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Recently, A&-calculus, an extension of the simply typed lambda calculus with over-
loading and subtyping was presented by Castagna, Ghelli, and Longo. In A&-calculus,
the interaction of overloading and subtyping causes some unexpected properties such as .
non-normalization and difficulty in constructing a natural model. One reason for this is
that the type of a term is not preserved but is reduced by reduction. In this paper, we
present modifications of this calculus so that they have the Subject Reduction property,
and investigate syntactic and semantic properties in detail. We define two calculi A&C
and A&C* corresponding to two possible meanings of an overloaded type. They have
completely different properties with respect to normalization property and transitivity of
coerions property, and have different semantics.



1 Introduction.

Recently, an extension of the simply typed
lambda calculus (A™) with overloading and sub-
typing was presented by Castagna, Ghelli, and
Longo([CGL94]). In this calculus, A&-calculus (or
A& in short), an overloaded function is defined by
putting different branches of code together, and
when it is applied, the branch to execute is cho-
sen according to the type of the argument. Very
roughly, when e; : Vi — V{,... e, : ¥V, — V] are
function terms, e;& ... &e, is an overloaded func-
- tion with an overloaded type {Vi — V{,...,V, —
V!}, and an overloaded application (e1& . .. &e,)o f
is reduced to a function application e; - f where
e; is selected based on the type of f. This calcu-
lus provides a foundation for typed object-oriented
languages by a novel way: it models a message as
an overloaded function defined by combining all the
methods with the same name, and message sending
as an application of the overloaded function. This
is actually the way CLOS implements object ori-
entedness and A& is an attempt to add type struc-
tures to the core of CLOS. Though some aspects
of object orientedness like encapsulation cannot be
modeled, this new calculus is promising in that it
explains the computational mechanism of object
oriented languages from a new viewpoint.

On the other hand, A& behaves differently from
many typed calculi in that it is not Strong Normal-
izing !. In many calculi, adding subtyping does not
affect the normalizing property of a calculus. For
example, A<, the extension of A~ with subtyping,
and Fg, the extension of system F' with subtyping
and bounded quantification, are Strong Normaliz-
ing. In the case of A&, A& ~=: the extension of A~
only with overloading is Strong Normalizing, but
A&z its extension with subtyping is not. This is re-
lated to a property of the translation into a calcu-
lus without subtyping defined by inserting coercion
functions. In the case of A< and Fg, the transla-
tions into A™" and F respectively preserve reduc-
tions ([BTCGS91], [BTGS90]). In A&, though we
can define a translation to A&~<, reduction is not
preserved by this translation. In this paper, we will
study syntax and semantics of calculi with subtyp-
ing and overloading in detail.

Crucial features of A& are that the type of a term
changes to a subtype of the statically given type ac-
cording to the reduction, and that the branch se-
lection depends not on the compile-time type (the
type of a term) but on the run-time type (the type
of the normal form of a term) of the argument. The
former feature is called generalized Subject Reduc-
tion in [CGL94], and the latter feature is called

1The current author has also found this fact indepen-
dently after A& was first presented in [CGL92].

late binding in object oriented terminology. Late
binding is one of the characteristics of object ori-
entedness. However, in order to express this, A&
becomes rather complicated. For example, in order
to select a branch according to the run-time type,
there is an restriction that an overloaded applica-
tion e o f can only be reduced when f is a normal
form. Moreover, late binding makes it difficult to
consider a model because we need to consider two
notions of types.

Thus, in our study of the relation between sub-
typing and overloading, we will consider modifica-
tions of A& so that Subject Reduction holds. It is
done by inserting coercions to the argument when
a term is S-reduced. That is, we add e|y to terms
and use the following rule instead of the g rule.

(Bc) (AzV.e)-f b e[z = flv]

Here, f|y means the term f but is considered as a
term of type V. Thus, the calculi we present have
Subject Reduction property, and therefore method
selection is based on the static type of the argument
(early binding).

Even though these calculi are Subject Reduc-
tion and early binding, the interaction of subtyping
and overloading makes them non-trivial and worth
studying. We present two calculi A&C and A&C*,
which only differ in the reduction rule of an ap-
plication of a coerced function. Surprisingly, they
behave completely differently as in listed in Figure
1. Strong Normalization holds in A&C* though it
is not the case in A&C, and transitivity of coer-
cions holds in A&C though it is not the case in
MzC*. The translation of A&C* into A&~ pre-
serves reductions, and the index of the branch se-
lected in each overloaded application can be de-
termined statically. However, it is not the case in
M&C. We will also study the semantics of both
calculi, which correspond to two possible meanings
of an overloaded function under the existence of
subtyping.

2 Review of the \&-calculus.

The formal system of Ad&is listed in Figure 2.
We use metavariables U, V for types, A, B for
ground types, F,G for overloaded types, and ¢, f
for expressions. Note that not all the lists {Vi —
Vi,...,Va — V!} are allowed as types: it is sub-
ject to the restrictions listed in Figure 2. at(F,U)is
the index of the branch selected when the argument
has type U, and the second condition ensures that
the index is uniquely determined. Since these con-
ditions depend on the subtyping rules, we first de-
fined pretypes and subtype relations over pretypes,
and then defined types as pretypes which satisfy
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Figure 1: Properties of Calculi.

the conditions. The subtype relation of overloaded
types says that F is a subtype of G when every
component of G is a supertype of a component of
F.

As for terms, e - ¢’ is an application of a function
eto €', and eee’ is an application of an overloaded
function e to e'. e&Fe’ is an overloaded function
composed by adding a function e’ to an overloaded
function e, and ¢ is the empty overloaded func-
tion from which every overloaded function is com-
posed. Since only one typing rule is applicable to
each term, every well-typed term has a unique type.
That is, Unicity of Type property holds.

As for reduction rules, (8) is for a function ap-
plication, and (Bg) is for an overloaded function
application. Note that the type V of the argument
is used in (By). That is, type information is used
in reduction, whereas types are erased and untyped
terms are reduced in other typed calculi. The re-
striction that f is a normal form is required because
the type of f, on which the reduction depends, may
decrease according to the reduction. Thus, we first
reduce the argument to a normal form and use the
type of the normal form in selecting a branch. Note
that the type of e1&%es do not change though the
types of e; and e; may change according to the
reduction because we have a superscript F'.

A& has Church-Rosser and Unicity of Type prop-
erties. It is easy to see that A& does not have the
Subject Reduction property. For example, when
U< Vande:U, (AzV.z) e has type V, and
reduces by (8) to e of type U. Only the general-
tzed Subject Reduction property holds: e : U and
e p* ¢ implies that the type U’ of ¢’ is a subtype
of U.

We will show, in the rest of this section, that
there is a non-normalizing term in A&. This ex-
ample is essentially the same as the one given in
[CGL94]. We assume that there exists a ground
type 1, say int, and a constant. 1 of type i.

First, we consider a self application and find a
type § = {Vi — V{,...,V, — V!} for which
(Az%.z o z) is well-typed. For this, at least one

of the V;, say Vi, is a supertype of S. That is, the
inequality .

{V],'—>V1,,.”,V,;—)'V,(}S‘/1
holds. It holds for S = {i — ¢, {i — i} — i}

because {i — i,{i — i} — i} < {i —i}. In the
rest of this paper, we write S for this type. Thus,
AzS .z e z is a well typed term.

Next, we try to form a term
v = (e&T(\z5 .z 0 2)) o (e&T (Az5 .z 0 2)),

for which the branch (Az5.z e z) is selected in (8g)
reduction over y. For this, T' must satisfy that
T < 5. One of the candidates for T is to take
T ={i — i,{i — i} — i,5 — i}. Since T
includes all the components of S, it is easy to show
that T'< S. Note that S < T is also true because
{i — i}.> S, and therefore {i — i} — i< S —i.

Let e be a term of
type S like e&*(Az.z)&% (A2 1), and z be
(e&T(Az5.z o £)). Then y = z o z is a well typed
term of type %, which reduces infinitely.

zez=(e&T(Mzz0z)) 0z
>(AzSzez) z
> (ze2)
> o

3 M&S: A calculus without
subtyping

We start our study with a calculus A&~ < with over-
loading but without subtyping. The types of A&~<
are the pretypes of A& with the restriction that
the domain types of an overloaded function are dif-
ferent. The terms of A& < are those of A& with
e&Fe’ replaced by e&e’. Since there is no sub-
type relation, the typing rules become simple. [—
Elim], [{}Intro], and [{}Elim] are replaced by the
following rules.

e:V—V f:V

e-f:V’

[— Elim’]

e F={Vi—=V/}i<ca f:V;
eef:V/

[{}Elim’]

g e {Vi = VWhicnony £:Va— Vg
{Bintrel e&F (Vi — VTizn

The (Bg) rule is also replaced by the following
simplar one.



A&-calculus
Pre-Types:
Vs Al V=V |{h—=V,.. Va—V}

Subtype Relation:

U>VvV U<V
A<A U—-U<V—->V

Vi<m,3idnst. Uy =U/ <V, — V]
{Ul _'U{:'“:Un _’Urll}s‘{vl’—'vl'ynvm""’vvln}

Restriction on Types:
A pretype F = {Vi — V{,...,V, — V/} is a type only when

1. £ V; £V}, then V} < V(4,5 < n).

2. For all pretype U such that U < V; for some 7 < n, there is a unique h < n such that V; is the
least element of {V; | V; > U}. We write at(F,U) for this A.

Terms:
ex=z" | d(constants) | A\z¥.e |e-e|e|ekFe|ecoe

Typing rules:

[Ta.ut] '—xV'T [Taute] e {}
eV e: Fy < {Vi — V}ig(n-1)

[—l' Int.ro] VA APuS e 7 [{}Intro] [ ULV, — V,(
Az” eV 1% e&{v"_’V.-'}"S"f {V; — V,"]’ign

e:V—V f:ULV

(= Blim) G B =Y 10

es f:Voru

Reduction Rules:

B) (AzV.e)-f b efz = f]

eyef (f:U, fis anormal form, at(F,U) < n)
(Be) (ar&Ter)ef v e; -f  (f:U, f is a normal form, at(F,U) = n)

Figure 2:




(Bg) (e1dcez) o f >
erof (er&es: F={V; — V'} ica, F:U, U# Vp)
€2 'f (81&32 F= {V; g Vil}i_<_n: f : U) U= Vﬂ)

The calculus A&~= thus defined has good prop-
erties:

Theorem 1 A&~% has Unicity of Type, Subject
Reduction, Church-Rosser, end Strong Normaliza-
tion properties.

Church Rosser can be proved by using the no-
tion .of parallel reduction due to Tait and Martin-
Lof following the construction in [Tak89]. Strong
Normalization can be proved by extending the
Tait’s method for the simply type lambda calcu-
lus ([GLT89)).

From this theorem, we can construct a term
model of A&~< in which the meaning of a type
is the set of closed normal forms of the type. It
is also easy to encode A&~< into A~ with prod-
uct types by considering {Vi — V{,...,V, —
Vil as a n-product of Vi — V{,...,V, — Vi
Therefore, when a model [] of A on a carte-
sian closed category C is given, we can easily
construct a model of A&~% on C by considering
{i = V/,...,Vu — V!} as a n-product [V} —

1% ...x[Va — V], e&f as a pair {[e],{f]),
- and when e : {V; — V/}icnand f : Vi, ee f as
APP o (snd o fst" ™ o [e], [ f]).

Now, we consider the translation from A& to
A&~S. We first define a coercion term c,vy of
type U — V in A&~< when U < V is inferred in
A. ‘

qu—y,v—v) = Af v—v vy ALY
YUVl igad V5=, Yigm] = AflU— U icn,

&s <m(C, iy —vy  v—vp) - (A2740.f o 2)).

()’

Here, ¢; f means the composition of € and £, and
&;j<me; means ekey ... &em. ¢(3) (j < m) are
defined as follows: from the rules of subtypes, there
exists for each j < m, an ¢ < n which satisfies I/; —
U{ £ V; — V/. The set of U; which satisfy this has
the smallest element because of the restriction over
the form of the type {U; — Uf}i<n in A&, and
define ¢(j) as the index of the smallest element.

We define a type-preserving translation (.)°
from A& to A&~ by inserting coercion terms
where subtype relations are used. This is done fol-
lowing the typing rules of A&. Here, we only omit
the translations of variables and constants which
are identity.

(/\zv.e)" = AzV e®
Cr D S
(&FN)° = (c-e®)&(c-f%)

Here, the subscripts of ¢ are omitted because they
are clear from the corresponding typing rules. Note
that we do not need to care about the coherence

" problem ([BTCGS91], [BTGS90]) because there is

only one proof of type assignment to each term and
thus the translation is uniquely determined.

It is expected that the operational semantics of
A& is preserved by this translation; when e : V and
e b* ¢’ in A&, then e® and ¢,y - €'© are equiv-
alent in the theory of A&~< for U the type of €'
However, it does not hold because branch selection
is based on the runtime type of the argument in
A&, whereas it is based on the static type of the
argument in A&~<. It means that we cannot give
semantics to A& via this translation as was done in
[BTCGS91] for Fy.

The translation of the term yinto A& S isy~ =
2z~ o{cir,51-27), where 2z~ = e&(/\zs.zo(c[s,{i_ﬁ}]-
z)) : T with e = e&(Az.z)&(Mz*"".1). Here we
omited coercions of the form ¢fy, ). The redunction
of y~ terminates, and it reduces to 1.

4 A&C and \&C*.

As we have noted in the introduction, Non-Subject-
Reduction and late binding make the formal system
of A& rather complicated. Firstly, there is a re-
striction that an overloaded application ¢ o f can
only be reduced when f is a normal form. Sec-
ondly, the form of an overloaded function e;&F ey
is a bit tricky in that the type F' of this overloaded
function is included in the term. Moreover, late
binding makes type-theoretic study of the calculus
difficult because the result of computation is af-
fected by the type of a normal form which is not a
part of the static type system. Therefore, we will
consider modifications of A& so that Subject Re-
duction holds. It is done by inserting a coercion to
the argument when a term is G-reduced. We define
coercions as syntactic objects and add e}y to the
set of terms (Figure 3) 2.

Since the calculi we construct have the Subject
Reduction property, we do not need the condition
in (Bg) that the argument is a normal form. We
need to define reductions of coerced terms. First,
since a ground type is ordered only with itself, we
reduce the coercion of a ground-type term to itself3.

As for a coercion of a function, there are two
alternative ways of defining the reduction of an ap-
plication of a coerced function, which result in two
calculi A&C and A&C*. These rules reflect the
meaning of an overloaded type in each system. In

2e|y is similar to cy(e) in A&-early[CGL93] . We will
come back to the relation with this calculus in Section 7.

31t is easy to add subtyping between ground types and
atomic coercions.



A&C and N&C*

Pre-Types, Subtype Relation, Restriction on Types: Same as A&.

Terms:
e=2z" | d(constants) | A\z¥.e |e-e|e|eke|ecoe |e|y

Typing rules: Same as A& with [{}Intro] replaced by [{}Intro’], plus [Coerce].

[{}Intro’]

e: {Vi = Vlictn-1) f:Va— Vo

ekf:{Vi — V.',}ign

e:U ULV

[Coerce] oV

Reduction Rules: (8¢) (MzV.e)-f > ez := flv]

IR R A hroial o B -0 B R 4
(Ground) e|s b e (Aisa ground type)
In A&C:
(Goerce) ely—syi £ > (e Pl
(Coercen) elr o /0 (e Alvtgy  (F = {V = Whisn)
In A&C™:
(Coerce) ely—y: - f » (e~ flv)lv:
(Coercel,) elrofU o (eo WaroWViey  (F = Vi = Vi}ign)
Figure 3:

A&C, when e is a function of type U — U’, we view
e a function which is applicable to subtypes of U
and returns a value in U’. Therefore, we consider
the function ey —,y, with V' < U as a restriction of
e to subtypes of V. Thus, e|y v/ fU is equivalent
to (e - f)]vr, and the rule (Coerce) is justified. -

In A&C*, we view ¢ : U — U’ a function de-
fined on U, which is also applicable to subtypes of
U through coercion functions. Therefore, we con-
sider e|y —y as a function defined on V, whose
behavior is that of e to V. Thus, when ey, .y is
applied to f : U, coerce f to V, and apply e|ly — v
to flv, which'is equal to e - fly. Thus the rule
(Coerce*) is justified. These informal semantics
are naturally extended to overloaded types, which
Jjustify (Coerceg.) and (Coercep ). The detailed ex-
planation are given in the following sections.

Note that the coercions are inserted in the re-
duction rules, and therefore, the term given by a
user does not include them; the same set of terms
as A& is used in writing programs.

Theorem 2 -Both calculi have Subject Reduction,
Unicity of Type, and the Church-Rosser properties.

Proof  Unicity of Type is obvious because only

one typing rule can be applied to each term. Sub-
ject Reduction can be proved by checking each rule.
We will give the proof of Church Rosser property
of A&C using the notion of parallel reduction due
to Tait and Martin-Lof following the construction
in [Tak89]. The Church Rosser property of A&C*
can be proved in the same way. R

We will study the other properties of both cal-
culi in detail. Surprisingly, A&C and A&C™ have
completely different properties.

5 Properties of \&C™.

First, we show that A&C* has the Strong Normal-
ization property. )

We will define the translation (-)® from A&C* to
A&~% by modifying that for A& in Section 2 with
the following: .

e & f°

c-e®

(e&f)® =

e[v =

We will show that this translation (-)° preserves
the reduction.



Lemma 3 When e b f in A&C*, e reduces to
F° in one or more steps.

Proof:  This is proved by checking each reduction
rule, using induction on the form of a term. N

Theorem 4 \&C* is Strong Normalizing.

Proof-  If there is an infinite reduction sequence
€0 > €; b ...in A&C*, then e§ bt e bt ... in
AM&~=. Here bt means one or more reductions.
This contradicts the fact that A& < is Strong Nor-
malizing. 1

The term y in Section 2 reduces as follows:

yzez=(e&(MzS.zez)) 0z
' >(Azzez) 2
> (z]s ® z|s)
>(ze zlsl{i—n‘})li
4 (/\:c{"—"i}.l . zlSl{i——n‘})Ii
>l > 1

Lemma 3 shows that the meaning of a term
does not change by this translation. Therefore,
when an extensional model of A&~< is given, we
can give semantics to A&C* via this translation.
From the semantics of A&~< on any cartesian
closed category given in Section 3, we can con-
sider (Vi — V{,...,V, — V/!} as a n-record of
Vi — V{,...,Va — V.. From the translation (.)°,
we can consider e|y with e : U as an application of
a coercion function ¢y toe,ande- fand ee f as
first applying a coercion function on the argument
f to a proper type and then apply e in the sense of
PY IS

Therefore, though an overloaded function of type
{Vi = V{,..., Vo — V!} is applicable to all the
subtypes of Vi, ..., V,, its behavior is determined
by only its behaviors on V4, ..., V;.

We note that even equivalent types have differ-
ent meanings. For example, {U — V',V — V'} ~
{V — V'} when U < V. Though both types are
sets of overloaded functions which are applicable
to subtypes of V, {V ~— V’} only include uniform
functions which first coerce the argument to V and
then apply one function from V to V’, whereas a
function of type {U — V',V — V’} is an ad-
hoc function whose effect on f : U may be differ-
ent from the effect on fly. For a concrete exam-
ple, consider V! = int and AzV.1& 2V .2 : {U —
ViV -V}

Though A&C* has some good properties and
clear semantics, it does not have one property
which is common to calculi with coercions. That
is, coercion is not transitive in A&C™. For exam-
ple, let ULV, f:U—V' and g: V — V’, and
consider the function (f&g)|(v —vliv—v+y and
(f&g)l{y—v+}- As we have seen, the behavior of
this function 1s determined by its behavior on U.
Let e : U. then

(f&D)lv —viliv—viy ve
> (f&g)l v —viy o elv)lv/
> ((f&g) e elulv)lvi|v:
> (g -elulv)lvlve.

On the other hand,

(f&g)luy—viy oe
> ((f&g) o elu)|v
> (f-elv)lv:.

Therefore, these two functions have different be-
haviors. This fact shows that we cannot add the
following reduction rule:
(E~CC) eiulv > elv.

If we add this reduction rule, not only the Church-
Rosser property, but also the Strong Normalization
property does no longer hold. Consider the term y
with Az5.z e z replaced by Az5.z|r o .

6 Properties of \&C.

Compared with A&C*, A&C has complicated syn-
tactic and semantic properties. As was the case in
A&, A&C does not have the strong normalization
property.

The term y defined for A& reduces as follows:

y=zez=(ek(Az.zez)) ez
>(AzS.zez)- 2
> (2ls o 2ls)
> (zez]s)l:

> (zlsls o 2Isls)l

> ...

Comparing this reduction with that in A&C*, it is
clear that the reduction in A&C is not preserved by
the translation (-)° into A&~<, and it is impossible
to give semantics to A&C through this translation.

Actually, the meaning of {V — V'} is different
from that in A&C*. In A&C*, {V — V'} is the
set of overloaded functions with only one branch of
type V. — V', and thus the behavior of e : {V —
V'} is determined by its behavior on V. However,

’



it is not the case in A&C. Consider the case U < V.
{U —= V",V —=V'}<A{V — V'} (actually, they
are equivalent). Therefore, for f: U — V' and g :
V — V', (f&g)|{v —sv+} is a term of type {V —
V’}. From the reduction rule, (f&g)|iy—vjoe &
((f&g) @ €)|y:. Therefore, f is applied when the
argument type is a subtype of U, and g is applied
if the argument type is a subtype of V. It means
that the behavior of a function of type {V — V'}
is not determined by its behavior on V.

Thus a question arises how an overloaded func-
tion behaves in A&C.

In A&C*, the tranmsitivity of coercions holds.
That is, e|ly|v and e|y are equivalent. Note that
our calculi are not extensional, and we do not in-
tend to extend them to extensional calculi. For ex-
ample, (Az".z)]y —y and AzV .z are different nor-
mal forms with the same functionality. Instead, we
observe equivalence on ground types.

Definition 1 Two closed terms e and f are con-
gruent (e & f) if for every closed contezt C{X] of
a ground type, Cle] is well-typed and reduces to a

normal form ¢ iff C[f] is weII-typed and reduces to’

¢ ([Blo90]).

Theorem 5 Coercion is transitive in A&. That is,
when F < G < U and e is a closed term of type F,
elglu and ely are congruent.

The proof is rather long. We need to introduce
the notion of applicable congruence and prove Op-
erationally Extensionality ([Blo90]) that congru-
ence and applicable congruence coinside, and then
prove the applicable congruence of e|g|y and elv.
For the proof of Operationally Extensionality, we
need to use induction on the length of the leftmost
reduction, for which we also need to prove the left-
most reduction theorem of this calculus. The de-
tails are given in [Tsu93].

We can also prove that when two types U ang
V are equivalent (i.e., U < V and U > V, written
U ~ V), we can give the same meaning to U and
V. i

Theorem 6 When U =~V and ¢ is a closed term
of type U, e and ely are congruent.

Now, we can discuss the semantics of A&. We
will consider, as the meaning of V, D(V): the quo-
tient by = of closed terms of type V *. We will
write € for the equivalence class of e.

__We write 7 for the set of all type expressions, and
T for the partial ordered set obtained by taking the

4Though we can consider on D(V) an order structure
derived from the termmatlon property; we do not consider
it here.

quotient by ~. We write V for the equivalence class
of V. From Theorem 6, we know that when U ~ V,
we can identify D(U) and D(V). Therefore, from
now on, we consider D a function from 7.

Thus, we have constructed a poset 7 and a func-
tion D from 7 to Sets: the class of all sets. When
e &~ f are two terms of type U, then e|y = flv for
U < V from the definition of congruence. There-
fore, we can define a function D(|v) from D(T) to
D(V) when U <'V. Moreover, from Theorem 5,
we have that D is a contravariant functor from the
poset 7 considered as a category to Sets. That
is, D is a coindexed category. Here, we define the
direction of an arrow as U « V when U <V

Now, we consider the meaning of an overloaded
type F on this indexed category. For an overloaded
type F = {Vi — V{,...,Vh — V/}, we can con-
struct a partial function G(F) from T to 7 which
sends U €7 to V, aH(FU) That is, a:function which
maps the argument type to the result type. The
first condition on the form of an overloaded type
ensures that it is a monotonic function by consid-
ering 7 as a pre-ordered set. This monotonicity
ensures that we can consider G(F') as a monotonic
function from the poset T to 7.

Though the subtyping Telation between over-
loaded types seems complicated, it has the follow-
ing soundness and completeness theorem for this
interpretation.

Theorem 7 F > G iff G(F) > G(G) by the point-
wise order on the function space from T 10 T. .

From this theorem, two overloaded types F' and
G are equivalent iff G(F) and G(G) are the same
function. Thus we can consider G a function from
To, where Tp is the set of overloaded types. We
add a least element | which means type error to
the poset 7 and define 7, . Thus we consider G(F)
as a total monotonic function by assigning L when

G(F) is undefined. It is obvious that G(F) is a step
function from T ; to 7 1, and every step function
from 7 1 to 74 is G(F) for some overloaded type
F'. Therefore, we can identify To with the set of all
step functions from T, toTy. We wrx’ce 1'7' L —
T ] for this set.

As for the meaning of terms, we define D(L) =
{#}; where * is the term which denote a type er-
ror, and consider D a functor from 7 .. We con-
sider the ‘meaning of an overloaded function over
the Grothendieck Construction of the indexed cat-
egory ( T, LSets). That is, consider the disjoint
union I of all D(t) with t € T, and a projection A
from U to 7. U is intuitively the set of all values
of all types and A is a type assignment function.
The order (category) structure of & is induced by
D(]v); that is, the coercible relation on U.



When e : F is an overloaded function, e deter-
mines a function from & to &, which maps an ar-
gument to the result and an unapplicable element
to *. We write G(€) for this function. G(€) makes
the following diagram commute:

u 9(®)

—_ U

4 o Ja

T T

We will write [U — U] g(F) for the set of func-
tions from U to & which make the diagram com-
mute. Note that, G(€) is a function from ¥ to ¥,
but not a functor from U to U. That is, G(2) does
not preserve the order structure on U. which is the
coercibleness relation belween values. This is the
dirty side of overloading. :

Thus, we may consider the meaning of an over-
loaded type F as [U — UlgF)- However, it is
_ not a denotational modelin the true sense because
D(F), which is a subset of I/, and U — Ul
are different. Now a question arises whether there
is a truly denotational model of A&C. In [Tsu92),
the author has studied ),,, another calculus with
overloading and subtyping. In A, an overloaded
function works more uniformly in that when more
than two branches are applicable, it applies all the
branches and then merge the result. In this way,
G(e) becomes a functor, and he has succeeded in
constructing a semantic domain by solving a do-
main equation over opfibrations. In the case of
A&C, it seems that a similar construction is al-
most impossible. This is why we considered a
term model and study its property.  We leave
open whether there is a true denotational model
for A&C.

7 Related Works and Further
Works

We will summarize the properties of calculi with
overloading.

Castagna, Ghelli, and Longo has also presented
A&-early as well as A&[CGL93]. This calculus is
an early binding version of A&-calculus, which uses
the notion of coercions to freeze the type of a term.
To use our syntax, the terms of A&-early have the
forms:

ex=z" | Ae¥e|e-e|ely le|e&kFeleeely

and in addition to (8) and (B), it has the reduc-

SIn [CGL93], they tried to give a per model of A-early,
which is, as we will see, closely related to A&C. However,
their semantics construction only applies to a stratified sub-
calculus of A\&-early, and does not apply to A&-early.

Late Early Binding
, Binding | Not SN | SN
8§ )l'l;ghg Mo | Me-early
SR A&C AeC*= A&G
Yping - Mz™=

Figure 4: Table of calculi

tion rule

(coerce) elyof b eof

where o'is a e or a -. The crucial difference be-
tween A&-early and A&C is that a programmer is
expected to insert coercions to overloaded applica-
tions in A&-early, where coercion is inserted when
aterm is S-reduced in A&C.

Ad-early does not have the Subject Reduc-
tion property, nor Strong Normalization. A non-
normalizing term is y’ = 2/ e 2'|g, with 2/ =
(e&T(Az% 2 » 25)).

We will define a translation (_)® from A&-early
to A&C which inserts coercions on each component

of &.
(e0&T 1) = (e§lvo)&(elv,)

The other cases are trivially defined. This transla-
tion preserves reductions in the following sense.

Theorem 8 [fe b* e’ in A-early with e : V,
e : U, then e° and ¢'®|y are congruent in A&C.

Now, the relations between the calculi are listed
in Figure 4. Here, SN means Strong Normalization,
and SR means Subject Reduction. Calculi on the
same column means that there is a translation from
the above calculus to the calculus below.

From this table, one may expect that we can con-
struct a normalizing calculus A&*-early at the lo-
cation above A&G. Consider a calculus A&*-early
which is the same as A&-early except that the rule
(coerce) is replaced by the following two rules.

(coerce™) ely_yyi - f > (e~ flv)
(coercey,) elrefU b (e fqu(p,U))
(F ={Vi = V/}icn)

It is expected that A&*-early can be trans-
lated into A&C*." However, it is not the case.
Consider the term (Az%.z o e|s) - z with z =
e&(Az'.2)&(Azl1.1)& ()25 .2), and e any term
of type S. It reduces in A&*-early to z e els and
then to 2, where the same term reduces in A&C*
to zlseels > zeels|; ., and then to 1. Tt is
left open whether A&*-early is normalizing or not.



In [CGL94], in order to settle the non-
normalizing problem of A&, they introduced strati-
" fied subcalculus of A& which is Strong Normalizing.
In this paper, we tackled this problem differently;
instead of restricting the terms, we modified the re-
duction rule and gave different semantics, so that it
is Strong Normalizing. There are some more top-
ics that the author could not expand due to the
restriction of the space.

One thins is that branch selected in overloaded
applications in A&C can be determined statically,
which is not the case in A&C*. Therefore, we can
drop type information from A&C* at runtime, and
can compile A&C* into an untyped calculus. This
enables efficient implimemtation of the language.

Another things is that, the semantics of A&C*
ensures that we can identify {V — V'} with
V — V’. 1t is practically important because one
can pass an overloaded function whose type is a
subtype of {V — V'} to a function which requlres
an argument of type V — V. In the full version of
the paper, we have simplified the syntax of A&C™,
by this unification, and defined a calculus A&G.

The third point is late bindings. Late bind-
ing is one of the characteristics of object oriented-
ness, and actually, we cannot express many useful
features of object orientedness like virtual classes
without this. In A&, late binding was implemented
with the loss of subject reduction, which means
that the type system does not know exact type of
a term, and does not know which branch will be
executed. The author is trying to add late bind-
ing to A&G, in a way that Subject Reduction also
holds, by expressing explicitly that the argument
type of a function is a subtype of some type and
bind the exact type of the argument to a type vari-
able when the function is called. For this purpose,
we need to restrict inheritance relation to a kind
of record extensions of Ohori and others([OB89]).
The fact that it has Unicity of Type and Sub-
ject Reduction properties means that we can in-
fer the exact type of a term, and when we infer
a type which do not include a type variable, we
can avoid dynamic method search and statically
bind the method at compile-time. Many practi-
cal typed object oriented languages like C++ and
Kuno’s Misty combine dynamic method search and
compile-time method binding. The author thinks
that this will lead to a strong type system for this
kind of languages.
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