TesGIvI-BE E@-EB- 157
(1994, 1. 21)

TAw AR LB TO ZERBEREE HOUITY X T LDEF

B M, N T, KBF A1
BT ENBERIEIT BT — %7 7 7 v 18 H#~— 2Rz

AT, () F7OLAEERLT, (2) 7OLAKEHEL, Q) R|I/ULALTFTOLAMTIVF Y =
A RFBENTELUITVAF AL TH, BLWIDEILVATFLE GP- VAFLEIRSR, B2,
FIFATF—FR—AVATFLRIDGP- VAF L LICKBTEL, T2 74 77— X—2Tit, FIBEE
AEHBICT— 7 OEHEE. EFRM. EFAELEERTA I LATE LA, BITEET 2 T Ut A 0®EE
R, FTULAOREHERIZE)., FoBREHIERETH S,

WIT VAT AR LT T 572012, CCSRCSP 0L 27O IRBAEmMONT WS, Tt 24851,
(1) ¥V AT AOBESEOHMCFMTH LD LI DEF 2y 7 TEL, 00 (2) 2 20FMR/NE WY
TYATFLERAWT, 22008HRRKEVWVATLARRETE2L2L0REY D, LAL, RO T7OLR
REEFEHE GP- VAFLAMEAT A LIIEEETHLLEDbNR S,

F4ix, CCS #i#BE L7 CCSGP ##%E 15, CCSGPIX GP- VAF ADRBICHE LA 7oL ARETH
2o BRETIH., GP-VAFADNEDIIIZCCSGP It o THABRENINET 2574 TF— I R—ADHI%
LB L, CCSGP ORM R EHES 2. BEIC GP- VAT AOREHIAD LERERT,

Analysis of Communicating Systems
with Generating Processes

by Process Algebra

Yoshinao ISOBE, Isac KOJIMA, Kazuhito OHMAKI

Information Base Section, Computer Science Division, Electrotechnical Laboratory
1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan

We analyze concurrent and communicating systems which (1) can generate child-processes, (2) construct
process trees, and (3) have multi-way local communications between a parent-process and child-processes.
In this paper, such systems with generating processes are called GP-systems. For example, active database
systems are implemented in GP-systems. In active database systems, though users can freely design
occasions, conditions, and actions for updating datas, it is difficult to design them because of the com-
munication, the concurrency, the cascading generation, and so on. .

In order to describe and analyze concurrent and communicating systems, process algebras such as CCS,
CSP, and ACP, are well known. Process algebras are useful for (1) checking whether behavior of a
concurrent system is equal to its specification or not, (2) constructing equal large systems from equal
small subsystems, and so on. But it seems hard to directly use these process algebras for GP-systems.

In this paper, we propose a process algebra named CCSGP (Calculus of Communicating Systems with
Generating Processes), which is an extension of CCS. GP-systems can be directly described in CCSGP.
We explain how GP-systems are described in CCSGP by an example of an active database system, give
a formal definition of CCSGP, and show one important proposition useful for design of GP-systems.

isobe@etl.go.jp, kojima@etl.go.jp, ohmaki@etl.go.jp

—b1—

1 Introduction

We analyze concurrent and communicating systems
which (1) can generate child-processes, (2) construct
process trees, and (3) have multi-way local com-
munications between a parent-process and child-
processes. In this paper, such systems are called
GP-systems. A GP-system is explained by Figure
1. P; in Figure 1(a) is a process running concur-
rently, communicating with other processes. Q; is a
process reserved as a resource, for example, in disks.
The running process such as P; can generate child-
processes @;’s from the resources. Furthermore, a
child-process Q@; also can generate child-processes
Q ;'s, and then a process tree is constructed as shown
in Figure 1(b). The process tree shows the relations
of a parent and children, and is used for multi-way
local communications between them..

For example, active database systems are imple-
mented in GP-systems. It fundamentally consists
of rules and managers. In HiPACH, the each rule
is a program including an event, condztwns, and
actions. When a rule is triggered by the event,
the managers generate transactions for the condi-
tion evaluation and the action execution. If the
conditions are satisfied, then the action is executed.
The action can include operations which trigger an-
other rules as nested transactions (also called sub-
transactions). Thus, cascading triggers produce a
tree of nested transactions. In active database sys-
tems, users can make new rules, exchange rules, and
modify rules if necessary. It may cause unexpected
interactions among rules. For example, infinite cas-
cading triggers may happen because of rules with
triggering each other. Hence, it is important to an-
alyze the behavior of the systems before they are
executed.

In order to describe and analyze concurrent and
communicating systems, rocess algebras such as
ccsi, CSP[SF and ACPM, are well known. Pro-
cess algebxas are useful for (1) checking whether be-
havior of a concurrent system is equal to its specifi-
cation or not, (2) constructing equal large systems
from equal small subsystems, and so on. For (1), a
specification may be a list of formulae of the form
{if (event,state) then (mew state)}. If both
a concurrent system and its specification are inter-
preted to descriptions in a language followed a pro-
cess algebra, then their equality can be checked by
the algebraic laws as shown in Figure 2. For (2),
it is possible to check equality of large systems by
separating into small subsystems, if the operators
preserve the equality. For example see Figure 3.

But it seems hard to directly use the process alge-
bras such as CCS, CSP, and ACP, for GP-systems.
We tried to describe GP-systems in m-calculus!®

{ i H
. H Communicating Line ‘

‘*&63

é
Resourcss Concurrent Processes
(a) Concurrent processes and resources

¢ s,
! . Communicating Line

@@
@) (@) @) (@)
® O@

l

i

|

L. ol
(b) Generating child-processes

9

9

Figure 1: An example of GP-system.

which is an extension of CCS. For example, gen-
erating processes can be described as follows in -
calculus:

RY a(z).(R| NEWPR)
SYSTEM ' (a)(R | a(pr1).PR1| PR2)

SYSTEM -Z»
(@)((pr1)((R | NEWPR){prl/z} | PRl) | PR2)

where the operator ‘|’ means a concurrent compo-
sition, and the operator ‘(a)’ means a restriction
of communication scope for ‘a’. In this example,
SYSTEM can generate a new process NEWPR by
an internal event ‘7’ through ‘e’ and ‘@’. And a pri-
vate link between PR1 and NEWPR through ‘prl’
is made by passing the event ‘prl’ from PRl to
NEWPR. The ‘prl’ works as a process-id of PRl
and it shows that the parent of NEWPR is not PR2,
but PR1. Hence, it is possible to have local commu-
nications between the parent-process PR1 and the
child-process NEWPR.

On the other hand, multi-way communications are
used in CSP or SCCS as follows:

(a.P1|a.P2]a.P3) = (P1|P2|P3) (CSP)
(a.P1 X a.P2 x a.P3) =, (P1x P2x P3) (SCCS)

For active database systems, the transition such as
in CSP is required because it is independent of the
number of synchronized processes (Note ‘——in (CSP)

3
and ‘2= in (SCCS)).

Specification

U\onlz
MS‘

Interpretation
Algebra Algebra
gvs=(Pro)\b = | s-es
Piir, ? |
Q'=c.Q

Figure 2: A proof of equality between a concurrent
processes and its specification.

~-System1

Processes
e —————— o

H
i
|
H
H
i

i

Figure 3: A proof of equality of a system based on
equality of subsystems.

For describing GP-systéms, a process algebra such
as w-calculus must be extended to describe multi-
way communications such as in CSP. However, it is
difficult, because an alphabet! must be given before
the execution in CSP and the alphabet may be vari-
able by passing events in m-calculus. Furthermore,
passing events among processes forces a calculus to
be complex, though it is too useful.

In this paper, we propose a process algebra named
CCSGP. CCSGP is a ‘Calculus of Communicating
Systems with Generating Processes’, and is an ex-
tension of CCS, not of 7-calculus. In CCSGP a new
operator ‘)’ is used for determining the relation be-
tween a parent-process and child-processes instead
of a process-id. For example, the two state (a) and
(D) of the system in Figure 1 are described in CC-
SGP as follows:

LAn alphabetis a set of all event which & process can occur
in the future. It is also called a sort in CCS.

5YS$(a) = ({Q1} = {Q2} = {Q3}) b (PL|P2|P3)
SYS(b) = ({Q1} = {02} = {Q3}) b

{(PL'Y((Q1)Q1")]Q2))
[(P2HQINRQYIQ2Y)))
I(P3)Q1")

where the operator ‘)’ means a subordinate concur-

rent composition. In this way, GP-systems can be

directly described in CCSGP.

Section 2 informally introduce the different points
of CCSGP from CCS, and shows an application of
CCSGP for an active database system. The def-
inition of CCSGP is formally given in Section 3.
In Section 4 we explain some properties of strong
equivalence in CCSGP.

2 Introduction to CCSGP

In this section, extended points of CCSGP are stated,
and examples of descriptions are shown.

2.1 The new operators of CCSGP com-
pared with CCS

CCS (Calculus of Communicating Systems) is a fun-
damental process algebra proposed by R.Milner(2.
We extend CCS to a process algebra CCSGP adding
seven basic operators ‘|,), [1, /, &, { }, and =¥’
for describing GP-systems. Local-events ‘[a], |a]’
are added for local communications and Call-events
‘{a]’ are added for calling child-processes from re-
sources. The function of each new operator is in-
formally explained as follows:

e Synchronous composition ‘|’. It is similar to an
Asynchronous composition ‘|’ in CCS except for syn-
chronization of only local-up-events ‘|a|’. For exam-
ple:

laf
((la)-P1) | (la).P2)) — (P1] P2)
It is more similar to a concurrency operator ‘|’ in CSP.

¢ Subordinate composition ‘)’. It is similar to an
Asynchronous composition ‘" in CCS except for local
communications between a parent-process and child-
processes. For example:

((fa].P0)) (lal.P1]|a].P2)) == (PO) (P1|P2))

where PO is a parent-process and P1, P2 are child-
processes of P0.

L]

Renaming ‘[|’. It is similar to a Relabelling ¢]’
in CCS except for renaming only call-events [a]. For
example:

({a]-P3)[b/a} 2L P3pb/a]
e Hiding /. Tt is exactly same to a Hiding ¢/’ in CSP.
For example:

(la].P3)/a = P3/a

In CCS, since a Hiding can be defined by Asynchronous
compositions and Restrictions, it is removed from ba-
sic operators. But in CCSGP it is needed for local-
events.

e Supplying ‘b’ It supplys a new process from re-
sources of left side of ‘b’ to processes of right side
through call-events. For example:

{6.Q1} © ((la]- P3)[b/a])
— {6.Q1} & ((P3[5/a]))Q1)
where {{ }} is a Resource operator as explained next.

e Resourcing ‘{ }’. It builds a resource from a pro-
cess. A process in a resource is called out by initial
events of the process. For example:

16913 - {6.Q1} b Q1
e Union “:. It unites two resources into one resource.
If processes in resources have same initial events, then
such processes are simultaneously generated. For ex-
ample:
£6.Q1} = {a.Q2 + b.Q3} = {c.Q4F —
(£6.Q1} = §a.Q2 +5.Q3} = £e.Q4}) b (Q1]Q3)

2.2 Penetration of Supplying opera-
tors

Notice that Supplying operators ‘ b’ can penetrate
other operators, and can supply processes from re-
sources. For example, the transition

£a.Q1} b ([a]-P1|[8}.P2) <~ {a.Q1} b ((PL)QL)|{b].P2)
is possible. In this case, ‘fa.Q1} >’ penetrates ¢|’,
and supplys the Q1 to P1. Furthermore, it isimpor-
tant to notice that. the call-events ‘[a]’ are prohib-
ited by all operators except for a Prefix, a Summa-
tion, and a Renaming. For example, the transition

a].P1 + .2 Ll p1

is possible, but the transition

I,

(la]. P1{[b].P2) == (P1|[b].P2)
is impossible. So, the transition

{{a.Q1} b (Ja].P1]|[3].P2)
~ {a.Q1} b ((P1][6]-P2))Q1) *)

is impossible. In principle, child-processes have one
parent-process, to avoid undeterminism of relations
of parent-processes and child-processes, in other
words, undeterminism of process trees.? In the case
(%), the child-process @1 has the two parent-processes
P1 and [b].P2. Of course, one parent-process can
have many child-processes. If a parent-process P1
has already had a child-process Q1 and P1 calls Q2,
then Q2 are running at the same level as Q1.

{a.Q2} b ([P1)QL) — {a.Q2} 1 (P1)(Q1|Q2))

2We are also thinking an extension for describing two or
more parent-processes, for example, using a Strong com-
position ‘|’ which prohibits the penetration of Supplying
operators.

2.3 An application of CCSGP for an
active database system

In this subsection, we apply CCSGP to an active
database system called a Securities Analyst’s As-
sistant (SAA). (It is slightly different from SAA
in [1].) The purpose of this application is to deliver
information to an analyst’s display, and to auto-
matically execute trades according to the analyst’s
instructions. On the other hand, the analyst can
also buy securities manually. The SAA consists of
four rules as follows:

1. DISP displays the new price, if a current price of a
security is updated.
Event : update
Condition : new value # old value
Action : display new value

. TR buys a security, if the current price of the security
is updated and if the new value is 50.

Event : update
Condition : new value = 50
Action : buy the security from accountl

. BUY buys the security and decreases accountl, if
‘buy’ is requested.

Event : buy

Condition : true
Action : decrease accountil

. CHK checks whether accountl is minus or not, if one
bought from accountl.

Event
Condition
Action

: buy
: accountl < 0
: display warning

The DISP and the TR can run separately. The
TR calls the BUY and the CHK, and waits to
commit until they commit. The BUY is immedi-
ately executed when it is called. However, the exe-
cution of the CHK is deffered unitl just prior to the
top level transaction committing, because it is in-
significant to be minus temporally if the last results
are plus. Thus, we expect that SAA is behavior as
shown in Figure 4. The immediate, the separate,
and the deferred are called coupling modesin active
database systems[l].

The system SAA is described in CCSGP as follows:

sar & RESO B> (M1[M2)
RESO %' gpISP} :: {TR} :: {BUY} fouK}
p1sP % update.DISP'
p1sP' %' (com|.|stdef].[comdez].0) | DISP”
prsp % {nv # ov}.display.0 + {nv = ov}.0
TR update.TR'
w % {nv = 50}.[buy].TR"
+{nv # 50}.|com|.|stdef|.|comdez].0
o 4 [com].|com|. [stdef].[stdef]. [comdef].|comdef].0
8oy %' buy.Buy’
puy 4 buysecu.decrease. |com|.|stdef].|comdef].0

e

comdef

g OR
{accountt 3 0}

commit

Figure 4: The sketch of the behavior of the SAA

cHK %' buy.CHK'
cnx' |com|.[stdef].CHK"
crg! 4 {account1 < 0}.warning.|comdef].0
+{account1 > 0}.|comdef}.0
My & detectupdate.{update].M1’
uy {com].[stdef].[comdef] .M1"
M1 = commit.M1

def
M2 =

e

manualbuy.[buy].M2'

12 %' [con). [stdef]. [comdef] M2"

w2 %' Sommit.M2
We can also describe the behavior of Figure 4 in
CCSGP, and can prove that the behavior of SAA
defined above is equivalent to one of Figure 4. One
example of transitions in SAA is shown as follows:

RESO > ((M1')(DISP'||([buy].TR"))
|([comde£}.M2")(|comdet].0] [comdef].CHK))) ———
RESO > ((M1)(DISP'[[(TR")(BUY'|CHK')))
|(M2")(0]|cHK)))
This transition is illustrated in Figure 5. One in-
ternal event ‘7’ occurs for generating new processes
BUY’ and cHk’' under TR”. The other ‘7’ occurs for a lo-
cal communication between the parent ([comdef].H2"")
and the children (|comdez].0, |comdef|.CEK'').

3 The definitions of CCSGP

In this section, we formally define the event, the
syntax and the semantics of CCSGP.

3.1 Event

We first assume that an infinite set A = {a, b,c,-- -}
of names is given. It is ranged over by ‘a’. Then

Separate
Immediate {nv ¢ ov} m—dlsphy update.DISP'
7 nv'= ov} DEP TR) [Gomde? 3 [comaef,.CHK"
detectupdate { Immediate Immediate buy.BUY" [lbw] } l[-qi]ﬁc 1]
{ M\ {nv = 50} ==+ buysectu === decrease (Couy.cak]
{::‘gmo;\il? {nv # 50} Immedisie Two intemal events
Defered {account! < 0} === warning | s RESOr s, greessssostssssmmsssnssarsssssassases [Ailocal communication
QIONTIIIn A OR N
{accounti ; 0} pdate
k=1 S e o
Immediate Immediate L
manualbuy == buysecu == decrease 1 buy.CHK"
il "
Just pri Immediate
I n‘:lcfn"n“ it Deferred {accountt < 0} === warning
er -~ esaan:

Figure 5: One example of transitions in SAA

we define sets of events, where 7 ¢ A and ‘7’ is a
special event called an internal event.

Definition 3.1 We define the following four sets
of events:

e Eg={a,@:a € N} is a set of global-events,
and is ranged over by ‘p’.

o By, = {lal,]a] : a € N} is a set of local-
events, and is ranged over by v’

e Ec = {[p] : p € Eg} is a set of call-events,
and is ranged over by ‘u’.

o Event = EGUELUEcU{r} is a set of events,
and is ranged over by ‘w’. i

The set Eg U {r} and Eg U Er U {r} are ranged
over by ‘@’ and ‘c’, respectively.

3.2° Syntax
We define the syntax of CCSGP as follows:

Definition 3.2 The set of process ezpressions, £
ranged over by E, F, .., is the smallest set including
the following ezpressions:

X : Variable (X € &)
A : Constant (A € K)
R : Resource (R € R)
w.E : Prefix (w € Event)
ZierE; : Summation (I is an indexing set)
Eq||E2 : Synchronous composition
E,|E; : Asynchronous composition
E;y)E; : Subordinate composition
E[f] : Relabelling (f is relabelling function)
E{f] : Renaming (f is renaming function)
E\L : Restriction (L C N)
E/L : Hiding (L C N)
R b E : Supplying(R€R)

where E, E; are already in £. X and K are sets of
process variables and process constants, respectively.

The set of Resources, R ranged over by R, R;,-++, is
the smallest set including the following exzpressions:

{P} Resourcing(P G"P)
it Ry ¢ Union

where R, R; are already in R. The set of process, P
ranged over by P, Q, - -, is the smallest set including
the following ezpresswns '

Py|P,,

A(eK), R(€R), w.P, ZiciP, P|P,
PI)P2, P[f]r P[[f]]i P\Lv P/La R p P,
where P, P; are already in P.) 1

The relabelling function ‘f : EGUELU{r} — EgU
Ep U {7} satisfies the following conditions:

'f_(i} € Egiffw € Eg
of(p) = f(p) (n=r
/(@) = f(lah) 'ff(aﬂ = f([al)
The renaming function ‘f : Ec — E¢’ satisfles the
condition [f(p)] = f([e])-

A Constant is an process whose meaning is given
by defining equation. In fact, we assume that for
every Constant ‘A’ there is a defining. equation of
the following form:

A¥p

of(w) € Epiffw € EL

(PeP)
where each occurrence of A in P is within some
subexpression w.P’. In other words, A is weakly

guardedin P. Constants which are not weakly guarded

make a calculus more complex, and the behavior is
indefinitel”). Hence, we treat only weakly guarded
Constants in CCSGP.

A special process inaction ‘0’ is defined by using

Summation as follows:

0L 500 B

3.3 Semantics

The semantics of CCSGP is defined by the following
labelled transition system like one of CCS: :

(€, Event,{—*: w € Event})

For example, ‘E -+ E’' (E,E' € £) means that the
process expression E becomes the process expres-
sion E’ due to the occurrence of the event ‘w’. The
semantics of the process expressions consists of the
definition of the transition relations ‘==’ over &.

Before defining the semantics, we define a set of
global-events for each process P.

Definition 3.3 We define a set ‘ev(P)’ of syntac-
tic global-events of a process P as follows:

ev(w.P) = { %P} (w=p)

(w # p)

- ev(Zier By) = Uiel ev(P;)
eo(PIQ) = eo(P)U en(Q)
ev(P|Q) = ev(P) U ev(Q)
ev(P)Q) = ev(P)U ev(Q)
ev(P[f]) = {f(p): p € ev(P)}
ev(Pf]) = ev(P) ,
ev(P\L) = ev(P)— {a,@:'a € L}
ev(P/L) = ev(P)—{a,T:a € L}

ev(A) = ev(P) (A% P)

w({PP) = eo(P)

ev(Ry :: Rg) = ev(R1) U ev(R2)

-ev(R > P) = ev(P) [|

Since a Constant ‘A’ mist be weakly guarded, this
definition always stops. Then, the semantics of CC-
SGP is defined as follows .

Definition 3.4 The transition relation ‘-’ over
process ezpressions is the smallest relation satis-
fying the following inference rules, where the rule
means that if the transition relation above the line
exists and the side conditions are satisfied, then the
transition relation below the line also exists.

Event ————5—
wE - E
E; 2. B!
Sum £

TR s
JjeI
I 8ierB; = E} ()

ey plp

ElF 9 By F

Syncy

E'—f-‘—»E'
Syncy — =g
*BIF = E|F
2 F
Sync
Y BIF = Bl
F P, F!
E'|F

E2FE
E|F

Syncy

E -2 E

Com
YEIF = EF

(o # [a])

e o

Com
2EIF < EIF -

(o # [a])

EL B FEF
E|F I E'|F'

Comg

la)
Subol‘——E—TT"—El——
EyF 5 Eyp

rlp

Subog -
E)F - E)F
ey pldp

Sub03 BVF = BE

E-LE

Suboy —=F-—He—
Yo F L EVF

F-2 F
Subog ———+——
SEVF = B)F
14] 7 3
Subog LB FLoF
BEVF - EVF
i ,
fel— Al B
E[f] — E'[f)
%
Ren E——F

Bl
el 2 gy

E-Z E
= e C77

es— E— E' (o ¢ (L))

E\L -2+ E'\L

a ’
Hide; —E£—E (5 (1))
E/L - E'JL

: EE
Hidegy B/l B/L (o ¢ (L))

Reso—— P = Pl
{P} -2 P} & P

. RIS R bBP
Uni (p ¢ ev(R2))
VR e Ry) 2o (R Ra) b P

. Rz—p—&Rg > P
Uni (p & ev(R1))
N R v Ry) s (Ry - Ra) b P

Ri2RipP R -5HRypQ
(Ry = R2) 25 (Ry :: Ro) b (PQ)

Unig

w
Con2—P' (A% py
A

ey -4
EXYE RLRpP
RbE- R (E)P)

Suppy

el g R RpP

R (E)F) R D> (E')(F!P))

Suppy

S.EventR S b S RvE (w # [o])

Rp>E; - RbE,
S.Sum; - M = Lo
R (ZierEi) — R b E'j

(jelD

RoESRpr Rprppr

S.Syncy -
R > (EJF) % R o (27

RpERpPE

S.Sync =
VIR b (BIF) = R b (B'F)

RpF-*5RpF

S.Sync
YR S (BIF) = R b (B F)

P ! ? 14
S.Sync4R1>E—>R|>E RpF—-—RpPF

R > (E|F) — R > (E'|F)

RpE-RBE -
5.C (o # [a])
L (BIF) = R & (B F)

RbF-Z R F (o # [a])

S.Com =
M S (EIF) <> R b (EIF)

ROE'RpE RpF -’ RpF

S:Coms R b (B|F) R b (E|F)

" la] !

S.Subo; —& DETJR > E
R D> (E)F) — R b (E")F)

RpF ppp
S.Subog = -
R > (E)F) — R D> (E)F')

[a] ol lal 4
S.Subog,RDE—’RDE RpF-—SRpPBPF

R b (E)F) = R b (EF')

RpESSRpE

S-Subod o BV) 2 R b (B)F)

RpF-RpF
S.Subo =
SR (EVF) "= R b (B)F)

3 P 1 7 !
S.Sub RDE—-‘RDET RpF-—RDPF
uhee E b (EVF) = R b (E)F")

S.Rel RpE-ZYR > E

R B 1 r e @)

RpE->RpE (0 #7)
B b (E[f]) -2 R > (E'IfD)

RPE-SRE -
R > (E\L) -2 R b (E'\L) (o ¢ (L))

SHidej — LB E-——RpE (o € (L))
R b (E/L) - R b (E'/L)

: RpE-RpE
SAH1de2R 5 (E/L) = R b (E'/L) (o (L)

p
S.Reso Lic T B pP
Ry bRy — Ry (R > P)

o '
S.ConBBL-— R P (,def p
R>pA—RDP

RibE-—">R bE
Ry b (R b E)—> Ry b (R b E')

S.Supp

where,
(L) = {a,h‘, la, [a] :a €L}

4 Equivalence in CCSGP

We define equivalence relations in CCSGP like in
CCS, for example, strong equivalence and obser-
vation equivalence. In this paper, we state some
properties of CCSGP for only strong equivalence,

because we have not completed the full research of
the equivalence yet.

Strong equivalence is defined by strong bisimula-
tions as follows(?l.

Definition 4.1 A4 binary relation S € P X P over
processes is a strong bisimulation if (P, Q) € S im-
plies, for all w € Event, that

(§) whenever P =+ P! then, for some Q',
Q = Q' and (P',Q") €S,
whenever Q — Q' then, for some P’,
P =5 P'and (P,Q") €S.]

(&)

Definition 4.2 P and Q are strongly equivalent,
written P ~ Q, if (P, Q) € S for some strong bisim-
ulation S. 1

For the strong equivalence, the following important
proposition holds. This proposition is illustrated in
Figure 3.

Proposition 4.1 For any R;,R; € R, P € P,
If Ry ~ Ry, then Ry b P~ Ry b P.

Proof The proof is accomplished by showing that
the S defined below is a strong bisimulation, using
induction over ‘n’ and structures of processes.

SM = { (B b PR > P),(R1 >Q1,Re > Q2)
P,Q1,Q2€P, Ri,R2€R,
Ry~Ry,Ri >Qi~RP>Q2 }

(n22)

S(n) = { (R:
(Ra
(R
(Ra
(Ra
(R
(Ra

g (P)PI)’,RQ > (P)PH))!
& (PriiPp), R2 & (Pu|Pyp)),
&> (Pr|P}), Re & (PulPp)),
& (PrifD, Re & (Pulfl),
B (Pr\L), Bz b (Pir\L)),
> (Pr/L), Rz & (Prr/L))
> Pr,Ry > Pyp)

:(R1 b PRy b Py € (-1,
(Ri > P}, Ry > Py) € S(»=1),
PePVfVL, Ry ~Ry }

S = lim s®

i—0co]

Unfortunately, ‘~’ is not a congruence relation in
CCSGP, because P ~ @ does not imply R b P ~
R p Q. For example,

([a].0)[(b.0) ~ b.0
since call-events are prohibited by ‘|". And
{a.0} b (([a].0)|(6.0)) £{a.0} & b.0
since the following transition is possible,
{a.0} & (([a]-0)](5.0)) — {a.0} > ((0)0)|(5.0))
but ‘§a.0} © 5.0’ have no 7-transition.

So, we prove some auxiliary propositions to make
up for the above defect. For example,

e If Rp> P~ R PP, then R p (P|P) ~ R b (FP2|P).
o If Py ~ Py then R b (P1)P)~ R b (P2)P),
e fRpB>P ~RDPthen R>(P)P1)~ R > (P)P).

5 Conclusion

We have stated the difficulty of describing GP-systems
in m-calculus, and we have proposed a process alge-
bra CCSGP for describing GP-systems. In Section
2, some new operators of CCSGP have been infor-
mally introduced, and an application of CCSGP for
an active database system has been shown. In Sec-
tion 3 the definition of CCSGP has been given, and
in Section 4 an important proposition have given as
follows: if a resource R1 is strongly equivalent to
another resource R2, then we can exchange R1 for
R2, preserving the behavior of the whole system.
The features of CCSGP are summarized as follows.

* Processes can generate other processes from resources,
o Process trees are constructed automatically,

e Multi-way local communications between a parent-
process and child-processes are possible.

Yet, we remains many works on CCSGP about equiv-
alence relations. We hope to have algebraic laws
enough to prove equivalence between processes. Fur-
thermore, CCSGP may be modified to describe sys-
tems with two or more parent-processes for one child-
process.

Acknowledgement

The authors wish to express our gratitude to Dr. Kimihiro
Ohta, Director of Computer Science Division, Electrotech-
nical Laboratory. They thank all colleagues in Information
Base Section for their helpful discussions.

References

[1] D.McCarthy and U.Dayal. “The Architecture Of An Active
Data Base Management System”, Proc. of the 1989 ACM
SIGMOD Conference, pp.215 - 224, 1989.

2] R.Milner. “Communication and Concurrency”, Prentice-
Hall, 1989.

[3] C.A.R.Hoare. “Communicating Sequential Processes”,
Prentice-Hall, 1985.

[4] J.C.M.Baeten and W.P.Weijland. “Process Algebra”,
Cambridge Tracts in Theoretical Computer Science 18,
Cambridge University Press, 1990.

[5] Robin Milner, Joachim Parrow and David Walker. “A Cal-
culus of Mobile Processes, I and I1”, Information and Com-
putation, 100, pp.1 - 40 and pp.41 - 77, 1992.

{6] Luca Aceto, Bard Bloom, and Frits Vaandrager. “Turnig
SOS Rules into Equations”, Proc. of 7th annual IEEE sym-
posium on Logic in Computer Science, pp.113 - 124, 1992.

[7] D.J.Walker. “Bisimulations and Divergence”, Proc. of 3th
annual IEEE symposium on Logic in Computer Science,
pp.186 - 192, 1988. :

