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Polynomial-time algorithm generation
based on graph minors (draft)

Mizuhito Ogawa (mizuhito@ntt-20.ntt.jp)
NTT Basic Research Laboratories
3-9-11 Midori~-cho Musashino-shi Tokyo 180 Japan

In 1988, Robertson-Seymour have proved graph-minor theorem (Wagner’s conjecture). Fellows
shows that the detection of a minor-closed property on finite graphs has a polynomial-time
algorithm. However, the proof of graph-minor theorem is highly non-constructive and in general
it is very difficult to construct an actual polynomial-time algoritm. In this report, using a
constructive proof of Higman’s lemma (which is a restricted version of graph-minor theorem),
we generate a liner-time algorithm for a disjunctive monadic query processing on indefinite
database, which has been an open problem.
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1 Introduction

Well-quasi-order (wqo, for short) is frequently used concept in theoretical computer science. A
quasi-order < (i.e., reflexive transitive relation) is wqo if for any infinite sequence z;, 3, z3,- - -
there exist i < j s.t. x; < z;. A wqo (or its variations) < on some simple set is extended to a
wqo C on more complex structures - such as, direct product, finite power set, finite words 7],
finite trees [8, 14, finite graphs [18], etc. infinite words [15], infinite trees [16], etc. (But, not
for infinite graphs [20].) The extension is constructed by a homeomorphical embedding - that
is, if there exists an one-to-one structure-preserving map ¢ from z into y s.t. z; < f(z;) for all
elements z; in z, then 2 C y.

One application of wqo is to show termination, such as simple termination in term rewriting
systems [2]. Another application is to show the existence of a polynomial-time algorithm to
detect a minor-closed property [3]. A property P is minor-closed if P(z) and z C y shows P(y).
Graph minor theorem (or, Wagner’s conjecture) is recently proved by Robertson and Seymour,
which states that an ordering C based on a homeomorphical embedding is a wqo on finite
graphs {18]. Then, the minimal elements which hold P must be finite - otherwise, it contradicts
to wqo property of C. These minimal elements are called forbidden-minors. The problem
whether P(z) holds is reduced to the simple test whether there exists a forbidden-minor y s.t.
y C . This is computed in O(n®)-time where n is a number of edges in z. However, this does
not suggest any actual algorithm - a set of all forbidden-minors is usually difficult to detect.
For instance, the non-planarity of finite graphs requires Kuratowski’s theorem. It shows Kj
and K33 are required forbidden-minors.

This paper is the first step to an automatic polynomial-time algorithm generation for a
minor-closed property. The basic idea is to construct an algorithm which detects forbidden-
minors. This construction is based on a constructive proofs of Higman’s lemma [13]. This
is applied to a linear-time algorithm generation for a fixed disjunctive query processing on
indefinite database, which is an open problem in [9].



2 Well quasi order

A quasi order on a set ¥ is a reflexive and transitive binary relation on ¥, and denoted as
z <y. A decidable quasi order is a quasi order for which the condition z < y is decidable.

Definition 2.1 A quasi order on a set ¥ is a well-quasi-order (wqo, for short) if for any
infinite sequence 1, 22, z3,-- - in I there exist 1 < j s.t. 2; < x;. We also say (%, <) or simply
Y as a well-quasi-ordered set (wqo set, for short).

In 1952, Higman shows wqo on a set ¥ can be extended to a set £* of finite words on & [7.

Lemma 2.1 (Higman’s lemma) Let = (21,"+,2m), ¥ = (41, -+, ¥n) be words (finite
sequences) on a wqo set (X, <). A set of words on T is noted as £*. A relation z < y is defined
that = is termwise dominated by a subword in y. (i.e., there exists a strongly increasing map
P from {1,---,m} to {1,---,n} s.t. z; < yy( for Vi <m.) Then (X*, <) is a wqo set.

In early 60’s, this lemma is extended to more complex structures, such as finite trees,
infinite trees, transfinite sequences, etc. by Nash-Williams[14, 15, 16]. The most well-known
form would be Kruskal’s theorem(8, 14]

Definition 2.2 Let T be a tree. For a node z in T, position(z) is inductively defined as

T=c¢ if = is a root.
z =p-i if zis an i-th branch of 2’ and position(z') =

Two positions p, g are p < ¢if Ir s.t. g =p-r. We denote P A q as a greatest lower bound
of positions p and ¢.

Definition 2.3  Let T, T” be finite trees. T is homeomorphically embedded in T’ if there
exists an injection ¥ from T to T s.t. ¥(z Ay) = ¥(z) A ¢¥(y) for any nodes =, y in T. ¥ is
said to be a homomorphic embedding.

Theorem 2.1 (Kruskal’s theorem) Let 7, T’ be finite trees, and T T 7" be a relation
s.t. T is homeomorphically embeddable to T”. Then, L is a wqo on a set of finite trees.

Theorem 2.2  Let T, 7" be finite terms on a wqo set W. We define T C T" if there exists
an injection map ¥ from T to 7" s.t. % is a homomorphic embedding (regarding a term as a
tree) and z < 9(x) for each node in 7. Then, C is a wqo on a set of finite terms on W.

These results are surveyed in [11]. Wagner conjectured the extension of Kruskal’s theorem
for graphs. Wagner’s conjecture (graph-minor theorem) has been open for more than 20 years.
In 1988, it is positively solved by Robertson and Seymour for finite graphs [18]. (For infinite
graphs, Wagner’s conjecture is refuted [20].) ‘

The proofs are based on highly non-constructive reasoning called minimal bad sequence -
this is far beyond Peano Arithmetic (PA). The proofs are non-constructive from two reasons:
(1) the proofs proceed by contradiction, (2) the arguments on minimal-bad-sequence require
heavily impredicative, such as universal quantification over all bad sequences. Next, Kruskal’s



theorem can prove a transfinite induction of an ordinal I'y. This shows Kruskal’s theorem can
be proved neither in PA nor relatively strong logical systems such as ACA,, ATRy, etc. These
proof-theoretical view on Kruskal’s theorem is surveyed in [4].

Principally, the proof by contradiction for I19 sentences can be transferred to constructive
(impredicative) proof by A-translation [6]. Thus, these theorems would have (imperative) con-
structive proofs. However, the rest of facts above shows difficulty to find predicative constructive
proofs for graph-minor and related theorem.

Murthy-Russell and Richman-Stolzenberg have independently given an explicit constructive
proof of Higman’s lemma [13, 17]. Similar idea to [17] is also found in [19]. Gupta extended
Murthy-Russell’s regular expression techniques to finite trees and have given an explicit con-
structive proof of Kruskal’s theorem [5]. Murthy-Russell’s proof takes a finite sequence and
maps it to a finite set of regular expressions of elements incomparable to those in the sequence.
They define a well-founded ordering on these sequences which decreases as the sequence is
extended with incomparable elements. This ordering can be translated into a function which
maps finite sequences to ordinals. Murthy-Russell are implementing an algorithm extracted
from their constructive proof using the NuPRL proof development system. We will discuss
their detailed proof techniques in the next section.

3 Constructive proof of Higman’s lemma

Briefly speaking, Murthy-Russell’s proof (1) takes a finite sequence and maps it to some sort
of regular expressions of the elements incomparable to those in the sequence. (2) They define
a well-founded ordering on these sequences which decreases as the sequence is extended with
incomparable elements. This is shown by an induction on sets of sets of sets over a fixed carrier
set. We will obey notations and definitions to [13]. For detailed proofs please refer [13]. Let
(£, <) be a wqo set, T* be a set of finite words on X, and < be a quasi-order defined in theorem
2.1.

Assumption

1. Let A and B be non-increasing sequences of & and let A C,,, B if and only if A is a
proper extension of B. [, is well-founded and equipped with a well-founded induction
scheme.

2. The wqo < on ¥ is decidable.

Classically, the first assumption is obvious from the wqo property of <. However, construc-
tively it is not. The wqo which satisfies assumptions above is called constructive well-quasi-order
(cwqo, for short) [19].

Step 1: Sequential r.e.’s and their reductions

Definition 3.1 A sequential r.e. (on I) is a (possibly empty) concatenation of either con-
stant expressions or starred expressions (on L) defined below. Let b6 € ¥ and A = a5, a2, -, a
be a finite non-increasing sequence of ¥ of length k.



constant expression (b—A) = {z|b<zanda; £z forVi <k} ‘
starred expression (8 — A)* = {w=1wwy - w, € 5 | Vi(< n), (< k) s.t. w; £ ;)

Let s1, s3, 83, --- be a non-increasing sequence of elements of X*. We assign a set of
sequential r.e.’s ©; to each stage s;, and analyze how ©; is reduced to ©,,; at the next stage
si4+1 € 0 € ©;. The intuition behind is that U,ee,0 is a set of finite words not in the upward
closure of {sy,$2,-++,8;,-1}. The basic idea is that for a word not to be a superword of w, it
can contain only a proper subword of w. So what we do is write down sequential r.e.’s which
each accept classes of words containing different subwords of w. The following lemmas mean
that if we remove the sequential r.e. ¢ from E and replace it with the set ©(c,s), then the
resulting set of sequential r.e.’s includes all the finite words in Uy,e¢g o not containing s.

Definition 3.2  Let s € I*. We define s° = {z € Z* | s € z}.

Lemma 3.1 Let o C E* be a sequential r.e., and a finite word s € o. Then we can construct
a finite set of sequential r.e.’s ©(c,s) s.t. if z € 0 and s & = then there is a sequential r.e.
0 € ©(o,s) with z € 8. (See [13] for an actual construction of O(c, s).)

Lemma 3.2 Let S C ¥* and a finite set of sequential r.e.’s E s.t. for Vs € S thereis 0 € E
with s € 0. Then for any s, 0 s.t. s € 0.€ E we have Vs’ € § — s° o’ € (E — {0}) U O(0, s)
s.t. 8’ € ¢'.

Step 2: Well-founded ordering on a finite set of sequential r.e.’s

Definition 3.3  We define orderings on starred and constant r.e.’s as

starred r.e.  (E— A)* C. (- B)* & A Cseq B .
constant r.e. (a— A) Ceonst (b—B) © a=b A AT, B

Let Cemp = Cseq U Ty and let a multiset extension [1] of Teyp be Coeterp- We define an
ordering [C,. on sequential r.e’s as o T B & L+Jf~°=1{a;} Csetezp h‘Jf-=]{b,>}, where sequential
re’sa=ay---a; and § = by ---b. We also denote a multiset extension of C,. as Tietre-

Lemma 3.3 (1) Let o be a sequential r.e. and w € 0. Then, 8 C,. o for V0 € O(c, w).
(2) Let E be a set of sequential r.e’s and w € o € E. Then, (E — {0}) UO(0,w) Cretre E.

Theorem 3.1 - Let s = sy, 52,--- be a sequence of finite words in £*, and let E be a set of
sequential r.e.’s. Then, for any integer k£ > 1,

DY —(sfUsyU---Usp 1) CUsep 0 = T2k T <jst s KLs;

Note that T, Ceonsts Cexpr Csetezps re, and Csesre are well-founded. The proof of the theorem
is due to an induction wrt Cyere on E. Then, Higman’s lemma is directly proved as a corollary
of theorem 3.1 by setting E = {E£*} and k = 1. (Furthermore, by repeating similar techniques,
(X*,K) is shown to be a cwqo set [13].)



Miscellaneous: Finite sets on a wqo set

Next, we consider FP(L) which is a set of all finite sets of £. Assume X satisfy cwqo
assumptions same as Higman’s lemma. We define s; <., 53 for s1,5, € FP(X) when for each
T € s; there exists y € s, s.t. £ < y. Let us take the maximal elements as a representative of
an element in FP(Z)/ = for = = <, U 2,,. The similar and easier discussion to Higman’s
lemma is repeated. We will also denote s° = {z € FP(ZL) | s <m z}.

Definition 3.4 Let A = ay,a,, -+, a; be a finite non-increasing sequence of elements of X.
Abasere (onX)isSOA=FP({z €L |a; £ afori<k}). Wedefine SO A Chpose 26 B
if and only if A C,., B.

Let sy, So, 83, - - - be a non-increasing sequence of elements of FP(%). The intuition behind
is that U,eq,0 is a set of finite sets not in the upward closure of {s1,82,- -+, 8i—1}. The basic
idea is that for a finite set not to be a superset of s (which is a representative of FP(Z)/ =),
it cannot contain one of the elements in s. So what we do is write down base r.e.’s which each
accept classes of finite sets not containing different elements of s. The following lemmas mean
that if we remove the r.e. o from E and replace it with the set ®(c,s) (similar to ©(o,s) in
step 2), then the resulting set of r.e.’s includes all the finite sets in Uv,eg ¢ not containing s.

Lemma 3.4 Let ¢ be abase r.e. and let s € 0. Then we can construct a finite set of base
r.e.’s ®(o,s) s.t. if 2 € o0 and s £, = then there is a base r.e. § € (0, s) with z € 6.

Proof Let o = £ 6 A for a non-increasing sequence A = ay, ag,-- -, ax of elements of ¥ and
sa={c€s|a;%clorVi<k}. Since s € 0,54 # ¢. Then &(0,s) ={SO Alc| c€s4}. M

Lemma 3.5 Let $ C FP(X) and let E be a finite set of base r.e.’s s.t. for Vs € S there is
o € E withs € 0. Thenfor any s, o s.t. s € 0 € E wehaveVs' € §—s° 3o’ € (E—{0})U®(0,s)
s.t. s’ € o'

Since Cseq is well-founded, Cpase and its multiset extension are well-founded, too {1]. By the
same discussion for the constructive proof of Higman’s lemma, we obtain a constructive proof
of the wqo-property of (FP(X), <m). ‘

Lemma 3.6 If (5,<) is a cwqo set, (FP(E), <m) is a wqo set.

4 Disjunctive monadic query on indefinite database

The problem indicated in this section is given by R. van der Meyden [9]. His open problem is:
Let fir a disjunctive monadic query. There exists an algorithm answering to the query which
is linear to a size of indefinite database. Then, what is an actual algorithm ¢ He solved this
problem by a manual construction[10]. We will observe the same problem as an example of
an algorithm generation based on graph-minors. We obey definitions and notations to [9]. For
detailed descriptions and proofs, please refer [9].

Proper atoms are of the form P(a) where P is a predicate symbol and a is a tuple of constants
or variables. Order atoms are of the form « < v, where u and v are order constants or variables.




Indefinite database D is a set of ground atoms, where atoms are either proper atoms or order
atoms. Indefinite database D is a collection of facts on a linearly ordered domain, such as time.

A query is a positive existential first-order clause constructed from proper atoms and order
atoms using only 3, A, and V. A conjunctive query is a first-order clause constructed from
proper atoms and order atoms using only 3 and A. For simplicity, we assume queries are in
disjunctive normal forms.

Definition 4.1 A conjunctive query is sequential if its form is
ity-ty [ty <ty <o <ty A Uty by, t,)]
where U contains no quantification over order variables #;,15, -, t,.

We concentrate on monadic queries - queries in which each proper atom allows only monadic
predicate symbols. A predicate symbol is monadic if its arity is at most one. A class of monadic
queries is restrictive, but contains non-trivial problems, such as comparing two gene alignments
(regarding C, G, A, T as monadic predicates) [9].

Let Pred be a set of monadic predicates, and let ¥ = P(Pred) be the power set of Pred.
The set £~ is the set of all finite words of symbols in £. Without loss of generality, we can
assume that a monadic query does not contain constants and indefinite database is monadic
(i.e., each proper atom in database is monadic). Then, up to variable-renaming sequential
monadic queries have an one-to-one correspondence to words in £* by regarding a set of monadic
predicate symbols which hold at ¢; as an order variable ¢; in an order atom. For instance,
3tatats [P(t1) A Q(t1) A P(t2) A R(t3) A t; <ty < t3) corresponds to {P, QHPHR}. I Visa
conjunctive monadic query a path in ¥ is a maximal sequential subquery of ¥. In other words,
a path is the maximal words in ¥ in the above representation. We write Paths(¥) for the
subset of £* corresponding to paths of ¥.

Lemma 4.1 Let D be a monadic database and ¥ be a conjunctive monadic query. Then,
D |= ¥ if and only if D |= p for every path p € Paths(¥).

Let P, Py,---, P, be either proper or order atoms. Regarding a monadic database D =
{P1, P,---, P} as a conjunctive monadic formula P, A Py A --- A P,, paths of database are
similarly defined. We denote a set of paths of D as Paths(D). Note that detecting a path in
monadic database is a kind of sorting, thus its complexity is linear to the size of database.

Lemma 4.2  Let p be a sequential query, and p < ¢ is a subword relation constructed from
a set inclusion on X. Then D |= p if and only if there exists a path ¢ € Paths(D) s.t. p < q.

Since T is finite, the set-inclusion C in £ = P(Pred) is a wqo. (£*, <) is also a cwqo set
by Higman’s lemma and (FP(X*), <) is also a cwqo set by lemma 3.6 Two monadic database

Dy and D, are Dy C D, if and only if Paths(D;) <., Paths(D,).

Theorem 4.1  For any disjunctive monadic query ¥, if Dy = ¥ and Dy € D, then D, = 0.



This theorem is deduced from lemmas above and consideration on models of indefinite
database. Higman’s lemma shows an existence of an algorithm for a fixed disjunctive monadic
query processing on indefinite database which is linear to the size on database. Note that a
disjunctive query pV ¢ may be D |= pV g although neither D |= pnor D = ¢ (where p and ¢ are
conjunctive queries) [9], though for each model & of D, either a |= p or a |= ¢. For instance,
let D = {p(a),q(b),a < b,q(c),r(d),c < d,r(e),p(f),e < f}, P = Fzyz[p(zx) A q(y) Ar(z) A & <
y < 2], Q@ = Jzyzlg(z) Ar(y)Ap(2) A = <y < z],and R = Jzyz[r(z)Ap(y) Ag(z)A z <y < z].
Then D k= PV Q V R but neither D = P nor D |= Q nor D |= R. :

5 Algorithm generation based on graph-minors

Let (2, <) be a wqo set. A property P on (I, <) is minor-closed if P(z) implies P(y) for all
y € ©st. z <y. If Pis minor-closed then P has the set of minimal elements in ¥ which
satisfy P. Since ¥ is a wqo set, such minimal elements are finite - if there are infinite minimal
elements, regarding them as an infinite sequence this contradicts to the definition of wqo and
their minimality. These elements are called forbidden minors.

For simplicity, we consider an automatic linear-time algorithm generation based on Higman’s
lemma. Murthy-Russel’s constructive proof [13] gives insight to an actual algorithm detecting
forbidden-minors under Curry-Howard isomorphism. Let (£, <) be a cwqo set. Then a set
of finite words (£*, <) on ¥ is a wqo set. Consider a minor-closed property P on (I*,X).
We assume ¥ is a recursively enumerable set. (Then Z* is so. i.e., there exists a recursive
function f : N'— £* s.t. Vz € £ 3n [f(n) = z]). Since the wqo property of < implies that
forbidden-minors for P is finite, if we have subroutines

e P-test(w): For Yw € £*, a judgment whether P(w) holds.

e Min-test(w): For Vw € T* s.t. P(w) holds, a judgment whether w is the minimal
“element wrt <. (i.e., p(w) does not hold for Vz < w).

e Fin-test(FM): For all finite subset FM of forbidden-minors, a judgment whether dz €
Y — Uymern m° s.b. P(z).

the algorithm below to detect forbidden minors with an enumerating function f N - T
always terminates.

FM:={}, n=1
do until Fin-test(FM) '
if P-test(f(n)) and Min-test(f(n)) then add £(n) to FM
n:=n+1 ' '
od

Proposition If the following conditions are satisfied, an algorithm to detect forbidden-minors
for the minor-closed property P on £* is constructed.

1. ¥ is finite. (Thus a quasi order < is a cwqo.)
2. For Vw € T*, a judgment whether P(w) holds is decidable.
3. For all sequential r.e. o, a judgment whether Jw € o s.t. P(w) is decidable.




Assumption 1 implies the constructions of £ and Min-test. Assumption 2 gives P-test.
Lemma 3.5 shows that for any F'M there exists a set of sequential r.e.’s E s.t. & —Uymepy m°® =
Uvoer o (regarding FM as a non-increasing finite sequence). Thus Fin-test is reduced to
Vvoer [3x € o P(x)] which is a collection of assumption 3.

Example: a disjunctive monadic query on indefinite database

We fix a disjunctive monadic query @ = @,V Q2 V --- V Q, where Q;’s for Vi(< n) are
conjunctive components (i.e., conjunctive monadic queries.) Let Pred be a set of monadic
predicate symbols appears in @ and let us set & = P(Pred). We use a symbol D for indefinite
database as default and let Mg be a set of forbidden-minors for the property D = Q.

The idea is basically same to those in the proposition except that the wqo property of <,,
on FP(X*) is obtained by two steps : the first by Higman’s lemma and the second by lemma
3.6. Let {my,my,---,m;} be a finite subset of Mg. Lemma 3.5 shows that there exists a
finite set E of base r.e.’s s.t. FP(X*) —miUm3U---Umf = Uyseg FP(c). Lemma 3.2 show
that for all base r.e. o there exists a finite set F, of sequential r.e.’s s.t. ¢ = Uwser, 8. Thus
FP(E*) =miUm§U---Um} = Uyseg FP(0) = Uvoer FP(Uwser, 0).

Since ¥ is finite, an enumeration function £ and subroutines Min-test are constructed.
P-test is also decidable. The difficult one is Fin-test. Fin-test is reduced to a collection
of simpler subproblems. That is, the judgment (FP(Z*) —m}UmSU---Umd) N Mg # ¢ is
reduced to the judgment 3o € E s.t. FP(o) N Mg # ¢, and further reduced to the judgment
in terms of § € F,. An actual form of Fin-test is given in theorem 5.1. We first prepare
several abbreviate notations.

Definition 5.1  Let ¢,¢1,¢5,---,¢, € & and let Cy,Cy,-++,C) € FP(X). Then
[C.---C] = /\vwc;eé.- [er---¢]
[e1 -+ a] Jzy -z () A Ap(@) A T << 1)
where p;(z) = Ape,, p(z;) for.i < 1. We also denote
PS(cA-ciA---A-e)={z € FP(E)|cCz A€z A - A gz}

Definition 5.2  Let A = ay,aq,- -, ax be a finite non-increasing sequence of £ and let b € 2.
Let (b— A) be a constant expression, let (¥ — A)* be a starred expression, and let § = 0,0, - -- §,
be a sequential r.e. where 0;’s are either constant or stared r.e.’s. We set A(Q) as the sum of
lengths of all paths of all conjunctive components of ). We define a function ¥ as

P((b—A)) = PS(A-a; A-agA--A-ay)
¢((E - A)*) = 'PS(‘H‘L] A—-ag A--- A —vak)
(0, n) = [¥(6)™ - %(6)™]

where for Vi <1 a; =1 if 6; is a constant expression and o; = n if ; is a starred expression.

Lemma 5.1 (1) Let & be a sequential r.e. on . Then Vi € 0 3n s.t. w < w' for some
path w’ € Paths(¥(6,n)). 7

(2) Let 8 be a sequential r.e. on T. Then VS C FP(#) In s.t. S <, Paths(¥(8,n)).

(3) Let o be a base r.e. on L. Then VT € FP(0) 3n s.t. T <,, Paths(Awer, ¥(4,n)).

Lemma 5.2 Let @ be a disjunctive monadic query and let F be a finite set of sequential
r.e.’s. Then for Vn > A(Q), Aser ¥(0,A(Q)) k= Q if and only if Ager ¥(6,n) = Q.



Proof Since each model of Q) relates to at most A(S) points on a linearly ordered domain, for
detecting the validity of @, the n-times repetition of a starred r.e. in each § € E is equivalent
to the A(Q)-times repetition. |

Theorem 5.1 Let E be a finite set of base r.e.’s and let F, be a finite set of sequential r.e.
foroc € Est. FP(E*) —mSUm$U---Um = Uvseg FP(0) = Uvoee FP(Uwser, ). Then,
3D € FP(S*) —miUmU---Um [D k= Q) if and only if 3o € E [Aser, ¥(0,A(Q)) = Q-

6 Conclusion

This paper discussed an automatic generation of a linear-time algorithm based on Murthy-
Russel’s constructive proof of Higman’s lemma. The example is a monadic disjunctive query
processing on indefinite database (indicated in [9]). Its forbidden-minors is shown to be au-
tomatically detected. This is only the first step of research on this field - there remain many
problems. For instance,

o Current relation between a constructive proof and automatic generation is not so clear.
A suitable logical system and more direct generator extraction method are required.

e The current automatic generation technique is very inefficient. A smarter method and an
optimization technique are required from practical viewpoint.

e Currently we apply only Higman’s lemma, etc. A generalization to a more complex
structure is desired. For instance, a constructive proof of Kruskal’s theorem has been
given [5].

We hope Wagner’s conjecture to have a constructive proof, and hope that it enables us to
develop an algorithm generation on general finite graphs.
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