RN\ Reec(D)

CUR(r, F 1, 3r, g5 (D)) : (11)

rewAFeFOAICTY).

In the rest of this section, a TSS 7T = (5,%,A,R)

in the SRCF-SOS format is fixed with (§r)rer and

{95 ) Fer satisfying (9).

The following definition is given as a preliminary
to the definition of semantic operation:

Definition 20 (1) Let ref,apart : p(Qr) — R be
defined as follows: For every p € p(Qr), ref(p) =
pN R, and apart(p) = p \ ref(p).

(2) Let rew, FEFM o€ X, and a € A. First, let
Hr(o,a) C (p(A))" be defined by:

H_F(a, a) =

{Te @A) :3Re R[

{(Xugr(z)(ff)) = (%, 0] }ier
—(F(X),0) S (S, 95 (1)(0,8))
AViella; € I‘(z) 1,
where ¢/ = (0])ier. Weset H%(0,a) = (p(A))’\
Hr(o,a). For A C (p(A))", let A® = {(A\
F(i))ier : T € A}

(3) Let us.define rec : (p(p(A)))" — p(p(A)) as

follows: For G € (p(p(A)))r

rect () = {I: H;er[é(i)]

N(NaeaMi(o,a)])® #£0 }.
Then, let
rec”(G) = | [rec ()]0
gEL

Lemma 15 (1) Let Zp(S) be the sei of interpreta-
tions for the signature S with the domain Pp.

For F € FU) and J € Ip(S), one has J(F) :
(Pp)" — Py by definition. The set Ir(S) is a
complete metric space with the metric d defined

by: df(J1,J2) = sup{dp(Jy(F), Jo(F)) : F € S}
(Jl,Jz € Ir(S)), where for F € FU), dE is the
metric on ((PF)’ — Pr) defined as in Lemma 1

(8). Let I8 (S) = {J € Zp(S) : YF ¢

S[ J(F) is nonezpansive |}. Then, (I5e(S),dE)

is also a complele metric space.

(2) Fora TR R of the form (8) and 5 € (Pr), let
pr(P) = {(Ys, (9)[((03, ai, o)))]) }iex
U{(X(@),p()) :ier\ I}
Then, for J E.’ZEB(S), let
Yr(J,P) = {(0,a,0")) - [SV (or(F)).
By means of Yr(J, p), a mapping Vg : Tf, (S)
TEe(S) is defined as follows: For J € I5s(S),
F e FO, 5 e (Pp) let Ye(J)(F)() =
refp((ref(p(z))),er) U (\I/F(J)(F)(f)'))ds, where

G (7)(F)(7) =
U{z/)R(J,ff):RE'R/\
o AXo) B Gl (1)
(F(X), ) = (5,0")

AVi € I[ p(i)[{(o3, a5, 61))] # 0 ]}

Then, the mapping ¥r is a contraction. |

By means of ¥p, an interpretation M of S based on
the failures domain is defined by:

Definition 21 Let M be the fixed point of ¥r. I
Then, one has the following lemma by definition:

Lemma 16 Forr € w, and F € FO, e (Pr), o
has

M(F)(7) = refi({ref(7(0))ier)
U (Tr(M)(F)(5)7",
where @p(M)(F)([)’) is defined as in (12) with J re-
placed by M. Moreover, the mapping M(F) is nonez-
pansive. J
For a TSS 7 in the GSOS format, the denotational
failures model DY is defined as the denotational BT
model D2 has been defined in §3.2, but using Py and
M instead of Pp and K, respectively.

(13)

4.3 Equivalence between OE(T) and DY

When a TSS 7 is in the SRCF-SOS format with L(7")
being image finite, the interpretation M(F) of every
function symbol F € F is distribulive in the sense of
Lemma 17 below; from the distributivity, the compo-
sitionality of (’)E( Ay and therefore, the equivalence be-
tween OF 4y and ’DE(A follows easily. It is for ensuring
the distributivity that several additional restrictions
are imposed in Definition 19 (1), on top of the restric-
tions in Definition 10 (2).

Lemma 17 Let T be a TSS in the SRCF-50S format
such that L(T) is image finite. Then,
(1) Vier,Vpe (r\{i} — Pp),
vp(® p(1) ¢ Py|
K(F)(FU{(E ™ U p)})
= UjeB(E)FU{E PO 1.
(2) Let § € AHS,X), Y € pr(X), X € X such that
Var(S) CY U {X}. Then,
' Vp € (¥ — Pr),Vp(?, p) € Pg[
ST (p L {(X, 9 U p™)})
= jEZ[[SﬂM(p U {(X, s}
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Lemma 18 Let T be a TSS in the SRCF-S0S format
such that L(T) is image finite. Then,
(1) Forrew, F e FU), §€ S, one has
OF  [F(3)] = M(F)(OLer [5])-
(2) Let H = (A\Z € Z : 05 1,[2]). Then,

Vs € S[ O (7)ls] = [S1¥°7 1.1

Proof. We sketch the proof of Part (1); Part (2) fol-
lows immediately from Part (1). First, we give a few
notational preliminaries: For n € w, p;,p2 € Pr, we
write p; ~, pz to denote that dp(p1,p2) < (1/2)%;
we write O to denote OE 7y for simplicity. Further,
for n € w, let us use P(n) and P’(n) to denote the
following propositions (14) and (15), respectively.

P(n):¥r e w,VF € F0), 5 87[ (14)
O[F (5)] =n M(F)(O[3]) |-
P'(n) :¥S € A(S,X),¥( € (X — 8)] (15)

Var(S) C dom(({) =

OISl =a [S1M(0 0 Q) ].
Then, we observe that (*): ¥n € w[ P(n) = P'(n) ].
We can show by induction on n that Vn € w[ P(n) ],
which implies the claim of Part (1). One has P(0)
immediately; supposing P(n), let us show P(n 4
1). One has P'(n) by (). Let r € w, F €
FO) 5 € S". Putting § = O[5], let us show
(1): OIF()] ~np1 M(F)(P). Since O[F(3)] =
ref(O[F()]) U apart(O[F(]) and M(F)(p)
refp({ref(5(2))}ier) U Tp(M)(F)(5), it suffices to show
1) ref(O[F(]) ~n41  refp((ref(7(i)))ie-), and
(%+): apart(O[F(3)]) ~n41 Yr(M)(F)(P). One ob-
tains (1) easily from the definition of refg; let us show
(x*). For R € R of the form:

{(X, Gr (i)()) = (¥, oD bier (16)
(F(X),0) = (S,95(D)(0, ),
with & = (of)ies, and for T € S', let Cr(51) =
{(X:, 5(8)) bier U {(Y5,8(2)) Jiex- Then,
apart(O[F(5)])
= U{((O’,a,g}»(o’, 6’))) : OHS[CR(E"{)]]] :
ReR A Ris of the form (16) A
e St A Vi eI (50),7r(i)())
(t(8), 9 (1)(e, 7)) I}
Zntl U{((o’,a, glF(‘Tv 31))) . l[S]]M(O_? CR(g){)) :
the same condition for R, f as above }
(since P’'(n))
= J{(e,a,95(c,)) - [ST” (pr(F)) :
R€R A Risof the form (16) A
Vi€ I{ p(i)[{(oi, a5, 00))] # 8 ]}
(by applying Lemma 17 (2) several
times, recalling pr(P) is an expres-
sion introduced in Lemma 15 (2) )
= Yp(M)(F)(P)
(by the definition of ¥r{M)(F)(p) in-
troduced in Lemma 15 (2))
Thus, one has (*+). W
From Lemma 18, the following theorem follows im-
mediately, just as Theorem 1 follows from Lemma 10:

Il

Theorem 2 LetT bea TSS in the SRCF-SOS format
such that such that L(T) is image finite. Then, one has
ogm =DE. 1
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