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Abstract

We start from the Cardelli's work on multiple inheritances and point out
that his modeling of data types fails to treat algebraic structures with
a concrete example. Then we propose the notion of algebraic types by
enriching the record type system with inequations and the notion of al-
gebraic inheritances, extension of the multiple inheritances & la Cardelli
by incorporating the richness of structures, and show our type system is
a conservative extension of Cardelli’s one by purely syntactical way. Next
we give a denotational semantics of our type system on the basis of the
complete partial equivalence relation model on a cpo and show that our
type system is sound with respect to this semantics.
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1. Introduction

There are essentially two approaches to formal modeling of abstract data types (ADTs): one is from logic
using typed A-calculi; the other is from algebra using first-order equational logic.

An ADT hides two kinds of information; one is the type of the representation of the data structure to
be abstracted by that ADT, the representation type; the other is a suite of implementations of associated
operations with that ADT well-typed with respect to the representation type chosen for that ADT, and we
call the suite of types of associated operations for an ADT its implementation type.

The logical approach uses record types as the basic tool for modeling ADTs. The correspondences
between ADTs and record types are summarized as:

implementation type
assoctated operator symbol
suite of associated operations
associated operation
inheritance relation

record type

record field label

record value

value bound to a record field label
subtype relation on record types

As Reynolds has pointed out in [Reynolds 85], algebras corresponding to record types are only anarchic
ones ignoring algebraic structures of ADTs. In this paper we approach from the logical side and propose a
type system incorporating inequations as assertions with the record type calculus & la Cardelli [Cardelli 84]
corresponding to non-anarchic algebra-like structures, hence we call the latter algebraic types. Note that
due to the limitation of the space, we omit all proofs in this extended abstract.

2. The Cardelli’s Approach and Its Problem
The syntax of Cardelli’s mini-language, pFun, is given in Fig. 1.

e € Exp The set of expressions:

en=zx (ordinary) variables,
| € constants,
| Az:o.e abstractions,
| ere2 applications,
| {i=et.eerin=en} record expressions (n > 0),
| el field selections,
| [t=¢€} tagging expressions,
| caseeof !y theney,...,l, thene, tag-case expressions (n > 0),
| fix(e) recursions by fixed-points.

o,7 € Type The set of types:

o= basic types,
| o1 — o2 functional types,
| {liro1,.. .y lnion} record types (n > 0),
| Thioy, . lnton] variant types (n > 0).

Note: We leave details of the following syntactic categories unspecified:

z € Var The set of variables;
¢ € Const The set of constant symbols;
| € Label The set of record field labels and variant tags;

. € BaseType The finite set of base types (in Section 5 we assume BaseType = {Bool, Nat}).

Figure 1. Syntax of pFun.




The judgment of the subtype relation is

and the relation is defined by:
{BASE} t<¢

0y 02 o3 <03
o1 <03

{TRANS}

d<o 17

ARROW
{ } o1 <o -7

{RECORD) o S Ty «+. On S Tn
{lizog, - lniOn, o laimi Ongm ) < {11, It}

(VARIANT} 01 <71 ... 0n &Tn
[hion,... dnion] < [lim,. ol Ty o lngm Tngm)

Figure 2. The Subtyping Axioms and the Rules of puFun.
[VAR} T[z:0o] b z:0

[CONST] T b ¢5: 44

I'be:o
WeAKl Fe s ero (= £ FV(e))
>e:o c<o
[SUBTYPE] To e o
. o
(ABS] lz:o]pe:o

T'p (Azic.e):0—0o’

I'beio'—o 'peée:o
I'p (ee'): o

[APPL)

RECORD Tbe:oy ... benion
[ ] o {li=é1--rln=ep}: {l1i01,...,ln10n}

Lo e:{lizoy,...,lnion} .
: ' <1<
[SELECT] el (1<i<n)
[ I t% [l=¢]:[lo]
CASE Coe:fliion... laoy] I'be:oy—o...Cbe,iop—o
[ ] I' > (caseeof [y theney,...,l, thene,): o

FIX] I'beio—o
[ ]I‘Dﬁx(e):a'

Figure 3. The Typing Axioms and Rules of pFun.

The judgment of typing in pFun is of the form:

'be:o

where I is a context, i.e. a finite map from variables to types. We introduce notations for contexts:



Notation 1.
(1) () denotes the empty context.

(2) Let T be a context, = be a variable, and o be a type. Then I'[z : o] is the context deﬁned by the
following finite map, IV, such that for any variable y,

vy _ f o, (ifx=y)
T'ly) = {I‘(y). (otherwise)
(3) The notation, dom(T"), denotes the set of variables on which the context I' is defined.
The typing axioms and rules of uFun are given in Fig. 3. where FV(e) denotes the set of free variables in e.

Now we give a concrete example of the problem in Cardelli’s modeling of multiple inheritances on ADTs.
To display examples compactly, we informally use Standard ML like syntax [MTH 90] for global definitions.

Example. Stack (of natural numbers) has as its equipped operations such as: new to create a empty stack,
isnew to check a stack of its emptiness, push to add some number to a stack, top to see the the top (=
lastly pushed) element, pop to remove the top element from a stack. Suppose we have List as a standard
type constructor, and Nat and Bool as base types in uFun, and we select the list of natural numbers as the
representation type for the ADT Stack, i.e.

type StackValRep = List[Nat];
Then we can define the implementation type of Stack as follows:
type StackOpImpl = {new: StackValRep,
isnew: StackValRep — Bool,
push: Nat — StackValRep — StackValRep,
top: StackValRep — Nat,
pop: StackValRep — StackValRep};

Now we can give a suite. of implementations of equipped operations of the type Stack as a record
expression as follows.

val aStackOpImpl = {new = nil,
isnew = As: StackValRep. zsnull(s)
push = Ai: Nat.As: StackValRep.cons(i).(s),
pop = As: StackValRep.tail(s),
top = As: StackValRep.head(s)};
This behaves in the last-in first-out manner as expected for stacks. E.g. the expression
aStackOpImpl.top(
aStackOpImpl.pop(aStackOpImpl.push{2)(aStackOpImpl.push(1){aStackOpImpl.new))))
yields 1. On the other hand, with the following suite of impleméntations

val anotherStackOpImpl = {new = nil,
isnew = As: StackValRep.isnull(s),
push = Xi: Nat.\s: StackValRep. cons(i)(s),
pop = fix(Ap: StackValRep — StackValRep.)s: StackValRep.
if length(s) <1 then nil else cons(head(s))(p(tail(s)))),
top = fix(At: StackValRep — Nut.As: StackValRep.
if length(s) <1 then head(s) else t(tail(s)))};

where length is the usual length function on lists, the value of the expression
anotherStackOpImpl.top(anotherStackOpImpl.pop( :
anotherStackOpImpl.push(2)(anotherStackOpImpl.push(1)(anotherStackOpImpl.new))))

is 2, since the anotherStackOpImpl acts in the first-in first-out fashion. In fact anotherStackOpImpl is a
suite of implementation adequate for queues rather than for stacks but still has the type StackOpImpl.

From this example, we can see that Cardelli’s modeling cannot distinguish between behaviors of stacks
and of queues, and treats identically stacks and queues having the same type. This limitation is the problem
this work attempts to solve.



3. Algebraic Types and Algebraic Inheritances

In the last section, we saw that record types cannot capture all of the aspects of the implementation types of
abstract data types. In order to overcome this difficulty we extend the type system of uFun with inequational
assertions for record types and construct a new language pFinal (uFun-with Inheritances between Algebraic
types). We call such augmented record types as algebraic types from an analogy to algebras with equational
specifications.

The syntax of pFinal is an extension of that of gFun with following production rules.

e € Exp The set of expressions:
en=r implementation variables.
o,7 € Type ] The set of types:
o= prit{d1,..., 0k} algebraic types (7 is a record type, k > 0).
¢,% € Assertion The set of assertions:
pi=e  Ker:q : ) atomic assertions,
| forall z:0.¢ quantified assertions.

Note: We leave details of the following syntactic category unspecified:
r € IVar The set of implementation variables.

Figure 4. The Characteristic Syntax Rules of uFinal.‘

Before stating syntactical constraints to pFinal, we need a definition, which is analogous to the notion of
active subexpression in [Plotkin 77].
Definition 2. Let e, ¢’ be expressions of uFinal. Then €' strictly occurs in e iff one of the following
conditions holds: '

(1) e=zand ¢’ = z,

(2) e=randée =r,

(3) e= €".l and ¢’ strictly occurs in e”,

(4) e= e"e'” and ¢’ strictly occurs in e”, :

(5) e=casee” l; thene;,...,l, then e, and ¢’ strictly occurs in e”,

(6) e = fix(e”) and €’ strictly occurs in e”.
Then the syntactical constraints to pFinal is:

(a) each assertion of an algebraic type must be closed by forall quantification except for free occurrences

of the implementation variable bound by the algebraic type containing that assertion;

(b) the implementation variable of an algebraic type must strictly occur in the left-hand expression of
each assertion of the algebraic type.

Notation 3. We identify each record type with an algebraic type with null assertion, i.e.
{lizo1, ..y lnion} = pr: {lion, .., lnton }{}
and we sometimes write algebraic types in more intuitive form, i.e.
orfliion, .. hhion | 1, ..., Pk} sbhrev pri{lizon, ..., lnton} o1, ..., ¥k}
We often abbreviate symmetrical pair of inequations as an equation, e.g.
forall z;:0y.- - .forall z,:op.e =€ : 7 abbrev
forall ;0. --- forall zp:on.e < € i 7, forall z1:0y.-- - .forall zp:on.e’ < e: T

Moreover we will omit implementation variables in assertions and write [ for r.I when there is no danger of
confusion.



For the type system of puFinal, we introduce a first-order theory of pFinal.

Definition 4.

(1) wFINAL is the first-order theory with axioms and rules which will be described in this section and
with the following three forms of judgments as sentences:

e o < 7 for subtyping,
o I'A b e:o for typing,
e I'; A b ¢ for assertions,

where A is a context for implementation variables. The deducibility in uFINAL is shown by FuFINAL.
(2) For the type system of uFun, uFUN is defined in the same way, and |- wFUN denotes its deducibility.
Note: We usually omit the subscripts and simply write |- when there is no danger of confusions.

First we define the subtype relation on yFinal. The {RECORD} rule of uFun is generalized to handle
assertions.

k !
A, ¢ :0) > difryi=r]) Fueman A0, r:7) > 95l i=7])  o1<m .. onsTM

i=1 i=1

{ALGEBRA} (m 20)

prii {11:0'1,.. ~:ln+m:an+m‘}-{¢1: . "¢k} ..<_ pra: {llz‘rll ---;ln:Tn}-{¢1|.~ -:11’!} -
where

/\(() (r:o) > gifr1:=r]) uriNaL /\ Oi(rim) > ¢j[r2 :=1r]) is a short-hand notation
i=1 J=1

meaning that for each 1 <j<l,
Moy o drfrii=r],...,0,(r:0) > $efr1:=71] F‘pF{NAL Qilr:7) > Pylra:=r];
r is a fresh implementation variable;
o={lio1,...,lntm! Onim};
r={n,..., i}

Figure 5. The Characteristic Subtyping Rule of pFinal.

Intuitively speaking, this {ALGEBRA} rule states that if an algebraic type is a subtype of another one in
the sense of record types (i.e. ¢ < 7) and the set of assertions of the former, {¢1,..., #x}, is stronger than
that of the latter, {+,...,4}, then the former type is a subtype of the latter one as algebraic types.

For typing in uFinal, we replace each judgment of the form I" > e: ¢ in the typing axioms and rules of
uFun by one of the form I', A > e: o augmented w:th a context for implementation variables, Furthermore,
we have to add an axiom and two rules:

[IVAR] T,Afr:7) > r:7
''Abve:o

[IWEAK] m (r ¢FV(e)

LA e:pr:{ll:al,...,l,.:cr,,}.{tﬁl,...,qbk} LA D dryafri=¢]
LLAb e:pri{lyion... . lnion} {1, ..., dkt1}

Figure 6. The Characteristic Typing Axiom and the Rules of pyFinal.

[EXTEND]

The [EXTEND] rule means intuitively that if the expression e satisfies the assertion ¢y..; then we can add
this assertion to the algebraic type of e.

Finally we must give the rules for inferring assertions. These rules are shown in Fig. 7. Note that each
of the rules, (Bunc), {Brecord), {Bvariant) and (Bax), whose conclusion is an equational form actually denotes a
pair of rules by the notational convention as stated before, and the meaning of each rule is apparent except
for (ASSERT). This rule states that if an expression, e, has an algebraic type with assertions, ¢1,..., ¢x,
in which the representation variable, r, denotes e, then we can use an instance of each assertion, ¢;, by
substituting that expression, e, for r.




(VAR) Tz:0],Apz<gz:0
(VAR) T, Afr:7]prgr:r

(CONST) TI,A b cj <6ty

INAve<e:o I''Abe<ges:o

TRANS
( ) I'N'Apbe<es:o

LAveKe:o

WEAK
¢ )I“[x‘:a’),A>elgeg:a

(z € FV(e1) UFV(ey))

INApve <e:o

(IWEAK), LA[r:1] b e1<er:o

(r ¢ FV(e1) UFV(ez))
I'Apbe<e:o0 o<o
F,A 4 31<62:a’
I''A o forall z:0.9 T,Abpe:o
LA b ¢z i=¢

I"[I : U], Ap ¢
(forall-T) T,A v forallz:0.¢

(SUBTYPE)

{forall-E)

(z ¢ dom(T))

Fz:ol,Abe:o’” T,Abeé:o

(ﬁfunc) F,A > (,\z:o..e)cl — e[x = e'] :a'l

Tlz:o],Abege 0

(ABS) LA b (Az:0.e) < (Mzioe) 10— 0’

IAbegej:o'w0 T,Apbe;<eh:o
[LA o (e1e2) < (eleh) i o

T'Abeioy...TA b e,:0, .
<1<
Brecord) Ab {li=e,....ln=en}li=¢;:0y (Igi<n)

(APPL)

(RECORD) T'Abegeliop...T,Ap e, <€ 10

n

LAb {hi=ep,....ln=es}<{li=¢,....ln=e}}: {litor,...,In:0n}
ILAvege : {lizor,...,lnion}

SELECT) = K> ek = ' s 1 o (1sisn)
A »> e:pr:{ll:al,...,in:an}.{¢1,...,¢k} .
(ASSERT) T,A > gifrime] 1<i<gk)

INAve:o; i‘,ADclzal—»a'...I‘,ADe,‘:an-—»a’ .
(Brainar) T,A o (case [l; = €] of |; theney,...,I, thene,) = (e:e) : o (l_z_n)v

ILApvege:o

VARIANT
¢ "TAS l=q<li=] (L]
(CASE) PLAvege  [liiog,...,li0q) [Abe gejiay—o ...IAb e, K€l 10, —0
I'A b (caseeof [, thene,,...,l, thene,) < (case ¢’ of |; thenel,...,l, thene,): o

ILAbve:o—o
) TR v fix(e) = e(Bx(e)) - o

I''Abegeione

el
FIX) I'A b fix(e) < fix(e') : o

Figure 7. The Axioms and the Rules for Assertions of uFinal.



We end this section by giving an example of algebraic inheritances. We can define the implementation
type of in the last section as an algebraic type.

type StackOpImpl = paStackOpImpl.{new: StackValRep,
isnew: StackValRep — Bool,
push: Nat — StackValRep — StackValRep,
top: StackValRep — Nat,
pop: StackValRep — StackValRep
(*push-pop*) | forall i: Nat.forall s: StackValRep.
: pop(push(i)(s)) < s : StackValRep,
forall i: Nat.forall s: StackValRep.top(push(i)(s)) < i : Nat,
forall i: Nat.forall s: StackValRep.isnew(push(i)(s)) < false : Bool,
isnew(new) < true : Bool};

Now consider another type Stackoid OpImpl:

type StackoidOplmpl = paStackoidOpImpl.{new: Stack VdlRep,

isnew: StackValRep — Bool,

push: Nat — StackValRep — StackValRep,

top: StackValRep — Nat,

pop: StackValRep — StackVealRep

(*push?-pop?*) | forall :: Nat.forall j: Nat.forall s: StackValRep.

pop(pop(push(1)(push(§)(s)))) < s : StackValRep,

forall i: Nat .forall s: StackValRep.top(push(:)(s)) < i : Nat,

forall i: Nat.forall s: Stack ValRep.
isnew(push(i)(s)) < false : Bool,

isnew(new) < true : Bool};

Clearly the assertion (*push-pop*) in StackOpImpl is stronger than (*push?-pop?*) in StackoidOpImpl,
hence any stack can be used as a stackoid. Therefore StackOpImpl inherits the structure of StackoidOpImpl,
and this fact is expressed in pFinal as the subtype relationship StackOpImpl < Stackoid OpImpl.

Now we show the definition of the type QueueOpImpl with the same signature of StackOpImpl for
comparison: .

type QueueOpImpl = paQueueOpImpl.{new: StackVealRep,
isnew: StackValRep — Bool,
push: Nat — StackValRep — StackValRep,
top: StackValRep — Nat,
pop: StackValRep — StackValRep
| forall i: Nat.forall s: StackValRep.
pop(push(i)(s)) < if isnew(s) then s
else push(i)(pop(s)) : StackValRep,
forall i: Nat.forall s: StackValRep.
top(push(i)(s)) < if isnew(s) then i else top(s) : Nat,
forall i: Nat.forall s: StackValRep.isnew(push(i)(s)) < false : Bool,

isnew({new) < true : Bool};

Then clearly StackOpImpl £ QueueOpImpl and QueueOpImpl £ StackOpImpl. Moreover, for aStackOpImpl
and anotherStackOpImpl in Section 2, we can show |,riNaAL (), () © aStackOpImpl : StackOpImpl and
Furmvar (0, () & anotherStackOpImpl : QueueOpImpl as we have pointed out in Section 2 (here we assume
assertions on list operations are given).



4. Proof Theoretical Investigations of Algebraic Types

In this section we investigate the proof theoretical properties of the type system puFINAL. Especially we
show the system is a conservative extension of uFUN.

First, we define classes of types, expressions, contexts and sentences of uFinal having correspondences
in pFun. :

Definition 5.
(1) A type, o, of pFinal is said to be assertion-free iff one of the following condition holds:

(a) o=y

(b) o =01 — o9, where each o; (i=1,2) is assertlon-free

(¢) o={li:01,...,ln10,}, where each o; (1 <i<n)is assertion-free}
(d) o =[loy,..., l,.:a,,], where each g; (1 <1 < n) is assertion-free.

(2) An expression, e, of uFinal is said to be assertion-free iff both of the following conditions hold:
(a) e does not contain any implementation variable,
(b) each M-abstraction occurring in e binds a variable with an assertion-free type.

(3) A context, T', is assertion-free iff I' assigns assertion-free types to each variable.

(4) A sentence, £, of uFINAL is assertion-free iff X has either one of the following forms:
(a) T=T,{) > e: 0, where I, e and o are assertion-free, respectively;
"(b) ¥ =0 <, where o and T are assertion-free.

For each assertion-free sentence of pFinal, we define the correspoxjdence in pFun.

Definition 6. Let ¥ be an assertion-free sentence of uFINAL. Then define its corresponding sentence in
#FUN (notation: pFUN(Z)) as follows:
(1) whenZ =TI, b e:0, yFUN(E)=T b ¢:0;
(2) whenE =0 <7, yFUNZ) =2
Next we define a function which removes all assertions from types.
Definition 7. The function aet : Type — Type is defined such that
(1) aet(s) =¢,
(2) aet(o — 7) = aet(c) — aet(r), o
(3) aet({li:a1,...,lnion}) = {l1: aet(ay), .. aet(aﬂ)},
(4) aet([liz o1, ..., ln10n]) = [l;: aet(oy), .. ‘l aet(o,,)]
(5) aet(pr:7.{d1,..., de}) = aet(r).
This aet is extended on Exp, Assertion, contexts and sentences of LFINAL in the obvious way.
Finally we can show the desired result.

Theorem 8. If an assertion-free sentence L is provable in uFINAL, then there is a proof of T with only
assertion-free sentences. I

As stated before, any assertion-free sentence L of uFINAL corresponds to some sentence of uFUN.
Corollary 9 Conservative Extension Theorem. The theory uFINAL is a conservative extension of

uFUN. That is, for any assertion-free sentence ¥ of pFINAL,

"‘nFINAL Y = I—uFUN ;LFUN(E). |

The type system of uFinal is clearly undecidable since it has power to specify a kind of partial correctness
of functional programs. But the system restores decidability by forgetting all assertions, hence our system
MFINAL can be viewed as a type system for specification/verification while uFUN is its decidable subsystem
for compile-time type-checking. Then the following theorem states that “all correct programs pass compilers.”

Theorem 10.. For any T, 4, o, and any e without implementation variables,

l_uFINAL F,A be:o e }"uFUN aet(l‘) > aet(e) . aet(a).. I



5. Semantics of Algebraic Types and Algebraic Inheritances

We first give a semantics of expressions using the erasure interpretation. The semantic domain D for the
interpretation is the complete partially ordered set (cpo) satisfying the following domain equation (we can
find such D in the universal domain T “ by the well known techniques [Plotkin 78] after appropriate
encoding of truth values, natural numbers and labels/tags, and we usually omit the isomorphisms between
D and the right-hand sum cpo). For details on cpos we follow [Plotkin 83] and [Barendregt 81).

vED=A A ®FO R UBW
where
e Ag=T, and A; =N,
f € F=[D— Djis for function values;

L]

L]

q € R = [Label; — D] is for record values;

u € U = [Label; x D] is for variant (tagged union) values;
o« WE {7}, and wrong &f inw(?) representing run-time type errors;

We also need a few auxiliary domains for environments:

e € Env = EEnv x IEnv the domain of environments;
¢€ EEnv=Var; -, D the domain of valuations for ordinary variables;
£elEnv=IVar; —, D the domain of valuations for implementation variables.

The semantic equations for expressions are shown in Fig. 8 (here we assume a semantic function X; for each
base type ; for the interpretations of its constants). .

€ : Exp — (Env — D)

Elz)e = let (¢, &) = € in ([z] end;
Elr)e = let {(,£) = € in £[r] end;
Elaijle = ina, (Kifes]);
E[rz:0.€]e = let ((,£) =€ in inp(Av € D.E[e]({[z — v}, £)) end;
Elee'Je = if isp(E]e]e) then outr(Efe)e)(E]e']e) else wrong;
Ef{li =e1,...,ln = ex}]e = ing (Al € Label . .if | = I, then £[e;]e

elseif ...
elseif | =1, then Efe,]e
else wrong);

Efe.l]e = if isp(E]ele) then outr(E[efe)(l) else wrong;
E[{l = e]Je = iny (I, E]e]e);
E[case e of Iy then ey, ..., I, then ey]e = if isy(Efele) then
let (I,v) = outy(E[e]e) in
if l =1, then
if isp(E[e1]e) then outg(E]e Je)(v) else wrong
elseif ...
elseif | = |, then
if isp(Een]e) then outp(Een]e)(v) else wrong
else wrong
end
else wrong;

E[fix(e)]e = if isp(Ee]e) then let f = outp(Efe]e) in Uf“(J;D) end
else wrong. "

Figure 8. The Semantic Equations for Expressions of uFinal.




Next we give a semantics for types based on a kind of partial equivalence models.

Definition 11. Let X be a set.
(1) A partial equivalence relation (per for short) on X is a symmetric and transitive binary relation on

(2) Let P be a per on X. Then define the domain of P (notation: |P|) by:
P {ve X | (v,v) € P}.
(3) Let P and Q be pers on X. Then define the function space per, P — @, by:

(L) eP-Q &L vy, o' € X.[(v,v') € P= (f(v),3(v)) € Q).
(4) Let P and Q be pers on X. Then define the product per, P x Q, by:

(v, w), W', w')) e PxQ €5 (v,') € Pand (w,v') € Q.

(5) Let P be a per on X and z € |P|. Then define
[zlp & {y € X | (z,9) € P}.
(6) Let P be a per on X and S C X. Then define the restriction of P on S (notation: P[S) by:
P[S% {(u,v) e P|ue Sandve S}.

In order to interpref types as pers on D, we require the domain of each per corresponding to a type to
be a sub-cpo of D. .

Definition 12.

(1) Let P be a per on the cpo D. Then P is complete iff P satisfies both of the following conditions:
(a) {4p,Lp) € P;

(b) P is closed under lubs of w-chains, i.e.
View(u,w)eR = ([ Ju,|]w)eP.
. 1€w i€w
(2) CPER denotes the collection of complete pers (cpers for short) on D.

It is easily shown that (CPER,C) is a complete lattice, hence closed under arbitrary intersections and
unions.

The semantic equations for types are as follows:

T : Type —» CPER

T[Bool}] = {{d,d) |[de B_};
T[nt] = {(d,d) [d e N_};
Tloy — 2] = Te1] — Tlo2];

Tl{lion.. .. lnioa}l = [{(0.4) | 9.4’ € R and (q(L:), ¢ (1)) € T[]}

i=1
Tﬂ[ll:alv ey ln:anm = U{((lisv>) <li1vl)) I (lil v)l (li) 1)’) € U and (’Uy ’U’) € Tl[azn}

i=1
Tler:7{é1,...,0x}] =let R=T[r]
k
and S = {ve D | A Alg;l{LeEav, [r — o))}
J=1

in R[S end.

Figure 9. The Semantic Equations for Types of uFinal.



We interpret each assertion as an element of non-pointed T, since an assertion must be always either true
or false even if evaluation of expressions contained in it would not terminate.

A: Assertion — (Env — T')

Aller < eg 1 o]e = (Efe1]e C Efex]e);
Alforall z:0.¢]e = let ((,£) = ¢ inVv € |T[o]|. Al¢]{{[z — v],£) end.

Figure 10. The Semantic Equations for Assertions of puFinal.

We must check the well-definedness of the semantic function 7. For this purpose we need a lemma and
the proof shows the reason why we have imposed the syntactical constraint (a) to uFinal in Section 3.

Theorem 13 Well-definedness of 7. T is well-defined. That is, for each T € Type,
(1) T[r] € CPER,;
(2) (wrong, wrong) € T[r].

We now turn to the soundness of our type theory uFINAL with respect to this semantics.
Definition 14. An environment € = ({, u) is said to respect contezis T', A (notation: & = T',A) iff it
satisfies both of the following two conditions: '
. (1) ¢ =T, i.e. for any variable z € dom(T*), {[z] € |T[['(z)]};
(2) €= A, i.e. for any implementation variable r € dom(A), £[r] € [T[A()]I.
Finally, we show that the theory uFINAL is sound with respect to this semantics. First, we give some
definitions and a lemma. - : . :
Definition 15.
(1) Let £ be a sentence of uFINAL. Then X is satisfied under an environment:e = ({, ) (notation:
€ |= T) iff either one of the following cases holds:
(a) when X =0 <1,
Tl < T
(b) whenEZ=T,Ap e:o0, : :
, eE=TA = E&lefee|To]l;
(c) whenEZ =T,A b ¢,
eE=T,A =  Af¢le = true.
(2) Let T be a sentence of uFINAL. Then I is velid (notation: = L) iff ¢ |= X for any environment
€ € Env.
Now we can state and prove the soundness theorem for uFINAL.
Theorem 16 Soundness Theorem. The theory pFINAL is sound with respect to this semantics; i.e.
for any sentence ¥ of uFINAL )
Y = z. 1

This soundness theorem is usually presented in forms for special cases (cf. [Cardelli 84]).

Corollary 17 Semantical Soundness Theorem. If an ezpression is syntactically typablé, then it does
not cause any run-time type error. That is

FT,Abeioc = VelET, AlElelece |Tlo]l.
In other words, .
FT,Abe:o = VelT,Alf]e]e# wrong]. 1

Corollary 18 Semantical Subtyping Theorem. Let o and 7 be types of uFinal. Then
TllcT[]. 1




6. Discussions, Conclusion and Directions of Future Research

The motivation of our work originates from International Workshop of Semantics of Data Types. Foreword
of the proceedings [KMP 84] states that “The Symposium was intended to bring these somewhat disparate
groups together with a view to promoting a common language . ..,” but unfortunately there have been hardly
any efforts to integrate logical and algebraic approaches to abstract data types by now. What we have
shown in this paper is that the type system with inequational assertions is a natural extension of a typed
A-calculus with record types and the complete partial equivalence model is rich enough to interpret types
with inequational assertions.

Intuitively speaking, our notion of type is a collection of values satisfying ai least some particular
properties. Hence it is natural to request that, if each value of an w-chain satisfies such properties, then
the supreme of the chain must also satisfy those properties corresponding to the completeness condition
requested to our pers (the pointedness is necessary since we want to have fix on all types). On the other
hand, when v»; T v3, v; may lose some information (properties) that v, has, hence we have not requested
the closedness under approximations like in the class of pers used in [Amadio 91, Cardone 91].

One drawback of our semantics is that the computation of functional applications cannot be performed
within a type in general. To be more concrete, let f be a function from type o to 7 and a be a value of
o, then f(a) must be calculated using bases (e;}ic,, of a. The point is that some of these bases may not
belong to the sub-cpo (the domain of a per) corresponding to the type of a, o, hence we must perform this
calculation in the whole domain D. This is the cost we have paid for our more expressive type system.

Our system can be said a type system combining programming types (usual types of pFun) and speci-
fication (inequational assertions as partial correctness requirements) with which we can write specifications
for verification as well as executable programs, hence our pFinal is a good candidate for foundations of type
systems of functional wide-spectrum languages such as Extended ML [Sannella and Tarlecki 89]. Following
extensions to our system are very interesting remaining works:

(1) to give our language typed interpretations;

(2) to strengthen our inequality “<” to “=" in assertions;

(3) to extend our system to second-order calculi with polymorphism, existentially quantified types,
bounded quantifications, and parameterization of types;

(4) to enrich our system with recursion on types;

(5) to incorporate more sophisticated record calculi such as row variables and selective field updating.
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