Tars iy r-SiE- AR EER- 1611
(1994. 3. 10)

R AR~ L — 2 5 5o ek 360
TorvavI)TZrA A

/K E— I Al A
{ komura, hirakawa, ichikawa }@sdesun.ntt.jp
NTT v 7 v = 7O
T 180, HUHS BURIPTT Y 3-9-11

55 F L V7Y THEORR NG OBHIUL &R HMAROKAIZEERD 5, ST REHE
CHF2EERav 27 b o—2Th Y, KL VELDOMERTDOU TS, —FH, 2—FFOHKICE Y, ¥ X
T A~QOER Y WIHEERCHE T3 c L TETHREEE A0, ERBEGROEEEEREOEEESML T
30 TOXHSEMHHORELR FF— 1 T3 00ORAMNRGE LT, ZOo0HEEZERT 24 v — 4% DM Tl
HIEREEDT 7y av) 774 v Ay Y DOWTELT b, MEHEHAZ OB —FBZT7vav oy
YAV MREICHERFEIEC A D 2 v, AR, LRESHEOMNBMEMAMIERT 7o av) 7rf v iy M R
BREEC & 2 2 DO+ 34 % 73,

MXF—7—F Ta AW, HEERRK, T2 av i 7y A4y Ay b, RERFEIRH,

Action refinement in a process algebraic language

that has a specification synthesis operator

Seiichi KOMURA Yutaka HIRAKAWA ITaruhisa ICHIKAWA
{ komura, hirakawa, ichikawa }@sdesun.ntt.jp
NTT Software Laboratories

3-9-11 Midori-Cho, Musashino-Shi, Tekyo 180, Japan

Abstract ~ System development process is repetition of perceiving new requirements and implementing them.
When new requirements are clarified in the next design stage or after completing the design, current systems
are considered to be incomplete. Incremental design method supports these repetition in design process.
New specification can be added to an incomplete current specification, and a revised specification is easily
synthesized. This article discusses theoretical foundations of incremental design methodologies in a process
algebraic language. On the other hand, refinement is one of the most important concept in design method.
However, it is known that refined specifications ohtained from two bisimulation equivalent specifications are not
guaranteed to be bisimulation equivalent. Unfortunately, it is same in incremental design methods. This article
clarifies a pair of sufficient conditions to preserve bisimulation equivalence for incremental design method.

F key words process algebra, specification synthesis, action refinement, bisimulation equivalence.

1 Introduction

In order to comply with increasing complexity of com-
puter systems, efficient development methods are re-
quired. Many design methodologies, especially for-
mal description techniques have therefore been pro-
posed. Among the concepts of design methodologies,
refinement is one of the most important. It supports
so-called top-down design. Incremental development
methodology that we have already proposed is a de-
sign concept which differs in standpoint from top-down
design [ITKTS91). In incremental design method, spec-
ification is always considered to be incomplete. New
specification is added to incomplete current specifica-
tion, and a revised specification is easily synthesized
when new requirements are clarified. The advantage of
incremental methodology is that it is easy to add new
functions which are required after the systems have
been put into use. Because of the increasing numbers
and kinds of computer users, it is becoming difficult
to recognize the requirements for computer systems.
Therefore we believe that incremental enhancement of
systems is becoming more important.

This article discusses the theoretical foundations for
action refinement and specification synthesis in a pro-
cess algebraic language. In the field of process al-
gebra, there have been reports about action refine-
ment [Itoh90] [Acet92] [Glab90]. However these did
not consider specification synthesis. On the other
hand, a process algebraic language that features a syn-
thesis operator is proposed in IYK90]. But that arti-
cle did not discuss action refinement. So far, there is
no report that investigates refinement and incremental

design simultaneously.

It is known that refined specifications obtained from
two bisimulation equivalent specifications are not guar-
anteed to be bisimulation equivalent. Unfortunately,
it is same in incremental design methods. This article
clarifies a pair of sufficient conditions of specifications
and refinment in incremental design method to pre-
serve bisimulation equivalence after refinement.

In Section 2, some definitions and notations used
in this article are given.
in [TYK90] is adopted in this article. It is reviewed in
Section 3. Action refinement and an equivalence called

The language introduced

“differential equivalence” in [Itoh90] is reviewed in
Section 4. Section 5 proposes the conditions for spec-

ifications and refinment. And we prove that bisimu-

lation equivalence is preserved after refinement on the
proposed conditions.

2 Notation and labeled transi-
tion system

This section explains the notation and definitions that

are used in this article. Throughout the article, the

end of a definition. theorem, etc. is marked by ‘F,

and the end of a proof is marked by ‘ .

2.1 Basic notation

Notation 1 (Sets and Functions) Let A and B be
sets, « € A and b € B.

1) The cardinality of A is denoted by §(A).
A\B={a|a€ ANa¢g B}. A\ B is called the

complement of B relative to A.

2) {a.b) denotes the ordered pair of a and b. (A, B)
denotes the set of ordered pair.

3) (4 — B) denotes a set of all functions from A to
B.

4) The set of natural numbers is denoted by “w”. §

Notation 2 Let A be a set, ¢ be a sequence in A”
and i € w,

1) B(i,o) denotes the i-th element of o.

2) length(o) denotes the length of .

3) PrefizSet(o) 2 {¢ € A* |30 € A*[¢6 = o]}

4) prefiz(i,o) denotes the prefix sequence of o that
length is 4, i.e. (prefia(i,o) € PrefizSet(c)) A
(length(pre fiz(i,0)) =12). §

Notation 3

@y ... 0p.

1) “@ is an abbreviation for sequence

2) Let a and b be elements of some set and £ be an

—

expression of the set.
a4} denotes the i-th occurrence of a in &.
&[b/a] denotes the expression obtained from £ by

substituting b for all occurrences of a.ll

2.2 Labeled transition system

Definition 2.1 A labeled transition system TS is de-
fined as a 4-tuple TS = (S, A, T, so), where:

e Sis a (countable) non-empty set of states,

e A is a (countable) set of labels,

e I'={-p— CSxAxS|aec A}
is a relation called the transition relation,

e 5o € S is an initial state of TS. |

We sometimes use LTS as an abbreviation for la-
beled transition system.
Next, we introduce several formal notations for la-

beled transition systems.
Definition 2.2 Let B, B;, C be labeled transition
systems, u,u; € A and o € A*,

® B-py..pin —4C
if 3B;(0 < i < n)
[B = Bo—p1 —Br1—p2 —..—tn —B, = C].

o B—py.pin —4 if IC[B—py... —C].
o outa(B) & {pe A| B—p—).
D4(B) ¥ {C|3u € A[B~p —C]}.
e S(B,o)a ¥ {ne A|3IC[B-o —C—p —]}.
o AS(B,0)4 & {C | B—o —C).
Tra(B) & {0 € A* | B—o —}.
Pathso(B) ¥ {p | (p € T+(B))

A(Vg € Tr(B)[p € prefiz(q) = ¢=p]}. 11

Definition 2.3 Act is a (countable) set of observable
actions. Jj

Usually, Act is used as the label set of LTS. But in
discussion of refinement, (Act,w) is used as the label
set. Therefor all notations in Definition 2.2 are defined
with subscript indicating a label set. When A is ap-
parent from context or not important, it will be often
omitted.)

3 A language that features a

synthesis operator

In this section, we introduce the language £S dis-
cussed in this article. This language is defined in Sub-
section 3.1, and some of its properties are explained in
Subsection 3.2.

Definition of LS

LS has been defined in [IYK90], and we repeat its

definition here.

3.1

Definition 3.1 Let A be a set, then £S 4 is the least
set in which every terms is constructed from following

only.
stop € LS4 .
exit € LS4 .
BelSppneA=uBeLlS,.
By € L84, By € LS4 = Bi[|B; € LS 4.

B1€ LS4, B:€ LS4, GCA
= B41|[G]|B2 € LS 4.
By €LSA, B € LS4 = Bi)B € LS4. |

Elements of LS 4 are called statements.

We will often abbreviate LS4 to LS, when A is
apparent from context or not important.

To treat action refinement from an action to a state-
ment, action prefir should be replaced by sequential
composition. But in this article, only action refinement
from an action to an action sequence is treated, so we

do not replace.

Definition 3.2 Axioms of LS4 combinators: D,y
stop none.

exit —§ — stop (6 ¢ Act).
weAF p;B—pu—B.
Bi—p —Bj, out(By) N out(By) = 0

- BJ []Bg—,u —»B;
By—p —BY, out(By) Noul(Bg) = 0

F Bi[|Bo—p — B,
Bi—p —B{, By—p —B}
out(By)Nout(B2) C G, u €G

F B,|[G]|B2~p —B1|[G]| Bs.
By—p —Bj, out(By) Nout(By) C G,
n¢G

b B1|[G]|B2—p — B1|[G]| Ba.
By—p —Bg, out(By) Nout(By) C G,
né G

b BLIGIBs 4 — By [G1B).
Bi—p — B}, Bo—pu — B}

b By{)Ba—p —BlWBY.
Bi—pu —BY, 1 ¢ out(B2)

F Bi#yBa—p — B
By—p —Bl, j & out(B1)

b By By—y —Bb. I

exit
B
B]UB’_)

B1[[6]1B;

BBy

Definition 3.3 Tp,, is the smallest set that includes
all transition rules derived from D,,. }i

Definition 3.4 (£S4,.A4,Tp,,,S) is called the labeled
transition system corresponding to S-€ L8 4 and de-
noted by {ts(S). 1

In this article, we use “strong equivalence” in
[Milng9].

lence. In this article we rename “strong equivalence”

The symbol “~" denotes strong equiva-

to “strong bisimulation equivalence” or merely “bisim-

ulation equivalence”.

Definition 3.5 8?4 is the smallest subset of £S84
that includes every statement S which satisfy following
conditions.
For all C € D(S),
if C = A;[JA2, then out(A;) Nout(A:) = 0.
if C = A1|[G]] Az, then out(A;) Nout(A2) C G. B

3.2 Some properties of LS

In this subsection, characteristic points and properties

of LS are explained.

Proposition 1 If Sis in ST 4 and ¢ is in A",
then §(AS4(S,0)) < 1.1
Proof. Omitted. |l

Definition 3.6 Let A be a statement and o be in
Tr(A). The only element in AS(A, o) is denoted by
NAS(A,0).1

Corollary 1 If A and B are statements in ST 4, then

A~ B & Tra(A)=Tra(B). 1

in LS.,

and differential equivalence

4 Action refinement

In this section, we introduce refinement functions on
LS 4ct- In subsection 4.1, we state our aim and men-
tion some problems concerning action refinement in
['SAct-
['SAct
duced.
ditions on that a pair of pre-refined statements are

In subsection 4.2, refinement functions on

”

and differential cquivalence “~;" are intro-

“differential equivalence” is one of the con-

refined to a pair of statements which are bisimulation
equivalent.

4.1 The objective and problems in re-
fining £S84.
We have been investigating incremental design

methodology [ITKTS91]. The advantage of incremen-
tal design methodology is that new functions can be
added easily after the systems have been put into use.
Therefore throughout life cycle, programs can be ex-
tended. Such extend-ability is necessary to cope with
the diverse requirements that are caused by increasing
the number of users.

Computer systems, especially distributed systems
are becoming larger. Large systems are usually de-
signed step by step. At first they are designed ab-
stractly, then stepwise designed in detailed. The in-
crease in complexity of specifications makes specifica-
tion modification more difficult. The motivation for
our study of action refinement in £8 4¢; is the need
to create a good design methodology for large systems
that supports the addition of new functions after the
systems has been put into use.

At the beginning. the relationship between refine-
ment and addition of new functions is considered. A
fundamental requirement is to preserve equivalence.
So we investigated what pair of specifications preserve
bisimulation equivalence by restricting the method of
refining statements. Conditions for specifications and
conditions for refinement depend on each other. This
article takes up this problem and a pair of sufficient
conditions of specifications and refinement are shown

in Section 5.

Abstract Specy —— Refined Spec;
I

What 1

What relation 7 — || refinement 7

!
Abstract Speco +— Refined Speca

Figure 1: The issue investigated in this article.

Next. two problems in refining statements are listed.
First example is a problem derived from action atom-
icity [Teoh90] [Acet92].

Example 1 Let S; = (a;b;stop)[](b; a;stop) and
Sy = (a; stop)|[J|(b; stop).

S, and S5 are bisimulation equivalent.

Suppose that refinement by which action “a” is re-
placed with “aj;as” and “b” with “by;by” is applied

to Sy and Sa.

S is refined to

(a1; az; by; b3 stop)[](b1; be; a1 as; stop)

and 57 is refined to (a1; as; stop)|{]|(h1; ba; stop).

After refinement is applied to these statements, they
are not bisimulation equivalent. Refinement does not
preserve bisimulation equivalence relation because ac-
tions are considered as atomic, instantaneous.

The next example occurs only in £S 4.

Example 2 Let S;
(a;stop)|[]I(b; stop).
action “a” is replaceed with “aj;as” and “b” with
“a1;by” be applied to S; and Ss.

S1 is refined to (ai;as; stop){](a1; bs; stop) and Sy

= (a;stop)[J(b;stop), S2 =
And let refinement by which

is refined to (a1; as; stop)|[}|(a1; bo; stop).

Concerning refined Sy, the axiom of choice opera-
tor in Definition 3.3 cannot be applied to Sy because
out{ay; ag; stop) N out(ay; by; stop) # @. So there is
no axiom that can be applied to refined S;. Therefore
refined S} cannot translate.

Concerning refined Sa, the axiom of parallel opera-
tor in Definition 3.3 cannot be applied to S» because
out(ay; az; stop) N out(ar;b2; stop) € 0.

So the LTS of a atatement obtaind by some refine-
ment may be impossible to evolve into final state, al-
though the its pre-refined statement’s LTS evolves into
final state without fail.

Taking these examples into consideration, we define

action refinement in £8 4.

4.2 Refinement function of £LS

Definition 4.1 Let S be a statement in £S 4., and
v € (Act — Act™), Refin[y] is in (LS4t — LS act)
such that

Refin[y](S) = S[ﬂ)/a] for each action a occurs in
S, where

7(a) = B(1,7()); ..; Bllength((a)), ¥(a)). B

Definition 4.2 NumOc®(a, A) is the number of a’s
NumOec(a,T) is the
number of a’s occurrence in LTS T §

occurrence in statement A.

Next we introduce “differential equivalence” that is
defined in [Itoh90]. This equivalence comes from the
idea that all actions are not atomic, but they have a
start and end. In differential equivalence, each action

is divided into two parts indicating its start and end.

Definition 4.3 Let S, S;, S» be a statement in
LS 4.

d(.S) denotes statement in ES(Acz,{S,E}) that each
occurrenice a of all actions in A is replaced with
(e, 8); (a.E).

S; and Sy are differential equivalent iff d(S;) ~
d(Sa).

4 ~g4 B denotes Sy and S» are differential equiva-
lent. g

Notion 1 Occurrences of {(a,S) and (a, E) partioned
from the same element are said to correspond. [

Proposition 2 Let Sy, So be statements of £8 4.
If Sy ~¢ Sa then S7 ~ Sa. §
Proof. Omitted(see [Itoh90]).

5 The conditions of refinement

that preserve bisimulation

equivalence

In this section, a pair of sufficient conditions to pre-
serve bisimulation equivalence after refinement is pre-
sented. The conditions consist of a condition for pair
of statements and a condition on refinement functions.

Refinement is divided into two step: the first step is
only replacing each action with an sequence in (A, w)*
: the second step relabels each (a,i) in (4,w) to an
action in Act.

5.1, it 1s shown that if two state-

In subsection
ments are differential equivalent, action-partitioned
statements are also bisimulation equivalent.

In subsection 5.2, we define a set of refinement
functions FS§ 4.(SP) for refining statements that pre-
serve bisimulation equivalence, where SP is a subset
of 87 4.,. And it is shown that if S;,S, € SP and
S1 ~aq Sa, then S; and Sy are refined to statements
that are bisimulation equivalent by any function in
F8Ea4:(SP).

5.1 First step: partitioning actions

Tn this section, replacement of each action in state-
ments with a sequence in (Act,w)* is shown.
First. functions in (Act — (Act,w)”) is defined.

Definition 5.1 Let 4 bein £S and I'p be a function

m (Act —w\ {1}).

Part[Cp] is a fanction in (L840 — LS(acrw)) 88
follows.

In Part[Tp](A), each occurrence of all actions in A
is replaced with expressions such that

if I'p(a) = 0, action a is replaced with (a,0),
if Tp(a) > 2, action « is
(a,1);..;(a,Tp(a)). B

replaced with

Definition 5.2 Let & be a statement and & =
Part[rp](gl).

Occurrences of {a, i) in & are called

Part[l pl-descendant(a®{*}) in & if their occur-
rences correspond to the occurrence a“1%¥} in £, §

An important operator for labeled transition sys-
tems is defined. In the rest of this subsection, all lem-

mas and propositions concern this operator.

Definition 5.3 Let (a,7) be a transition label in
{ts(S), S be in LS(4ctw) and

1<k< NumOcL((a,i), S).

CorOc({a, i), k,S) is a smallest set of natural num-
bers such that :

if k-th occurrence of {a,7) in {ts(S) indicates the
transition by m-th occurrence of (a,i) in A, m €

CorOc({a,%),k,5). 1

By synthesis operator, several actions are synthe- |

sized to one transition in labeled transition systemns.
Therefore CorOc is defined as a set.

Definition 5.4 Let S be a statement of SD(ACW>.
op{{ai,i1), .., {@n, in)}(S) is defined as follows!,

i) opl(a1,2), ., {@n, D)(S) = lts(Part[Tp)(S5)),
where Tp € (Act — w \ {1}) such that

2 ifex=a,(l<m<n),
I‘p(:l:):{ ife=an(l<m<n)

0 otherwise.

ii

Raoy

Let i; > 2(1 <j<n)

opl{ar,ir), ..., {(@s,ie + 1),y (@n. $,)](S) be de-
termined from every occurrences of (a., i) in
op[{a1,71), .y {as, s)s ooy (@, 10)](S) as follows:
Let 1< j < NumOck({a,, i.), op[{c, H)(S)).

For the j-th occurrence of (a,,i,), there is a o in

[’S(A ctw) such that

1We sometimes use the expression op[(a?i)](S) as an abbre-
viation for op{{a1,i1), ..., {an, 1n)](S).

opl{ar, iy), o {as, 2s), - (an,1,)](S)

o __((amiJ)W’[(aﬂl)](S)«i);Y) | 2,
where “|" denotes the branch of LTS and “” de-
notes concatenation of L7S.
Let W = ({a,.i,)PHeNSY vy 7.
To obtain op[{ay, 1), .., (@s, %5 + 1), .., {@n, ia)](S),
W is replaced with W’ that is constructed as
follow. .
Let 2" = Z[{ag,is + 1)/ (ay, i,)PHaNE kY
for all k that hold CorOc({as,i),k,S) C
CorOc({as, is). j, S).
=z [(((LS,i5>0P[((1.’i)](S)«j) (2| Aas,is +
1):Y)).1

Lemma 1 Let a; € Act (1 € i < j)and A, B €
S'DAMA

A~y B>

op[{ar. 2).. {a;, 2)](A) ~ op[(a1,2)...(a;,2)](B).

Proof. This is obvious from Definition 5.4. |l

Lemma 2 Let n; > 1 (1 <i < j)and A, B € SP 40.
Foral 1 <s<j
op[{ay. m), ..., {aj. n;)[(A)
~ opl{ar, n1), ..., (a;, n;)](B)
=
opl{ay. n1), ... {as, ne + 1)..., (aj, nj)}(A)
~op[{ar.ny). ..., {ae. ne + 1) .., (aj,n;)](B). &
Proof.

From Definition 5.4, opl...{a,)...](X) is such that
op[{a. YN)—o — Wx)

and Wy = Zyx | (a, iy PHeNEOEY ¥ = 4 By,
In op[(a,i + 1)](.Y'), Wx is replaced with W' as
described below.

Wi =2Zx | {a.) (Z% | <a,i-1— 1);¥x).

Z = Zx[(a i + 1) /(a,) PUeNOOERD),

From the hypothesis, W4 ~ Wp.

So Zy~Zp and Y4 ~ Yg.

Wheni > 2, from A, B € 8P 4., thereis a {a,i) in
each Path (4. .)(Zx) and first {a,i)’s occurrences
in each path in Path(Zx ‘)(Ac,,w)(Zx). correspond
to a* ¥ in X', where m € CorOc({a,%), k, X).
Moreover only these occurrences correspond to
a4 in X for all m € CorOc({a, i), k, X).

So Zl ~ Z4 .

Therefore

op[{ay.), . {aj, nj)](A)

~op[{ay.nyy{ag, ng)](B)

=
opl{ar, m), ..., (a,, n, + 1)y {aj, i)](A)
~ opl[{a1,n1), ..., {as, ns +1)..., (aj,7)}(B). W

From the above lemmas, following proposition is
proved.

Proposition 3 Let A and B be in 8P 4,,.
A~y B>
op[(as, n1), ..., {a;, n;)}(A)
~ op[{a1, n1), ..., (aj, n;)](B). §

The rest of this subsection, relationship between
“op-operator” and “Part[l'p]” is stated.

Lemma 3 Let S be a statement in S? 4ees

I'p € (Aet —w), and i € w.

If in Its(d(S)), transitions that occur just after any
occurrence of (a,S) that corresponds to €% in §
are only transitions by (a,E) , then in 1s(Siaetu))
transitions that occur just after any occurrence of (a, i)
that correspond to a in S are only transitions by

(a,i+1). 1

Proof.

In lts(Part[lp)(S)), a transition by (b,) occurs
after transitions by (a, i)

(1 < i < Tp(a)) iff there are occurrences of
and b that both within the scope of some “1or
in S. Although applying “Part[T'p]” to S, in
each scope of “|fI|” in lts(Part[Tp](S)) there is

no Part[lp]-descendant of actions that is out of

scope of the “|[J[” in S. So this lemma holds. g

When statements are refined, some attention should
pay to the influence of the synthesis operator.

Example 3

Let S = (a;stop){)((b; stop)|[]|(c; stop)).

In lts(d(S)) there is no transition except by {(a.E)
after transition by (a, S).

Suppose v € (Act — Act™) is as follows,

dids ifz =a,
Refin[y(z) = { dids ife=1b,.
er1ea ifr=c.

By synthesis operator, there are transitions by d>,
d3 and e; just after d;. Among them only d5 is come
out from a by the refinement. It is caused because
Refin[yl(a) and Refin[y](h) have same prefix. On

applying Part[Tp] (Tp € (Act — w)), if a # b then
Part[T'p}(a) and Part[l p](b) have not same prefix. So
this cannot be a counter-example for Lemma 3.

Proposition 4 Let S be a statement in £8 4., iy > 2
(1 £Jj < njand T'p be a function in (det — w \ {1})
such that

Fp(.l,‘) = { ;)]

Then
op[{ay, i1}, ..., {an, in)](S) ~ lts(Part[Tp)(S)). B
Proof. This proof is Omitted. i

ifer=ua; (1<j5<n),

otherwise.

From the above two propositions, §; ~y Sy =
PartlTp](51) ~ Part[l'p](Ss)) is derived.

5.2 Second step: relabel action frag-
ments, and the theorem

Tn this subsection relabeling from (a,4) to a is dis-

cussed.

Definition 5.5 Let S be a statement in L8 (A ctw) and
Lg be a function in ((Act,w) — Act).

Relab[T r] is a function in (LS (actwy — LS act) such
that Relab[Tp](S) = S[Tr({a,4))/(a,)] for all (a,7). 0

Decfinition 5.6
Let SP be a subset of SD(AC,M‘). FS(actw)(SP) is
the smallest subset of ({Acf,w) — Act) that includes
every function ' which satisfys the below.

For all 4 € Usesr Diactwy(S)

1) ird = A[l4s | Trlout(A;)) NTglout(As)] = 0.
il A = 4G4, Yai) € GN(b,j) €
(Act.w)a # b= (e,) # Talla)] B

Let o be a sequence of elements in the domain of
function f. flo] is a sequence of elements in the range

of [such that flo] = F(B(L.e))...f(B(length(c), 7).

Lemma 4 If S is a statement in SPlactw) and
Tr €FS(amwy, then Tr(Relab[Tg)(S)) = {Trlo] |
ceTr(S)}. 1

Proof. We prove this by induction on structure of
statements.

1) If S'is stop or exit , the proof is obvious.
Assume that Ay and Ay hold Tr(Relab[Tg](X))
={lele] o€ Tr(X)} (X = Ay, 49).

2) We omit cases 7, “[".)" and show |[G]{":
o € Tr(A;|[G]|42) is a sequence as below. lor
A1|[G]|Az € SP, Its(A1|[G]|An) is translated by

@
)

{a,l), when A; can be translated and As can-
not be translated by it.

{a,1), when A5 can be translated and A can-
not be translated by it.

{a, 1) when both A; and A, can be translated
synchronously by it.

So transition sequences of A; and 45 can be ex-
tracted from o. These sequences are denoted by
proj(a, Ag). proj(o, Ax) € Tr(Ax)(k = 1,2).
This lemma. is proven by showing below ,
Tr(Relab[Tr)(A1[G]|A2))

C {Trlo] | 0 € Tr(A1|[G]l1A2)}
and {Trlo] | o € Tr(A:11[G}A2)}

C Tr(Relab[Tr](A1|[G]|Az)).
Rest of this proof is omitted. |l

Proposition 5 If S1, S» € §P ., S1 ~ 9. ' € and
FS(Actw), then Relab[Tp)(Sy1) ~ Relab[T'r](S2). 8

e Proof.
From Corollary 1, S1 ~ Sy < Tr(S1) = Tr(Sa).
From Lemma 4, T7(Relab[I'r}(S;))
={Crlo] |0 € Tr(S)}(i=1,2).
So T7(Relab[I'g](S1)) = Tr(Relab[lr)(S2))-
Then using Corollary 1 again,
Relab[TRr}(S1) ~ Relab[TR](S2). 1

Definition 5.7 Let v € (Act — Act™) and SPa C
SP.

FSact(SPact) = {y | Ip € (At —w)[Elg €
:FS(Act,w)(Pa‘ﬂ[r‘PH‘S’r’Acf])[’T =TIpo I‘PH}']

From above propositions, lemmas and a corollary,

follow theorem are derived.

SP ., and

Theorem 1 Let Sy, S, be statements in
SP be a subset of ST 4.; that includes S| and So.
For any v € FSact(SP),

Sy ~q Sa = Refin[y](S1) ~ Refin[5](52). B

With synthesis operator, turning points in LTSs of
refined statements may differ from the positions just
before corresponding actions in pre-refined ones. Turn-
ing points in LTSs of refined statements may occur in
the middle of actions in pre-refined statements. But if
a pair of pre-refined statements are differential equiv-
alent, a pair of bisimulation equivalent statements are

obtained by any v € FSsp.

6 Conclusion

This article discusses foundations of two concepts of

design: action refinement and specification synthesis,

that are important for complex systems design.
Proposed is a pair of sufficient conditions for pre-

serving bisimulation equivalence after refinement.

Acknowledgements

The many helpful discussions with Masaki Itoh, Eiichi
Torita and Kenjiroh Yamanaka are gratefully acknowl-

edged.

References

[Acet92] L. Aceto (1992), Action refinement in process

algebras, Cambridge University Press.

[BSS87) E. Brinksma, G. Scollo, C. Steenbergen
(1987). LOTOS Specification. Their Implemen-
tations and Their Tests, Protocol Specification,
Testing and Verification, VI, (North Holland).

[Glab90] R. J. V. Glabbeek (1990), Comparative Con-
currency Semantics and Refinement of Actions,
Ph.D. thesis, the Free University of Amsterdam.

[[YT90] 1. Ichikawa, Y. Yamanaka, J. Kato (1990),

Incremental Specification in LOTOS, Protocol
Specification, Testing and Verification, X, (North
Tolland).

[IIKTS91] U. Ichikawa, M. Itoh, J. Kato, et. al (1991),
SDE: Incremental Specification and Development
of Communications Software, IEEE Trans. on
Computers 40, 4.

[ltoh90] M. Ttoh (1990), A Process Algebra Featur-
ing Action Refinement The Trans. of the IEICE,
Vol .E-73. No.11.

[LOTOS] 150(1989). Information Processing Systems
- Open Syslems Inlerconnection - LOTOS - A
Formal Description Technique based on the Tem-
poral Ordering of Observational Behavior Inter-
national Standard ISO 8807 .

[Milng9] R. Milner (1989), Communication and Con-

currency, Prentice Hall.

