TrIGIvS-FE B EE- 1310
(1993. 8. 20)

WHIHERBEMR 2 R T 5H L WTERORS

Fyxy ANYx A, RE—ER, PEE. EHER
HHRFET

AEEH

HEIEMEIE. Ay P Y= 2 LOBBEDOY Y 200 NAR DI 5 FETH L, 20K,
FLONZETTRERENTWAENSRALREL TR LRV, BEEMICEIT R RE
i, SEEREIRENIE, SERZATYOENEVWI L TH S, BRIk T, BHIEE#E
A TERMENERILZMAMEIT W DOPRREINTVRD, RAEKEECET 2008
FITVI) XL % ZER Lz, K7 VT X 5O, 58 SN2 REFERZE CEVERISR
BMBROTE, V=T 4 VT PETTH2O2EIT L7720, BREFSBET 5 XD 2EE58%217
RiKHb. Thck), BERFROKE SITHRTEH Y F ORBEIEN L I RHE. FoEn
FFEFE LG, ﬁ%?ﬂ,;ﬂ%@?&t%@%ﬁ#%%ﬂ@m{0#@7»:UXA&%’
BLTRT.

A new technique to improve parallel
automated single layer wire routing.

Hesham KESHK, Shin-ichiro MORI
Hiroshi NAKASHIMA ,and Shinji TOMITA

Department of Information Science
~ Faculty of Engineering, Kyoto University
Yoshida-hon-machi, Sakyo-ku, Kyoto 606-01 Japan
E—mail:{keshk,mdris,nakasima,tomita}@ kuis.kyoto-u.ac.jp

Abstract
Automated wire routing is to find a path between two or more network pins and this path

- must not intersect with previous drawn paths. The basic problems of automated wire routing
are the long -computation time and large memory size required. Recently, several researches
tried to speed up the routing problem by using pa,rallel computers. We develop two parallel
algorithms based on maze running algorithm. Both of them have a new technique in dividing
a-single layer grid. These two algorithms give high speed specially if the net lengths are small

~ with respect to grid dimensions. In the first algorithm, moving boundaries are used in d1vxdmg
the grid. The second algorithm can be divided into two phases. In the first phase, we rotate
the areas assigned to the processors to route all short nets. In the second phase we use the
competing processors algorithm to route the remaining nets.

1. Introduction

Automated wire routing is one phase of CAD.
The basic problems of automated wire routing are
the long computation time and large memory size
required. Although Lee’s algorithm [1] which is
known as Maze running was the first algorithm to
solve the automated wire routing problem (1961),
it is still used until now because it has a high de-
gree of flexibility. There are many researches [2]-[7]
which modified the original maze running to make
it faster, but the improvement of the speed was
not satisfactory. Some other researches(8][9] tried
to improve the speed by using hardware implemen-
tation of maze running or liné search.

Recently, several researches tried to speed up the.

routing problem by using parallel computers. Two
of these trials are made by prof. Takahashi[10][11].
In the first one, they developed a parallel line search
algorithm based on dividé and conquer strategy

and implemented it on a binary tree parallel com-_

puter called Coral 68. But the efficiency of the par-
allel computation was not satisfactory. In the sec-
ond trial, they developed another parallel routing
algorithm, in which a number of processors com-
pete each other to route different nets independent
of each other, and one master processor inspects
and verifies the results.

Based on these two algorithms, we develop an-
other two algorithms to overcome the disadvan-
tages in their. algorithms and to speed up the com-

putation tirhe. Our algorithms have higher degree” *

of parallelism inside and it can be run faster. We
implement our two algorithms and the other two
algorithms mentioned in[10]{11] on a message pass-

ing MIMD parallel computer called AP1000[13]. In

this paper, our two algorithms are introduced. The
results and a comparison'are also included. Our al-
gorithms can also be used to speed up the compu-
tational time for some other algorithms which use
some techniques like rip-up and reroute to get high
connection ratio.

2. Maze algorithm..

Automated wire routing is to find a path between
two or more network pins and this path must not
intersect with previously drawn paths. Maze{1] and
line search algorithms are two famous algorithms
for printed circuit boards. Maze running guaran-
tees to find the shortest path between two points
if one exists, but on the other hand, it takes large
memory space and long time to be 1mp]emented
The time in the worst case is proportional to N2,
where N.is the grid dimension. Line search is an-
other algorithm which may run faster and need less

memory than maze but it does not guarantee to
find a path even if one exists. Line search also does
not find the shortest path but it finds a path with
minimum number of bends. In fact, line search runs
faster than Maze only when number of obstructions
is small. But if the grid is so congested, line search
may not improve the speed.

Maze algorithm consists of three major phases:
wave propagation (wavefront expansion), back-
trace, and label clearance. Firstly, the grid will be
divided to squares as shown in fig 1la, where each
square can be occupied by only one net. Now, to
find a path between two points (A,B), we start from
any point as a source (point A in- this example) and
search for the target (point B). The black squares
are obstacles which may be another networks which
were already connécted before. In the wave propa-
gation phase we start by entering 1 in each empty
square adjacent to point A, after that, enter 2 to
each empty square adjacent to the squares which
were already labeled by 1, and so on (fig 1b) until
find point B or can not find any empty squares ad-
jacent to the squares which are already labeled by
m. In the back trace phase, if point B was already
labeled by k, then from point B we look for a square
which is labeled by k-1, and from this square look
for another square which is labeled by k-2, and so

son until find point A as shown in fig 1c. Note that

we must not change direction unless it is necessary.
In the label clearance phase, all the squares except
those used for the drawn path are cleared.

In our algorithms, we make the wave propagation
from the two points simultaneously to decrease the
wave propagation area as shown in fig 1d. And this
of course decreases the computation time.

_ 3. Parallel routing algorithm with moving

boundaries.

This algorithm could be considered as a modi-

" fication of the hierarchical domain algorithm {10].

At first, the host computer broadcasts a list of all
net terminal locations and the grid dimensions to
all PEs. The grid area is divided by the total num-
ber of PEs. For example, if the grid dimensions
is 256*256 and total number of PEs is 64 (con-
sider it as 8*8 PEs), then the area assigned to each
PE is 32*32 (as shown in fig 2 step 1). Every PE
selects the nets which lie inside its assighed area
from the list of all nets, sorts them in an ascending
order according to their lengths, and routes them
one after the other within its assigned area. There
i$' no possibility of any confusion between differ-

.ent PEs. After finishing this step, the number of

working PEs is decreased to 49 PEs(7*7) (as shown

6
65 (s
6|5354(5]6
s|s[4aj3fafs|s
sisje{a2|3{4a]s5|s 32 | 34 | 40 42
6is|af3f2]1]2]3]afs]|e 33 | 35 “4-5—‘ 16 |17 | 20 | 21 8 10
A sisfais|2l1jalt]2(3][4]s5]E 6 | 37 | 44 26
A0 3lals]s 3 18| 19|22 |23 9 11
s 65]ai5]6 | 38 | 39 |45 ‘:
L] L1EAL 48 | 50 156 | 5 4 | 25 | 28 14
O 49 | 51 | 57 | 59 2 s 12
52 | 54 | 60 | 62
| 62 27 | 30 |31 13 15
53 | 55 | 61 | 63 *
Step 1 Step 2 Step 3
Fig 1a. The problem. Fig 1b. Wave propagation .
4 5 2
1
3
3(2]3 6 7 3
Ij2f1]2}3
Al1{2 312|1]Aj1§2]3
3 3
mr a2 Step 4 Step § Step 6
8|5 3|2[1(Bl1]2(3
sz [2[s : R : Tyr :
s Figure 3: Hierarchically partitioned algorithm[10].
3 L

Fig 1d. Two points wave

Fig 1c. Back trace.
propagation.

Figure 1: Maze funning algorithm.

1]2]3[4]5]6[7]8 1[2]a[4[5]8]7 1]2[a4]5]6 c
9 [1o[11]12[13]14]15[16 ol1ol11l12]13]14115 PRETIETIEEEIEY]) C .
17]18[19[20]21|22[23]24 = 2l i
25]26/27[28129/30(31/32 917910 17|18 [19}20121 |22 A A
[53/34/35(3637[38(3940 g::;::};’g:i;' 25]26 27|28 29(30
l41[42[4344]45(46]47}48]
laol50/51/52/5ai54[s5/56|. |41]42]43]a4 |45 |46 47 33[34135/36137 |38 : B |BI . BT
58] 1j62le3jpa] [as]s0l5152[53]54[55] [41]42]43]|44]45]46 A : A B I l
Step 1: 64 PEs Step 2 : 49 PEs Step 3 : 36 PEs’
C c
1]2{3]4]s 1 {21a]a ‘ .
" P L T Step 1 step 2
s jogmit 9 1101112 "
17 |18 |19 | 20 21 o | 107 1 ‘ o) -
718|192 C
25|26 (27 |28 |29 ! ” .
33 |24 |35 | 36 |37 25 26 | 27 | 28 v 1 A
Step 4 : 25 PEs " Step 5 : 16 PEs 'Step 6 : 9 PEs :
p 5 [B ‘ I 'Bl
A L._l A B U
1
2 c :
1 - . -
Step 3 . : Step 4
° 10 ‘
Figure 4: Routing nets in hierarchically partitioned

Step 7 : 4 PEs Step 8 : 1 PE a.lgorithms _

Figure 2: Grid partition by moving boundaries al-
gorithm.

Table 1: Grid partition of hierarchically partitioned

algorithm [10]

PEs | area

x boundaries

y boundaries

A
L)
step 1 | 32 64%32 64,128,192 32,64,96,128
A IEI [BI ‘ : 160,192,224
B B step 2 | 16 64764 64,128,192 64,128,192
step 3 | 8 128%64 | 128 64,128,192
step 4 | 4 128%128 | 128 128
(o] (o] step 5 | 2 356%198 128
step 6 [1 256%256
Step 1 Step 2 ! :
Table 2: Grid partition of moving boundaries algo-
rithm
C C PEs | area X boundaries | y boundaries
step 1 | 64 32%32 32,64,96,128, | 32,64,96,128
A A 160,192,224 160,192,224
' step 2 | 49 . | 36736 36,173,100 36,192,224
= ! : 146,182,219 | 146,182,219
lA B LBJ l.B_I step 3 | 36 . | 42742 42,85,128 47,85,128
: B T 170,213 170,213
step 4 | 25 5181 51,102,153, 51,102,153,
. 204 204
C C step 5 | 16 64%64 64,128,192 64,128,192
step 6 | 9 85785 85,170 85,170
Step 3 Step 4 step 7 | 4 128%128 | 128 128
step 8 | 1 256%256

Figure 5: Routing nets in moving boundaries algo-
rithm.

in fig 2 step 2). The boundaries of every PE area
are different from the first step. Every PE leaves
part of its area and takes another part. So every
PE obtains the new boundaries, sends the leaving
part of the bit map, which contains the nets already
connected, to its left and up neighborhood PEs, re-
ceives the taking part of the bit map from its right
and down neighborhood PEs, and adds the taking
part of the bit map to the remainder part of its old
bit map to obtain the new bitmap which is 36*36
or 37*37 in this example. Then every PE from the
working PEs selects again the unrouted nets which
lie in its new area, sorts and routes them. Then
the number of working PEs will be decreased to 36

- PEs(6*6)(as shown in fig 2 step 3). PEs will again
obtain the new boundaries, send and receive data,
select, sort,and route the unrouted nets. And so on
until the last step where one PE will be responsi-
ble about all the grid. Of course we can jump some
steps, so we can make the steps as 8%8 — 77 —
5%5 — 3*%3 — 2¥2 — 1*1, or we can jump more
steps or add some other steps.

The major difference between moving bound-
ary algorithm and the hierarchical domain algo-
rithm[10] is that the boundaries are moved in our
algorithm while they are fixed in the other algo-
rithm as shown in fig 3. For example, if we have
256 * 256 grid and 64 PEs, then the boundary for
different steps will be as shown in table 1 and 2.
We can see that in the hierarchical domain parti-
tion algorithm[10] the boundary 128 exists from the

beginning until the last step. Then at the last step
one PE will be responsible about routing the long
nets (as in fig 4 type C) beside short nets which lie
around this boundary (nets type A and B shown in
fig 4). While in the moving boundary algorithm the
short nets can be routed by more than one PE in
some previous steps as shown in fig. 5 (both nets A
and B are connected in step 2). In another words,
the moving boundary algorithr»h, has an advantage
that no short nets will remain without routing until
the end. So, the last steps, where few PEs are in
work, will be aimed to route long nets only. While,
in the hierarchical domain algorithm, short nets
around the boundaries will remain without rout-
ing until the end. }

This algorithm can get good results if the net
lengths are short compared with the grid dimen-
sions because most of the nets will be connected in
the first steps where most of PEs are in work, while
small number of long nets will stay without routing
until the end. On the other hand, this algorithm
will not give good results if the nets lengths are
long compared with the grid dimensions. This is
because only few PEs will be used to route a large
number of long nets which require longer time for
routing.

4. Parallel routing algorithm with rotating
areas. ’

This algorithm can be divided into two major
phases:

The first phase is aimed to route short nets.
If the grid dimensions are L*L, and the number

assignment assignment

61 62

Fig. 6d : Stap 4 Fig.6c: Step 3

Figure 6: The first phase of algorithm 2.

Flg. 7d : Step 4. Fig. 7c : Step 3.

Figure 7+ Example of routing at the first phase.

Master
resuit result
assignmerst | . | result
Routing * " _Routng . | . Routing
processor processor . processor

Figure 8: The second phase of algorithm 2.

of PEs is N2, then this phase guarantees to deal
with all nets which have lengths less than d, where
d=L/2(N + 0.5). This phase may also deal with
nets which have lengths greater than d. In this
phase, The host computer broadcasts a list of all
net terminals location and the grid dimension to all
PEs as in the moving boundaries algorithm. The
grid is divided also by the total number of PEs,
but here, we do not divide all the grid. There is a
part of the grid which is not assigned to any PE as
shown by the shaded area in fig 6a. So, every PE
is responsible for an area of (L/(N + 0.5)) only
(instead of (L/N)? in the moving boundary algo-
rithm). Every PE selects the nets which lie in its
assigned area from the list of all nets, sorts them
in an ascending order according to their lengths,
and routes them one after the other within its as-
signed area. In the beginning, all the nets in the
net list are labeled by 0 which mean that no PE try
to route this net yet. If both the net terminals are
located in a PE area, then this PE tries to find a
path for this net. The net will be labeled by 1 if the
PE succeeds to find a path, and it will be labeled
by 2 or 3 if the path can not be found at all or not
found. but may be found later because this net is
near a boundary (like net B in fig 4). After finish-
ing this step. The shaded area is changed, and the
area of each PE is moved as shown in fig 6b. Every
PE will send half of its bit map and the net list to
the left neighborhood and receive another half bit
map and net list from the right neighborhood. Ev-
ery PE selects again nets (labeled by 0 or 3) which
lie in its area, sorts and routes them. The shaded
area will be changed again as shown in fig 6¢c and
6d. At the end of this phase, all the PEs send their
bit map and the net list to the host computer.

By this complete rotation, we ensure that all
short nets can be connected regardless of their lo-
cations. Fig 7 shows this property. In step 1, net
A only is routed while all the other nets still with-
out routing. In step 2, both nets D and H could
be routed while nets C,E,G and I will be routed in
step 3. Net B will be routed in step 4.

In the second phase of this algorithm, we use the
parallel routing algorithm with competing proces-
sors[11]. In this algorithm, one processor or the
host computer is used as'a master and all the other
PEs are used for routing(fig 8). The master PE
broadcasts the bit. map of the whole grid to all the
PEs and assigns a net (which has label 0 or 3) from
the net list to each PE“which tries to find a’path
for'it. The computed path is sent to the master PE
which verifies if it intersects with any other previ-
ously accepted paths. If it intersects then the mas-
ter PE will send it again to the sender PE with the
latest accepted paths. But if it does not intersect
then the master PE labels this net by 1, adds its
path to the list of accepted paths; sends the lat-
est accepted paths to the sender PE, and assigns
another net to the,sender PE.

. By -using two phases in this algorithm, we can
connect. all short nets.in the first- phase using few
messages, While only long nets are connected in the
second phase. This has two main advantages com-
parative with competing. processors algorithm[11}
which uses only the second phase to route both
short ‘and long nets

1. If we use the sécond’ pha,se to route short nets

which requlre shiort routing timie. Many mes-

‘ sages ‘will arrive to the master PE at the same

“~time. Then the master PE will not be able

to seive all the routing PEs on time espec1a.lly

“§f‘the ntimber of PEs‘is large. The routing

"PEs‘have to wait long time for the master PE.

" * But this will not happen for long net.s whlch
N rethred IOnger tlme to be routed '

w20 It decreases total numbet of messages frem

2*(number . of nets 4 number of reroute nets)

- -to 2%(number, of long nets -+ number of reroute
nets) and of ¢ouise the number of reroute nets
will be decreased also.

" The first phase can be used alone under the re-
‘striction that the maxirmum net length is small as
’compared w1th the grid du‘nensxons For example,
if the maximum net length is shorter than 500'in a
grid dxmensxon 10000*10000 and the number of PEs
is 64; tHen every PE' will be responsible about area
of 1176*1176 only By this, we can decrease the
tequired memory for each PE from 10000*10000
to 1176*1176." But, on “the other hand, this may
‘prevént routing some nets (label 3) which ma.y be
z‘outed when using thé second phase

Results

Several experlments ha.ve been done’ and many
results ha.ve been taken to see the performance of

the algorithms. Now, we will show some of these
results with discussion. These results were taken on
a grid dimensions 1000¥1000 using random nets as
input to our program. The random nets. generator
program output the x and y coordinates of the net
terminals. The manhattan‘lengths of the nets obey
the Rayle)gh probablhty function,.

We executed our program on a parallel computer

- called AP1000[13] The AP1000:is a MIMD, dis-

tributed mémory, message passing, torus network
computei It consists of 16 to 1024 processing ele-
ments (64 only in cur system) and three lndepen-
dent communications networks. ’

We 1mplement the two algorithms of prof. Taka-
hashi together with our newtwo algorithms to com-
pare their performances. - “The algorithms (when

implemented on a grid dimensions: 256*256) give

connection ratios which are'approximately same as
the connection ratios obtained in [11]. From now,
for simplicity, we will use the following notations:

HPA : the hierarchically partitioned algorithm{10]
. but with a small modification that. we use all ‘the

PEs in the ﬁrst step instead of half of then.
CPA :'the competmg processors algorithm([11].
MBA. : the moving boundaries algorithm.
RAA : the rotating areas algorithm.

The average manhattan distance of the nets has
a big effect on both HPA and MBA. That is be-
cause if the average distance is small then most of

_the nets will be routed in the first steps using most
 of the PEs, while if the average distance is large,

then most of the nets will be routed in the last
steps' using less number of PEs which'decreases the
parallelism and increases the time. This average

* distance has less effect 6n both CPA and RAA as

shown in figure 9.. In this ﬁgure +we measure the
routing time for different average manhattan dis-

- tance for 4000 nets. As we can see MBA is-faster

than .HPA for all lengths approximately and .also
MBA is*faster than CPA for short average distance
less than 70. “

In order to know the effect of cha.ngmg the num-
ber of nets on the different algorithms;. we measure
the time for different nets number with an average
manhattan distance of 20. As we can séé nets num-
ber has avblg effect on‘CPA because it increases the

“number of messages And if the average distance is

small as in this case, then the routing PEs will route
nets in a short time which will make overhead at

- the master PE betause many messages will arrive

at thé samé time. Increasing nets Aiiniber does not
increase the time so much in HPA, MBA and RAA
because most of these nets will be Touted at first
step by all the PEs and the time for communication

—18—

-
@
o

HPA

Time (seconds)
g
T
i

140 - E
120‘;_ -
MBA &

100 |- E
80 - - -
o o . . cPA

60 - R 5
40+) RAA

20t

1
) 20 40 . e 80 100 120

Figure 9: Time against average distance for 4000
nets.

independent on nets number. Figure 10 shows time
against hets number for average distance equal 20.

In figure 11 we change the average Manhattan
distance but we keep ‘the total nets lengths (av-
erage distance * nets number) constant equal to
200,000. For example, if the average distance is 10
then the nets number will be 200,000/10 =20,000
and so on. As we could see CPA takes a very long
time for routing large nets number with small aver-
age distance while it will be better for longer nets
dlsta.nce with less nets number.

Flgure 12 shows the speed up of the dxﬂ'erent al-
gorithms when routing 8000 nets with average dis-
tance 20. The speed up is calqulated by dividing
the routing time using only one PE (sequential pro-
gram) by the the routing time using different num-
ber of PEs. . :

6. Conclusion..y ‘

In this paper, two parallel routing algorithms for
dividing a single layer grid has been introduced.
Both of these algorithms are focused to decrease
the routing time especially for short net Iengths
In the first algorithm, the whole grid area is firstly
divided to N partitions and each.of these partitions
is assigned to'a processor to route the nets. in par-
allel. After that the whole grid is ré-divided to M
partitions such that each new boundary is different
from the previous boundaries of the N partitions.
The second algorithm consists of 2 phases. In the

Time (seconds)

o L 1 1 il 1 1
1000 2000 3000 4000 5000 5000 7000 8000 9000 10000
. Number of nets.

Figure 10: Tlme agalnst nets number for a.verage
distance equal 20.

2
s

g

Time (seconds)

100 |

120 Av-rinc distance
1666 Nois‘ number

0 20 4. . 60 80, 100
2000010000 5000 3333 2500 2000

Figure 11: Tlme agamst nets- number and a,verazge
distance with fixed total length.

L

0 Il 1 i L 1)

0 i - 20 30 40 50 60 70

Number of PEs

Figure 12: Speed up -against number of ﬁsed PEs
for 8000 nets with average distance 20.

first phase, we exploit the parallelism in the area
by assigning a partition to each processor then we
move every partition to route all the nets shorter
than a certain length. In the second phase, we ex-
ploit the parallelism in the number of nets using
the competing processors algorithm.

These algorithms beside two other algorithms are
implemented on a MIMD message passing paral-
lel computer called AP1000. Several results has
been taken which proved that our new algoerithms
are faster than the other algorithms. The mov-
ing boundaries algorithm, which is very easy to be
implemented, gives a good result specially when
routing large number of nets with short average
distance. The rotating areas algorithm gives the
best results for different average lengths and differ-
ent nets number. The rotating area algorithm can
be easily extended to be wsed in multi-layers wire
routing.

6. Acknowledgment.

We want to thank Fujitsu Laboratories Ltd for
offering us the parallel computer AP1000 to im-
plement our parallel algorithms. We want also
to thank all our laboratory members specially Mr.
Matsumoto for their great help.

7. References

1. C.Y.Lee ”An Algorithm for Path Connections
and Its Applications”, IRE Trans. on Elec-

10.

1.

12.

13.

tronic computers, vol. EC-10, pp. 346 - 365,
1961.

. 5.B.Akers,” A Modification of Lee’s path Con-

nection Algorithms”, IEEE Trans. on Elec-
tronic Computers (short notes), vol. EC-16,
pp. 97-98, 1967.

. J.M.Geyer,”Connection Routing Algorithm

for Printed Circuit Boards”, IEEE Trans. on
Circuit Theory, vol. CT-18, pp. 95-100, 1971.

. L.C.Abel,”On the Ordering of Connections for
. Automatic Wire Routing”, IEEE Trans. on
. Comput. vol. C-21, pp. 1227-1233, 1972.

. F. Rubin,”The Lee Path Connection Algo-

rithm”, IEEE Trans. on comput. vol..C-23,
pp. 907-914, 1974.

. J.H.Hoel,”Some Variations of Lee’s Algo-

rithm” JEEE Trans. on comput. vol. C-25,
pp. 19-24, 1976.

. J. Soukup,” Fést Maze Router”,Proc. 15th De-

sign Automation Conf. pp. 100-102, 1978.

. K.Suzuki,” A Hardware Maze Router with Ap-

plication to Interactive Rip-Up and Reroute”,
IEEE Trans. on Computer A ided Design, vol.
CAD-5, pp. 466-476, 1986. ’

. K.Suzuki,” A Gridless Router: Software and

Hardware Implementation”, VLSI 87.

v

Y.Takahashi, ”Parallel Maze Running and
Line Search Algorithms for LSI CAD on
Binary-tree Multiprocessor”, Word Confer-
ence on Information/Communication, Seoul,
Pp. 128-136, June 1989.

Y. Takahasi,” Parallel Automated Wire Rout-
ing with a Number of Competing proces-
sors”, International Conference on Supercom-
puting,ACM Vol.18,Number 3, pp. 310-317,
1990.

T.Yamauchi,” PROTON: A Parallel Detailed
Router on an MIMD Pz}rallel ‘Machine”
ICCAD-91 pp 340-343, 91. i

H.Ishihata,” Third Generation Message Pass-
ing Computer AP1000” International Sympo-
sium on Supercomputer, pp.46-55, 1991.

