TeyFIVI-EREEREE 14— 2
(1993.10. 29)

YTRBWEZORKRAEERE LTOH— FRHEX b U — L
BIKAN S L OCBXMREBRFRICOVT

AFT YA - 77 EH K ERE ", ARG, TR
" R ERAE TG R IR,
o ILAZE TR G TR

#uE

S TCRREBEREDOSANVEHEOF—-FFEAIY -4 /0 XA+ —X) ¥ EFIE
BR7u/5I v 7EBCERANERRESEADSOICHVLATE /2 [Mu90], L2L

H=FHEX Y- 2OFMEMRICOVWTRMOBR LT EODATV R, FRETIR, X
BRERFO FMEREMR L BRI FERELR Z MA L, ELKHAENTRTCOEERLBEST—RT

B ELREHT B, ﬁ—FﬁézFU—A@Hﬁﬁ#%ﬁ%h%ﬁﬁ#ﬁ%%@%ﬁam
SR T AL THED 2RMAICL S,

Guarded Streams as a Domain
for Concurrent Logic Computations:
Semantic and Syntactic Equivalence

Fabio CASABLANCA®*, Masaki MURAKAMI**, Shoji YUEN*, Yasuyoshi INAGAKI*
* Nagoya University, Department of Information Engineering,
** Okayama University, Department of Information Technology

Abstract

Guarded streams labeled by predicate symbols(I/O histories) have been used to give a formal
semantics to concurrent logic languages [Mu90].

However, no results were given on equivalence of guarded streams. This report introduces a
semantic and syntactic equivalence. Also, it proves that they coincide in all the situations of
interest. The resulting domain of guarded streams’equivalence classes becomes an appropriate
framework to discuss full-abstractness of the semantics.

1 Introduction

Concurrent logic languages describe concurrency by
means of the logic programming paradigm. A
well-known subset is constituted by the family of
committed-choice languages (from now on CLP-
languages) which include, among -others, Concurrent
Prolog, PARLOG, GHC, Fleng and Oc.

In the last 10 years, various semantics have been
proposed for CLP-languages and more recently gen-
eral frameworks for semantics of concurrent constraint
programming languages (cc-languages) have been pro-
posed. In all the approaches, special attention has
being given to compositionality and full-abstractness.

Domains which have been used to denote agents
compositionally include reactive trees[GaLe92], reac-
tive sequences [BoPa90a] (which may be considered
to subsume 1/O sequences, as used by [GKLS88,
GMS89]) bounded trace operators ([SPR91]) and
guarded streams[Mu90}.

Guarded streams labeled by predicate symbols (I/O
histories) have been used to give a formal semantics
to perpetual CLP computations [Mu90]. A guarded
stream is.a set of elementary computational units,
c-units (in [Mu90], guarded unifications); a c-unit
< I|O > represents the production of a binding equa-
tion, O, prefixed by an equation set I, which should
be satisfied to produce the equation. Exceptional sit-
uations which arise with deadlock and failure are ex-
pressed assigning to O the special symbols A and @
respectively.

Semantic dependency between c-units is expressed
by a partial order. Then guarded streams are c-unit
sets over which some conditions are imposed to ensure
that the partial order is defined without ambiguity.

We think that I/O histories present,w.r.t. to other
models, the following advantages:

e they can be interpreted as guarded logical atoms
and sometimes it becomes possible to extend
techniques used in logic programming to CLP-
programming (an example is given by the exten-
sion of guarded streams which deals with OR-
compositionality of programs [KaMu93]);

e guarded streams are from start more abstract se-
mantic objects than reactive sequences and bto’s
and cumbersome saturation conditions can be
avoided.

Guarded streams present the advantages pointed
out in the previous paragraph, no direct results were
given in [Mu90] on full-abstractness. For this pur-
pose, a key point is to be able to decide if two
guarded streams are equivalent, because a domain

which distinguishes equivalent guarded streams can’
not be fully-abstract.

In this paper, we discuss suitable notions of meaning
and equivalence relation for guarded streams, using
the corresponding definition for equation sets. The
corresponding domain of guarded streams’equivalence
classes becomes an adequate framework to discuss full-
abstractness.

Together with the semantic equivalence we have de-
fined a a syntactic equivalence, based on the recogni-
tion of sets of “interchangeable” variables. We prove
that semantic and syntactic equivalence coincide in all
the situations of interest. As it should be expected,
the syntactic equivalence is simpler to manipulate and
it proves to be a valuable tool when working with
guarded streams.

For limits of space, only the main proofs are
sketched in this report.

2 Basic Notions: Substitutions

and Unification
The notions of substitution and unification play a key
role in the theory of logic programming. Here we sum-
marize some definitions and results useful for our pur-
poses, using as references [LMM87).".

Let A(V) be an alphabet which contains function
and constant symbols plus an arbitrary denumerable
set of variables V. From A(V) it is possible to define
as usual the set of finite terms Terms(A(V)). The set
of all ground terms is cafled the Herbrand Universe,
Herbrand. The set of variables occurring in any syn-
tactic object o will be denoted Vars(o).

The set of all substitutions Subst obtained from
Terms A(V) consist in all the mappings ¢ from V to
Terms(A(V)) such that the domain of 8,dom(8) =
{X € V:6X # X} is finite. The application tf of 8
to t is defined as the term obtained by replacing each
variable X in ¢t by 6(X). The set ran(d) is defined
as Uy edom(g) Vars(6(X)). The composition 66’ of 6
and ¢ is defined by (68')(X) = (¢6)8'. The restriction
of 6 to a set of variable V is defined as §;y = {X
t: X —~tefand X € V}. 0 is ground iff ran(9) = 0;
idempotent iff 89 = 8, (equivalently, dom(8)Nran(f) =
®). The set of idempotent substitutions is denoted
ISubst.

6 is said to be more general than 6,8 < 6 iff there
exists o such that 8o = ¢'. The associated equivalence
relation is denoted =. Then < is a partial order on
the equivalence classes of Subst, denoted Subst.

When substitutions are defined, a partial order on
Terms(A(V)) can be defined as follows: if t;,1; €
Terms(A(V)),#; <ty iff there is a substitution 8 such
that t10 = 1q.

An equation is an expression {s = t}, where s and ¢
are terms. The class of equation sets from Terms(A(

V)) is denoted Eqn. A solution of an equation {s = t}
is a ground substitution @ such that sf = t0. The set
of all solutions of {s = t} is denoted soln({s = t}).
For an equation set E, soln(E) = Ne,=t)epsoln({s =
i}).

An unifier for an equation is a substitution (possi-
bly non-ground) u such that sy = tu. If an unifier
exists for an equation E, E is said to be unifiable.The
smallest unifier for an equation, its mgu, alway exists
uniquely in Eqn/y.

E is said to be more general than E2,E; < E,
iff soln(E3) C soln(E;). The associated equivalence
relation is denoted . For equation sets, < is a par-
tial order on the equivalence classes of Eqn, denoted
Eqn,..

An equation set is in solved form (for short,
s.f.equation set) when the lhs variables are all distinct
and do not appear in the right side. The lhs variables
of a s.f.equation set E, elim(FE), are called eliminable;
the rhs variables and the variables which do not ap-
pear in E,param(E), are called parameters. If the
contrary is not explicitly stated, from now on it will
be supposed that equation sets are always in solved
form.

The following lemma reformulates results obtained
in [LMMS87] on the syntax of equivalent solved forms.

Lemma 1 Let Ey and E; be two s.f.equation sets
such that Ey =~ E,. Then there ezists a bijec-
tion ¢ between elim(E,) and elim(E,), such that,
if X € elim(Ey) N elim(Ey),¢(X) = X. More-
over, for any X € elim(E,) N param(E;) there ezists
Y € elim(E,) 0 param(E,) such that {X =Y} € E,
and {Y = X} € E,.

Lemma 1 can be generalized as follows.

Lemma 2 Let E; and E; be two s.f.equation sets
such that E; =
E; we have:

e if t is a proper term, for a proper term t/, there
ezists {X = t'} € Ey;

e ift is a variable Y, one of the following is true:

~{X=Y}e€ Ey;
~{Y =X}e€Ey;

— for a variable Z,{Z =Y} € E; and {X =
Z,Y =Z}C E,.

3 C-units,c-unit sets and guarded
streams

In this section, we study the concepts of c-units, c-unit
sets and guarded streams, which we have introduced
in Section.1.

E,. Then,for any equation {X = t} €

First of all, we will give a formal definition of c-
unit and we will present some operators and proper-
ties. A definition of meaning is also proposed. We will
see that this technical framework can be extended to
c-unit sets. However, the definition of meaning for c-
unit sets will be quite more involved, because it is nec-
essary to consider the semantic dependency between
c-units, which induces a partial order over them. Later
we will justify the introduction of guarded streams, as
c-unit sets which verify some addxtxona.l condmons of
well-formedness.

Some minor difference exist between our definitions
of c-units,c-unit sets and guarded streams and the
original one given by [Mu90].

3.1 C-units

In the introduction, we have established as elemen-
tary computational unit (c-unit) a binding equation
(or special symbol in {A,®}),prefixed by an equation
set.

Def. 1 A c-unit cu is a pair < I|O >, such that:’
I (the input guard) is an equation set;

e O v(the output part) is a single equation, such that
TU O is consistent, or a special symbol in{A,&}.

We define also the auziliary functions Ig(cu) = I
and Ou(cu) =

The special symbols {A, ®} give the sign of the c-
unit. If, for a c-unit cu,Ou(cu) ¢ {A, ®}, the sign of
cu is .

C-units have a solved form, based on equa-
tions’solved form.

Def. 2 A c-unit cu =< I|O > is in solved form when:
o T is in solved form;

¢ if O = {Y = t}, there is no variable X €
Vars(t)U {Y} such that {X = s} € I.

The second condition is equivalent to say that the
output part is “simplified” w.r.t. the input guard. A
generic c-unit can be always reduced to a c-unit set
in solved form. In the following, c-units are always
assumed to be in solved form.

A sf.equation set can be associated to a c-unit.

Def. 3 For a c-unit cu, the substitution T(cu) and

the s.f.equation Eq(cu) associated to cu are defined as
follows.

[y —t}u{r =1t} ifo={Y =1t
Eg(cu) = {I} { J otherwfse 4
E(eu) ={Y « t: {Y =1} € Eq(cu)}

A first semantic characterization of a c-unit cu can
be given by means of the solutions of Eg(cu). We
simply define soln(cu) = soln(Eq(cu)). If soln(cu) #
8, then cu is consistent. However, it is also necessary
to find an appropriate characterization for the input
guard of a c-unit. We propose the following.

 Def. 4 A substitution p is IG-admissible wrt a c-
unit cu=< I|O > if there ezists a solution o for cu
such that 0 = o'c”, where o' is an mgu for I,0' <
n<o.

The set of IG-admissible substitutions for cu is de-
noted as adm(cu).

Solutions are used in the definition, because
we want to exclude the possibility of having IG-
admissible substitutions without corresponding solu-
tions.

3.2 C-unit sets and guarded streams

When we pass to consider c-unit sets, we discover that
the meaning is not easily defined. Before discussing
the problem and proposing a solution, we give some
technical definitions.

Def. 5 IfCs is a c-unit set,
e Ig(Cs) = U{IT : 3 < I|O >€ Cs},0u(Cs) =

U{o : 3 < IO >e Cs,0 ¢ {A,8)}} and
Eq(Cs) = Ig(Cs) u Ou(Cs) (simple syntactic
unions);

e Ig(Cs) . = lub(Ig(Cs)), 0u(Cs) =

lub(Ou(Cs)), Eq(Cs) = lub(Eq(Cs));

o B(Ig(Cs)),E(0u(Cs)),L(Cs) are the substitu-
tions corresponding to the lub’s.

Notice that Ig(Cs),Ou(Cs), Eq(Cs) are unique only
as equivalence classes in (Eqng, <).

A c-unit set Cs to which no {A,®} c-unit belongs
has sign Q. If a single {A, ®}-signed c-unit belongs to
Cs, Cs has the same sign of the c-unit. Otherwise C's
has sign confused.

The meaning of c-units was given by means of so-
lutions and IG-admissible substitutions. Solutions for
a c-unit set Cs are given by the extension soln(Cs) =
Neweos soin(cu) (as before, a c-unit set is consistent
iff soln(Cs). # 8). For IG-admissibility, a different
approach is needed, because if we try to derive the
substitutions IG-admissible for a c-unit set just look-
ing at its elements, we will notice some ambiguity.

In fact, to determine the IG-admissible substitu-
tions of c-unit set Cs, it is not enough to consider Cs
itself, but we should give a closer look to the sequences
specified by Cs. These sequences are not simply per-
mutations of the c-units in C's, but should respect the
partial order which arise naturally between c-units,
w.r.t. their input guards.

Def. 6 If Cs is a c-unit set and cu,cu’ € Cs, then:
o cu Ly cv' iff Ig(cu)Z(Oulcu)) < Ig(cu');
o cuC eu'iff cu T e’ orcu Ty cu” and cu” C cu';

o cu~ cu'iff cu C cv and cu' C cu.

It turns out that it is enough to use an intermedi-
ate object, less abstract then c-units sets, but more
abstract then sequences.

Def. 7 Given a c-unit set Cs, let a step s be a maz-
imal non-empty subset of c-units such that, for all
cu,cv’ € s,Ig(cu) = Ig(cu’). The step set of Cs is
denoted Steps(Cs). Steps, being c-unit sets, inherit
the definitions of sign and operators given for c-unit
sets. The partial order T also is extended to steps. If
s,8' € Steps(Cs),s Ty &' iff Ig(s)Z(Ou(s)) < Ig(s').
Also:

o sCsiffsC1s orsCys" and s"C §';
o ss'iffsC s and 8’ C s.

Then, instead of a a sequence (a total ordering of
c-units), we consider a total ordering of steps.

Def. 8 Given a c-unit set Cs, A simulation § =
[815 .-y 8m] is @ sequence of steps of Cs such that:

o for1<i<j<ms; L si;

o for all s € Steps(Cs) such that, for s' € S,s C
s,s€eS;

e if s €S has sign A, ® or confused, no oiher s €e
S has sign A, ® or confused, and s = sy,

If Cs has sign Q, a simulation is mazimal iff m =
|Steps(Cs)|. Otherwise, it is mazimal iff s, has sign
A,® or confused. The set of mazimal simulations of
Cs is denoted as Sim(Cs).

From now on, by simulation we will always intend
a maximal simulation. At this point, IG-admissibility
is defined as follows.

Def. 9 A substitution p is IG-admissible for a c-
unit set Cs iff there is a simulation S = [s1,...,8m] of
Cs such that:

e uy = u is IG-admissible for all cu € sy;

o for 2 < i < myp; = lub(pi_g, E(si—1)) is IG-
admissible for all cu € s;. ‘

The set of IG-admissible substitutions for a c-unit
set Cs, through S is denoted adm(Gs,S).

Guarded streams will raise naturally -as c-unit sets
over which some syntactic conditions guarantee that
the information carried by the occurrences of the same
variable in different c-units is monotonic w.r.t. the C-
ordering of c-units.

Def. 10 A consistent c-unit set. Gs is a guarded
stream iff is satisfies the following conditions on
cu€Gs: '

1. if, for cu' € Gs, Ij(cu) = Ig(cu'), then Ig(cu') =
Ig(cu);

2. for any variable X € Vars(Gs):

(a) if there exists cu’ € Gs such that, for t,i' €
Terms,{X = t} € Ig(cu),{X = ¥} €
Ig(cu’), then:

o ift=t,cuCcu,cu=cu orcu' Ccu;
s ift#t,t<t, andeuC e ort' <,
and cu' C cu ;

(b) if cu =< I|X = t >, there is no cu’ €
Gs,{X =t'} € cu;

(c) if Y = t[X] € Ig(cu) or Oufcu), for cu' €
Gs:

o if {X =1t} € Ig(cu'), then cu C cu';
o if {X =1t} € Ou(cu’), then cu C cv/;

3. there is at most a c-unit cu € Gs such that
Ou(cu) € {A,®}, and for cu there is no cu’ €
Gs such that cu’ T cu.

As a guarded stream Gs is a c-unit set, sign,
Eq(Gs), Eq(Gs), Z(Gs) and the like are defined.

The three conditions used in Def. 10 can be under-
stood as follows.

When equivalent input guards belong to c-units in
the same guarded stream, Condition.1 forces them
to be syntactically identical. This allows the correct
functioning of Condition.2 on the occurrences of vari-
ables in the guarded stream.

The effects of Condition.2. are summarized by the
following lemma, which expresses the key property of
guarded streams.

Lemma 3 Given a guarded stream Gs and X €
Vars(Gs) let StEI(X,Gs) C Steps(Gs) be the step
set where X appears as an eliminable variable and
StPa(X,Gs) C Steps(Gs) be the step set where X
appears as a parameter. Then StEl(X,Gs) is to-
tally ordered and ,for s € StPa(X,Gs) and s €
StEI(X,Gs),sC s .

Finally, Condition.3 guarantees that no guarded
stream has sign confused. Intuitively, this corresponds
to say that the termination mode of a guarded stream
is uniquely defined.

4 Equivalence Relations

As we have seen in Section.1, solutions induce a partjal
order on equation sets. We would like to introduce a
similar semantic equivalence on c-units and guarded
streams.

Clearly, such equivalence should be based on the
comparisons of the sign, solutions and I1G-admissible
substitutions of the c-units and guarded streams.

The naive approach, which makes two c-units or
guarded stream equivalent if they have same sign, so-
lutions and IG-admissible substitutions work for c-
units, but it is unsatisfactory for guarded streams.
We need in fact a finer equivalence, which respects
the granularity of the input guards in the guarded
streams’ c-units. We will see in Section 4.1 that a
step-wise equivalence, based on the simulations, will
satisfy this criterium.

-[LMMB87] gives also a syntactic characterization of
equivalent equation sets.

Lemma 4 (Theorem 4,[LMM87]) Let E, and E; be
s.f.equation sets. Then Ey = E; iff there is a subset
{X1 =Y1,...., Xk =Yi} of Eq, where the Y;’s are dis-
tinct variables, such that E; = E1{Xy «— Y1,..., X} —
Yk, ...Y1 — X],...,)’k — Xk}.

A similar characterization can be found for c-units.
Two c-units cu and cu’ will be equivalent iff they have
the same sign and there is a substitution 8 which ver-
ify Lemma 4 between Ig(cu) and Ig(cu') and a substi-
tution 8’ which verify Lemma 4 between Ou(cu) and
Ou(cu')d.

In the case of guarded streams, this two-stage syn-
tactic equivalence becomes fairly more complicated.
In fact, when we want to check the syntactic equiv-
alence between two guarded streams Gs and Gt, we
should find a bijection ¢ between their c-units such
that, cu € Gs is syntactically equivalent to the cor-
responding ¢(cu) € Gt. The syntactic representation
of the input guards and output parts of cu and ¢(cu)
depend. also from the c-units which C-precede them,
respectively in Gs and Gt. It is straightforward to
notice that these c-units should be pairwise syntacti-
cally equivalent and that the syntactic equivalence of
cu and ¢(cu) depends on the way variables are equated
in these c-units. To keep track of these equated vari-
ables by means of substitutions is quite troublesome.
However, a different approach is possible. Let us go
back to to Lemma 4 and look at it from a different
perspective. Let us suppose that we build a partition
of the variables in E; such that two variables belong
to the same set in the partition iff they are directly
or indirectly equated in E;. The partition is clearly
well defined; we call its sets R — sets. In any solution
for E, all the variables in the same R-set will be as-
signed to the same ground term; these variables are

“interchangeable”. Then Lemma 4 says that to any
occurrence of a variable in E» it corresponds an oc-
currence of a variable in E; which belong to the same
R-set.

Then syntactic equivalence of guarded streams can
be defined using R-sets instead of substitutions. All
we need is to build the R-sets of the current c-unit
from the R-sets of preceding c-units and check that
all the occurrences of variables in the two c-units cor-
respond and belong to the same R-set.

The syntactic equivalence for c-units and guarded
streams based on R-sets is presented in Section 4.2.
We will prove that, as it should be expected, semantic
and syntactic equivalence correspond in all situations
of interest.

4.1 Semantic equivalence

It is straightforward to define a semantic partial order
for c-units.

Def. 11 Given two c-units cu and cu’ with the same
sign, cuxcu’ iff soln(cu) C soln(cu’) and adm(cu) C
adm(cu’). Then cu = cu’ iff cuXcu’ and cu’<cu.

We have discussed before that a similar equivalence,
based only on solutions and IG-admissible substitu-
tions would be too coarse for guarded streams, and
we need to consider the simulations.

Def. 12 Given two guarded streams Gs and Gt, if
S = [81,00y3m]) € Sim(Gs) and T = [ty,...,tm] €
S§im(Gt)(S ~ T) iff they have the same sign and,
for1 < i < n = m,s0ln(Ujz 8;5) = soln(Uj=1 t5),
and adm(Uj—; ;) = adm(Ui; 1;).

The preorder on guarded streams is defined as fol-
lows.

Def. 13 If Gs and Gt are two guarded streams,
Sim(Gs) < Sim(Gt) iff for all S € Sim(Gs), there
exists T € Sim(Gt) such that S = T; Sim(Gs) =
Sim(Gt) iff Sim(Gs) <X Sim(Gt) and Sim(Gt) =
Sim(Gs). ,

Gs %X Gt iff Sim(Gs) X Sim(Gt);Gs =~ Gt iff
Sim(Gs) = Sim(Gt).

A final extension is to classes of guarded streams.

Def. 14 Given two classes of guarded streams Gs and
GT, GS < GT iff for all Gs € GS, there ezists Gt €
GT such that Gs = Gt;GS ~ GT iff GS X GT and
GT X GS.

The overloading of “X” and “~" stresses the rela-
tion between respectively the partial orders and the
equivalence relations which were defined, and should
not cause ambiguity.

4.2 Syntactic equivalence -

The syntactic equivalence based on R-sets(R-
equivalence) is first defined for equation sets and
then extended to c-units, guarded streams and sets
of guarded streams. Each of these stages correspond
to an increase in syntactic complexity. Then the R-
equivalence will also be verified by means of more com-
plex structures based on the R-sets.

4.2.1 R-equivalence for equation sets

The first step toward an equivalence based on R-sets
between equation sets is to formalize the concept of
R-set itself. We remind here that this equivalence will
be later used for input guards and output parts of
c-units, for which the R-sets will depend also on the
R-sets of the C-smaller/equal c-units.

Then an equation set will only impose some restric-
tive conditions on its possible R-sets.

Def. 18 Given an equation set E in solved form, a
class R of variable sets (R-sets) is an R-class for
E , iff for any variable X € Vars(E), there ezists
uniguely an R-set R(X) € R which verifies the fol-
lowing conditions:

¢ X € R(X);

e if{X =t} € Eandt =Y € Vars,R(X) =
R(Y); '

o if {Y = X} € E,R(X) = R(Y).

Notice that it is possible to have an R-set R € R
such that for no X € Vars(E),R = R(X). Also, it
is possible to have R(X) € R(Y'), even if there is no
equation {X =Y}.

The R-equivalence on terms,equations and equation
sets can be defined now as follows. Special symbols
A and @ are considered for this purpose as reserved
constant symbols.

Def. 16 R-equivalence Given two terms t and t’,
t B¢ i

o t and t’ are the same constant symbol;

ot = X,t' = Y,{X,Y} C Vars and for R €
R,X,Y € R;
o t= ft1,entm) t! = F(H), ...t), and for 1 <1 <
R 4
m,t{ ~ t".

Given two equations E and E’,if R is an R-class for
Eand E’, EX E' iff 1hs(E) B 1hs(E") and rhs(E) B
rhs(E') .

: R

Given two equation sets E and E’, E C E’ iff, for

any equation {X =t} € E there is an equation {Y =

R
s} € E' such that {X =t} B {Y = s} . IfE CE’ and
R
E'CE, then ERE' .

If a partial order is defined on R-classes, it is pos-
sible to associate uniquely to an equation set E its
minimal R-class. Before we define the partial order
and we show the existence of the lub of two R-classes.

Lemma 5 Given two R-classes Ry and R3, R, C R,
iff, for all R € R,, there ezists R’ € Ry,R C R'.
Then R = lub(R1,Ry) is the minimal R-class which
satisfies the following conditions:

o for any R € Ry, k € {1,2}, there ezists R' €
R,RCR;

o foranyRe R,R =L, Ri,n < |Ry|+|R2|, R; €
Ry, where k; € {1,2};

o for any pair Ry € Ry and Ry € R, for which RiN
Ry # 0, there ezists R € R such that R;,Ry C R.

The lub of a set of R-classes {R;
denoted lub({R; : 1 < i < n}).

:1<i< n}is

Lemma 6 Given an s.f.equation set E, let Rg be the
R-class of E such that, for any R € Rg,{X,Y} C
Riff {X =Y}e Eor{Y = X} € E.or, fora
variable Z,{X = Z,Y ='Z} € E. Rg is well-defined
and is the minimal R-class for E.

We define also minimal R-classes for the special
symbols A and & : Ry = Rg = 0. A simple re-
sult which connects the partial order on R-classes to
the equivalence is given by the following lemma.

Lemma 7 Given two equation sets E) and E,, if R C
R' and Ey & E,, then E; % E,.

It is possible also to give a nice characterization
of the relation between R-equivalence and semantic
equivalence.

Proposition 1 Given two equation sets E; and F,
E\~ E; if Rg, = Rg, =R and E; B E,.

Corollary 1 If Ey = Ej, then for any R-class R for
El and Ez, El E Eg.

It is evident that the inverse is not true: for some
R-class R-class R, it can be F; z E3 and E; # E,.

4.2.2 R-equivalence for c-units

R-equivalence can be defined quite directly to c-units
in terms of the R-equivalence of the equation sets and
special symbols which compose them.

Def. 17 A pair of classes of variable sets R =
(R1,R3) is an R-pair for a c-unit cu iff:

e Ry CRy;
® R, is an R-class for Ig(cu);
o R, is an R-class for Oufcu).

We deﬁ'n'e also proj; (R) = Ry and projp(R) = R,.
Given two c-units cu and cu’, cu B eu! iff I g(cu) 5]
Ig(cu') and O'u(cu) ? Ou(cu’).

The first condition takes in account the fact that
the representation of the output part depends on the
representation of the input guard.

For c-units also, a uniquely defined minimal R-pair
exists. ’

Lemma 8 If R and R’ are two R-pairs, R
R iff proj(R) C prog(R) and projg(R)
proj(R').)

Given a c-unit cu, let R, be the R-pair
cu such that proj(R) = Rig(cu) and proja(R) =
lub('R.Ig(c,,),Rbu(cu)). Then R., is well-defined and
is the minimal R-pair of cu.

4.2.3 R-equivalence for guarded streams

The R-equivalence between guarded streams is verified
showing that the c-units in the guarded streams are
pairwise equivalent. We remind that, if cu C cu’ and
cu' Ccu,cu = cu'.

Def. 18 A class R of R-pairs is a R/p-class for a
guarded stream Cis iff for any cu € Gs, there ezxists
uniquely an R-pair R(cu) such that:

. projl(%(cu)) is an R-class for Ig(cu);

o projy(R(cu)) is en R-class for {Ou(cu’)
cu'};

e for any cu € Gs such that

e’ C cu, projp(R(cu’)) C proj; (R(cu)).
Given two guarded streams Gs and Gt, if R is an
R/p-class for Gs and Gt, Gs C Gt iff, for any cu €
Gs, there exists cu' € Gt,cu ®(en) . Gs & Gt iff

R R
GsCGtand GtCGs .

Once more, we prove the existence of the minimal
R/p-class for a guarded stream.

Lemma 9 Given two R/p-classes R and &', R C '
iff, for any R € R, there exists R' € R R CR.

Given a guarded stream Gs, let R, be the R/p-class
of Gs such that for any cu € Gs, we have :

o proji(Ras(cw)) = lub(lub({projr(Ras(cu’))
' C Cu})rnlg(cu)); i '

o projo(Rg,(cu)) = lub(projl(ﬁg,(cu)),
lub({Rou(ew) : cu = cu'})), and for any R € Rg,
there is a cu € Gs, R = Rgs(cu).

Then Rg, is well-defined and is the minimal R/p-
class for Gs.

In practice, we will always be interested to verify
R-equivalence w.r.t. R/p-classes which are minimal
for at least one of the guarded streams involved.

The following lemma introduces some additional
conditions on the R/p-class which verifies R-
equivalence between two guarded streams, and show
that, for this R/p-class, R-equivalénce can be ex-
tended to the steps in the guarded streams. We will
use this result later to prove that; when the additional
conditions hold, the two guarded streams are also se-
mantically equivalent.

Lemma 10 Let Gs and Gt be two guarded streams
such that there exists a bijection ¢ : Gs G~t, Jor
which, if cu € Gs,Rgs(cu) = Rai(d(cu)) = R and

cul ¢(cu). Then:
1. Rgs = Re: = R and Gs S Gt;
2. there exists a bijection Steps(Gs) +—

Steps(Gt), for which, if s € Steps(Gs), there ez-
ists P(s) such that, if Rg,(s) = {Ras(cu) 1 cu €

s},s Rage) P(s)-
Finally, we can give the main result of the section.

Proposition 2 Let Gs and Gt be two guarded streams

such that there erists a bijection ¢ : Gs +— Gt, for -

which, if cu € Gs,Rgs(cu) = Ra(d(eu)) = R and
cuX ¢(cu). Then Gs = Gt.

It is possible a straightforward extension to sets of
guarded streams.

Def. 19 A collection R of R/p-classes is an R-
collection for a set of guarded streamns GS iff, for any
Gs € GS, there exists uniquely an R/p-class R(Gs)
which is an R/p-class for Gs. If GT is another set
of guarded streams for which R is an R-collection,

R R
GS C R C GT iff, for any Gs € GS, there exists
Gt € GT such that Gs "5” Gt. GS B GT iff
Gs ™S9 Gt and Gt BV G,

A R-collection Rgg for a set of guarded streams
GS is minimal iff for any ® € Rgs, there exists
Gs € GS such that ® = Rgg(Gs) and for all Gs €
GS,Rgs(Gs) is minimal.

Proposition 2 leads to the following result.

Proposition 3 Given two sets of guarded streams GS
and GT,if GS €% GT, then GS ~ GT.

5 Conclusion

In the previous sections we have introduced definitions
and results about semantic and syntactic equivalences
of guarded streams.

It is possible to proof that both equivalences are de-
cidable on finite guarded streams. Also, the semantic
equivalence on guarded streams can be used to discuss
the semantic equivalence of programs and it allows to
measure the well-definedness of operators defined on
guarded streams.

We are getting close to full-abstractness for the suc-
cess semantics proposed in [Mu90]. For the deadlock
and failure semantics we would like to adopt as target
program a completed CLP-program, analogous to the
Clark-completed program for sequential Prolog.

We are also considering the extension of the equiv-
alence relations to a domain, similar to guarded

streams, which can denote perpetual computations.
Acknowledgement The authors thank Prof.T.Sakabe
of Nagoya University for useful comments on earlier drafts.

References

[BoPa90a] F. S.de Boer, C. Palamidessi. Concurrent
Logic Programming: Asynchronism and Language
Comparison, in: (S.Debray,M.Hermenegildo eds.)
Logic Programming, pp.175-194, Proc.s 1990 North-
American Conference

[BoPa90b] F. S.de Boer, C. Palamidessi. On the Asyn-
chronous Nature of Communication in Concurrent
Logic Languages: A Fully Abstract Model based on
Sequences, in:(J.C.M.Baeten,J.W.Klop eds.) CON-
CUR 90, LNCS 458, pp.99-114, Springer-Verlag
1990

[GaLe92] M.Gabbrielli, G.Levi. Unfolding and Fizpoint Se-
mantics of Concurrent Constraint Logic Programs.
T.C.S. 105,pp.85-128, Elsevier 1992

[GMS89) H.Gaifman,M.J.Maher,E.Shapiro. Reactive Be-
havior Semantics for Concurrent Constraint Logic
Programs.In: (E.Lusk,R.Overbeek eds.) North
American Conf. on Logic Programming,pp.535-
572,1989

[GKLS88]. R.Gerth, M.Codish, Y.Lichtenstein, E.Shapiro.
Fully Abstract Denotational Semantics for Flat Con-
current Prolog Proc. Third IEEE Symp. on Logic in

~ Computer Science, pp.320-335, IEEE Computer So-
ciety Press 1988

[KaMu93] T. Kato, M. Murakami. An Or-Compositional
Semantics of Guarded Horn Clauses. In: Joint Sym-
posium on Parallel Processing 1993, 1993

[LMM87] J.-L.Lassez, M.J.Maher, K :Marriott. Unification
Revisited in:(J.Minker ed.) Foundations of Deduc-
tive Databases and Logic Programming,pp.587-625,

- Ed.Kaufmann, Los Altos CA. 1987

[Le88b] G.Levi. Models, Unfolding Rules and Fizpoini Se-
mantics. (R.A.Kowalski, K.A. Bowen eds.) Proc.
- Fifth Int’l Conference on' Logic Programming,
pp.1649-1665, The MIT Press, Cambridge, Ma.

1988.)

[LI87] J.W.Lloyd. Foundations of Logic
Programming.Second, extended edition Springer V.,
1987

{Mug0] M.Murakami. A Declarative Semantics of Flat
Guarded Horn Clauses for Programs with Perpetual
Processes. T.C.S. 75,pp.67-83, Elsevier 1990

[SPR91] V.A.Saraswat, M.Rinard,P.Panangaden. Seman-
tic foundations of concurrent constraini program-
ming. Proc.18th ACM Symposium on Principles of
Programming Languages, pp.333-352, ACM 1991

[Ue88] K.Ueda. Guarded Horn Clauses: A Parallel Logic
Programming Language with the Concept of a
Guard.In:(M.Nivat,K.Fuchi eds.) Programming of
Future Generation Computers, pp.441-456, North-
Holland 1988

Appendix:Proofs

Proof Propos'ition 1 We have to prove:

= if By ~ Ey, then Rp, = Rg, = R and E; X Ey;

< if Rg, = Rp, =R and Ey X E,, then Ey ~ Ey.
Proof.=> First of all, let us prove Rz, = Rg, by
absurd, i.e. supposing Rg, # Rg,.
Tt is enough to examine one of two symmetric pos-
sibilities: :

s for R € REg,(RE,), there exists X € RX ¢
U{R:Re R} UHR: RE€ Rg,}) or X E
R,R € Rg,(Rg,),R # R.

X ¢gWH{R: R € RE,}, then the solutions. of
E, and E; are clearly different, against hypothesis of
equivalence.

IfX € RR € Rg,, R # R, then there i isa vana,ble
YER -RorY € R— R'. We treat only the first
case for symmetry.

In Eg, as X and Y belong to the'same R-set, for
any possible ground term t, there is a solution o €

soln(E,), such that {X « &,Y « t} C 0. However,
in E,, they belong to different R-sets. If one of these
sets is a singleton, one of the variables can assume less
values and E; does not have all the solutions of Es.
Otherwise, it is possible to assign to X and Y distinct
values. In both cases, E; % E;.) o

Now let us prove E; R E;. By symmetry it is
enough to prove E; E E,. ‘

Let us consider an equation {X = t} € Ey. We will
prove the existence of an equation {Y = s} € E; such
that {X =1} X {Y = s}.

By Lemma 2, as E; = FEj, one of the followmg
statements is true:

[a] tis a proper term and {X = '} € Ey;
[b] tis a variable W, and then one of the following
is true:
- {X=W}eE;
- {W =X} € Ey;

-{X=2,W=2}eE,.

Case [b] is quite simple, because for the three al-
ternatives we have respectively {X = W} R {X =
WH{X =w} 2w =x},{X =W} R (X = 2}
and {X =W} X (w = 2}.

For Case [a], clearly X R X and it is enough to
prove t Ry . Asfor any solution to = Xo and t'o =
Xo, it should be to = t'o. Notice that this condition
holds also on the corresponding subterms of ¢t and t'.

We prove, by induction on the depth of ¢ and #/, that
this condition implies ¢ R4 For depth(t) = 1,% can
only be a constant,and clearly ¢’ should be the sa,me
constant, otherwise Ey. % E,. If depth(t) = =
f(t1,.rtx) where t;,1 < i < k can be a constant a or
a variable V;. Clearly it must be ¢’ = f(t},...,1}).

If t; is a constant a, t} = a. Otherwise, if ; =
Vi, ti = W;, such that in any solution V; and W; have
the same value; otherwise E; % Ej.

This is possible only if {W; = V;} € E, and, as a
consequence (Lemma 1), {V; = Wi} € E;. Then W; &
V;. Then for all i,1 < i < k,t; Bt/ and f(ty,...,tx) ©
f(#1, .., t;). The induction step on depth(t) = m+1is
stra.lghtforwa.rd because ¢t and ¢’ must have the same
outermost symbol and the same amty, and to prove
t; R t} we can use the inductive hypothesis. -

Proof < By symmetry, it is enough to prove
soln(E;) C soln(E;). Let it be'o € soln(E;); we
will prove o € soln(E3). o € soln(E,) iff it is a solu-
tion for a.ny equation in Ej. Let it be {X =t} € E,.
As By 3 Eg, there exists {Y = s} € E1 such that

{X = t} (¥ =5}, X BY andt B 5. Then

we will prove Xo = Yo and to = so. Then, as
Xo =1t0,Yo = so; o is a solution for {X = t}. This
ends the proof

¥x 2 ~Y, then {X,Y} € R,R € R. Then in E;
it must be X = Y (and of course Xo = Y o) or, for
Lemma 6 we should have:

s {X=Y}or{Y =X}€E, and Xo=Yo;
¢ {X=2Y=2}€E and Xo=Yo = Zo.

To prove to = so, knowing ¢ R s, we use again
an induction on the depth of ¢t and s. Notice that it
should be depth(t) = depth(s). If depth() = 1, and
t is a constant, s is the same constant and to = so.
Ift =V, s = W; by the same observations given on
{X,Y},Vo = Wo. ' /

For depth(t) = k > 1,t = f(t1,.0tk),s =
f(81,0,90) and ¢ Rsiff f=fk =K and, for
¢<i<kt; R 8;. By inductive hypothesis, t;o = s;o
and to = so. O
Proof (Sketch) Lemma 10 The first part of the
lemma is trivial. For any R € Rg,, there exists
cu € Gs such that R = Rg,(cu) = Rgi{d(cu)). Then
Res € Rgi. As ¢ is a bijection, the inverse also holds

‘f?.aécu)r ¢(cu)

and Rg, = Rge. For any cu € Gs,cu

® ®
and Gs C Gt; also, using ¢~1, Gt C Gs and Gs L ¥er
We are left with the second part of the Lemma.
Let it be ¢sy,cs2 € 8,8 € Steps(Gs) and cty,cty €

Gt, such that esy %ay(on) ct;-and esy Roglen) 4
Then we will prove that, for any equation in Ig(cty),
the same equation is in Ig(ctz) and, as the reverse
can be proved in the same way, we clearly have
Ig(cty) = Ig(cty). This will prove that the image of
all the c-units in a step s € Steps(Gs) is in the same
step t € Steps(Gt). We should also prove that, for
any ct € t,¢7(ct) = es belongs to s. The proof that
we are going to give can be used also in this case. In
fact, when we. consider a ¢t € ¢t which we know to
have a corresponding c-unit cs’ € s, we should prove
that, if {et, ct'} C t,¢ € Steps(Gt) and {es, cs'} C Gs,
such that et Ray(et) and ct' Ray{et!) cs', then cs, cs’
belong to the same step, i.e. Ig(es) = Ig(cs').

Let us show Ig{ct;) = Ig(cty). Let us consider
{X1 = t1} € Ig(ct1). Then there exists {X =t} €

Ra,(cs
Ig(csy) = Ig(csz) such that {X = t} pro]l('f()
{X1 = t1}. Also, for some {X; = t2} € Ig(cts),

(X =1} P"°J1(Rca(¢'2)) {Y = t5}.

By means of the existence of {Xz = t3} we will
prove the existence of {X3 = t3} € Ig(cts) such that
{X: =t} = {X; =t)}.

In ¢,;,12 to any occurrence of a variable Z in ¢ it
corresponds occurrences of variables Z; in ¢; and Z,
in %s.

By hypothesis, Rg,(cs1) = Rags(es2) = Rau(cty) =
Rae(ctz) and proji(Ras(es1)) = proji(Ra,(es2)) =
proji (Rai(ct1)) = proj (Rae(ct2)) = R

This means that, for an R-set R € R, it should
be {X, X1, X2} € R. For any triple {Z, Z;, Z2} there
should also be an R-set R € R such that {Z, Z1, Z2} C
R.

It is possible to prove that Z; and Z, belong to an
R-set R iff atleast one of the two occurs as eliminable
variable in c-units ct C cty,ct’ C cta.

As Z; is a parameter in ct;, only Z; can occur as
eliminable in ¢t C ¢t;. As Z is a parameter in ci;, we
have ct; C ¢t, by Lemma 3.

However, one of the two ‘variables should appear as
eliminable also in a c-unit ct' C ¢t - .

As Z, is a parameter in cty, it can only be Z; elim-
inable in ct’. As Z; is a parameter in ¢, we have
cty et '

Then we have ct; C ct' T et C ct T ¢y, which
is contradictory. The only alternative is- Z; = Z,.
Repeated application of this argument prove t; = 2.

For X; and X, it is-possible to prove that it should
be {X; = X1} € Ig(cty) or ,for some term ¢,{X; =
t,X; =t} € Ig(ctz). The first possibility is excluded,
because it would mean {X; = X1} € Ig(ct1). Then,
when we selected. the equation: {X; = t3} € Ig(ctz),
we could as well has selected {X3 = 1} € Ig(cta).
The same reasonings are extended to all equations in
Ig(ct,) and by symmetry, we have Ig(cty) = Ig(cts).
a

Proof (Sketch) (Proposition 2) Gs =~ Gt iff
Sim(Gs) ~ Sim(Gt). For symmetry, it is enough
to prove Sim(Gs) C Sim(Gt). Then, for any S €
Sim(Gs), it should exist-T € Sim(Gt) such that
S =~ T. We will prove that T = [¢(s1),...,8(sm)]
is such a simulation (the proof that 7 is indeed
a simulation for Gt is not detailed here; it shows
that, if [¢(s1),...,#(sm)] is not a simulation, neither
[31) ;sm] IS)

To prove Szm(Gs) ~ Sim(Gt), we should prove,
for1 <7< m,.soln(U,_.1 s;) = .soln(u,_1 t;) and
adm(U,_1 8) = adm(U"_lt) By symmetry, it is
enough to prove soln(U"__1 $) € soln(U’=1t) and
adm(UL, 8;) C adm(Ui_; t;)- The proof is by induc-
tion on the number of steps.

Induction Base '

By hypothesis, s; ~t, , where Rg,(s1)
(ng(sl)aIUb(ng(u)alub({ROu(cu) feu € 31})))
(Rigey)s b(R gy}, b({Rou(ew) @ c¥ € t})))
Ras(t1), because both are first steps in a simulation.

soln(sl) C soln(ty). Let us consider o € soln(s;).

As Ryge) = Rigy) and Ig(s1) Rigen Ig(t1) by

Proposition 1 Tg(s;) = Ig(t;) and 0 € .soln(Ig(t1).
For any {X: = u:} = Ou(ct),ct € t;, there ex-

" Rga(n)

mn

ists {X, = u,} = Ou(cs) for some es € s; such that
Iub(R 14513 lUb({R0u(cu)icu€
{Xt - ut} UB(R rg(ay).l ({~ Ou(cu)cu€s1})) {-Xa - ua}‘

Then, corresponding occurrences of variables should
belong to the same R-sets, and by Lemma 6 on the
minimal R-class for an equations, it is easy to verify
that they should receive the same value in o.

Then X;0 = wu;o0 holds. The same observa-
tions, extended to all Ou(ct),ct € t;, produce o €
soln({Ou(ct) : ct € t1}). As o € soln({Ig(ct) : ct €
t1}),0 € soln(t,).

-adm(s1) C adm(t1). Straightforward, because for
g € adm(s1),L(Ig(s1)) £ p £ 0,0 € soln(s).
But Ig(s1) ~ Ig(t1),Z(Ig(s1)) = E(Ig(t1)) and
soln(s;) = soln(ty). Then T(Ig(t1)) < u £ 0,0 €
soln(ty) and i € adm(ty)-

Induction Step

By inductive hypothesis, for 1 < j < k -
1,soln(lfi_, si) C soln(Ul_; &) and adm(J,) C
adm(U{.= t;).

soln(UJi-, i) C soln(U:‘_1 t;). o € soln(UE_, s;) im-
plies o € soln(U,_l s) N soln(sk) Then,as o €
soln(U¥Sl s:),0 € soln(U,_1 t;), it is enough to prove
o € soln(ty).

As s Rap{on) tk, and Rg,(sk) Ree(tr)
(R1,R2), we can extend the observations developed
in the Induction Base for the output parts.

For any {X: = u:} € Ig(tx), there exists {X, =
u,} € Ig(sy) such that {X; = u;} ks {Xs = u,}.

Also,for any {X;: = u,} € {Ou(ct) : ct € t5},there
exists {X, = u,} € {Ou(cs) : cs € s} such that
(X =uw} B {X, = u,}.

Corresponding occurrences of variables should be-
long to the same R-sets, and it is possible to prove
that they should receive the same value in any o €
soln(si). Then o € soln(t,,)

adm(Ul;l 8‘) c adm(Ut—l t') M € a'dm(Ut—l 31) iff:

= p is IG-admissible for t;;
lub(p;_1, X(si-1)) is IG-

¢ [

sfor2<i<k+1,y =
admissible for s;.

By inductive hypothesis, we need only to prove
= lub(up_1,Z(sk-1)) is IG-admissible for 5. s
is a candidate IG-admissible substitution for z; be-
cause it is possible to prove that lub(uy_1, £(sp_1)) =
lub(p, lub({Z(s;) : ¢ < k—1})) & lub{p, lub({Z(¢(s:)) :
i< k=1})) = lub(x—1, B(2x-1))-
Now we should prove T(Ig(tx)) < px < o, for o €
soln(U,).
4 < o is trivial, because .soln(U,__1 s) €
soln(UE, 1:).
For Z(Ig(tx)) < ux we reason on Ig(t;). Without
loss of generality, we can suppose L(Ig(sg)) = {X, «—
vy {X, = v} € Ig(si)} and S(Ig(t)) = {X:

u: ¢ {X: = u;} € Ig(tx)}. Then, if we prove that
{Xt « ut} < i for all {X: = us} € Ig(ti), we have
indeed T(Ig(tx)) £ tk-

For Ig(tx) % Ig(sk) we have that, for {X; = v} €
Ig(ty), there exists {X, = u,} € Ig(sk) such that
{Xe=u} R (X, =u,}.

A necessary condition for R&!-equiva.lence is that to
any variable occurrence in one equation corresponds
in the other equation the occurrence of a variable
which belongs to the same R-set (this is true also for
{X1, X.}).

It is possible to prove (later we refer to this fact as

(*)) that.if {V,,V;} C R, R € proj;Rg,(cu), then one
of the following is true:

fa] {V: « Wi} € Z(lub({cs : es C cu},Ig(cu)) or
{V: « V;} € Z(lub({cs : cs T cu}, Ig(cu))

[b] for a term r (eventually a variable Z), {V, —
7V — 1} C Z(lub({es : ¢s T cu}, Ig(cu)).

Also, it is poséible to prove that, as Z(lub({cs : cs C
cu}, Ig(cu)) < px, the same hypothesis holds on py.
We apply this result to {X,, X;}. When the rhs side

. of these substitutions for X; and X} are variables, the

proof is particularly simple, because necessarily also
u, and u; should be variables, let us suppose u, = U,
and U = Ug

Lasea If {X-' - X!} € Mk, and {Xl At Us} < B
we have that {U, — X;} € pi. As U, and U, belong
to the same R-set, we can only have {U; « X}, and
{X: = U} < e

¥ {X: — X,} € pr, and {X, « U,} < pz, we
have that {U, — X,} € px. For U, and U, we have
{Ut — Xs}, and {Xt - Ut} < M.

Caseb If r = Z,{X; ~ Z,X: «~ Z} € u, and
{X; « U,} < px, we have that {U, — Z} € pux. For
U, and U; we have {U; — Z}, and {X; « U;} < ps.

We are left with {X, ~ 7,X; « r} C u; for a
proper term 7. We know {X, « u,} < u;.

If we see a term as a finite tree, u; and r will dif-
fer only on some “leaves” of u; which are labeled by
variables.

To any occurrence of such variables Uy, it should
correspond a variable U, in u,.

Let it be w the subterm in r originated at the posi-
tion where U; occurs in ;.

Then it is possible to prove that, if w # U,, there
should exist a substitution {U, « w} € y; and, by
(*) {Ut —w} e . UW =U,, by (*), {U, ~ U,} €
Pke-

When we compute {X; — u:}u, these are the only
substitutions which are effective on u; and we have
{Xe — ulpe = {X; — v} U {up —{X; — r}} =
{Xe = rHU{pe —{X: = 7}} = pp and {X; — w} <
B O

