11. 4)

From finite lambda calculus to infinite lambda calculi*
Richard Kennaway!, Jan Willem Klop?, Ronan Sleep® and Fer-Jan de Vries?

133chool of Information Systems
University of East Anglia, Norwich NR4 7TJ, UK

% Department of Software Technology, CWI
P.O. Box 4079, 1009 AB Amsterdam, the Netherlands

* NTT, Communication Sciences Laboratories
Hikaridai,Seika-cho, Soraku-gun,Kyoto619-02, Japan
ferjan@progn.kecl.ntt.jp

13 October 1994

Abstract

In a previous paper we have established the theory of transfinite reduction for omthogonal term
rewriting systems. In this paper we perform the same task for the lambda calculus. There happen to
be several candidates depending on the metric completion of the finite lambda calculus. The infinite
Church-Rosser property does not hold for them, however the slightly weaker normal form property
does hold.

e

BIEIORYT, Ra HEHES & A R OBRY R BMOTBRE R L. KBXCR, FROC E %548
BEICH L TR 5. X0, AT AXHEHLIICEMICES ML 352 % WIHES 24 X321
SRR Y »OHEXED L. O, Church-Rosser #:d it gl £2WAERBHY bOC &
T

Keywords
Transfinite rewriting, lambda calculus, functional language,
Church-Rosser property, normal form property, Béhm tree.

*This paper is an extended abstract of a longer manuscript with the title The infinite lambda calculus A®. We have

omitted most of the proofs

1 Introduction

In [KKSdV] we used the notion of strongly conver-
gent sequences of length greater than w to build a
theory of transfinite reduction for orthogonal term
rewrite systems. In this paper we perform the same
task for the lambda calculus. In contrast to term
rewriting there happen to be several different no-
tions of depth from which (non-discrete) metrics
can be constructed to make the set of finite lambda
terms into a metric space. Each depth brings its
own completion. And each completion brings its
own concepts of (strongly converging) reductions.
In this abstract we will concentrate on the infinite
lambda calculus related to applicative depth. In
tree representation the infinite terms of the related
completion A%? a re infinite lambda trees in which
on infinite branches eventually all nodes are right
sons of their father.

These infinite lambda calculi differ from orthog-
onal infinitary term rewriting in the following:
the paralle]l moves lemma does not generalise to
strongly converging reductions. Hence the infini-
tary Church-Rosser property fails for them.

However it is possible to prove the infinite Church
Rosser property for Bohm reduction along the lines
of [AKK*94]. (B&hm reduction is ordinary reduc-
tion extended with the option to rewrite a subterm
without head normal form to L, a symbol denoting
undefinedness.) As a corollary we obtain—instead
of the infinite Church-Rosser property—the infinite
normal form property NF for A®¢.

Apart from its theoretical interest, infinite
lambda calculi arise from the use of lambda calculus
in functional programming. One can write expres-
sions whose normal form is, intuitively speaking, an
infinite term - a list of Fibonacci numbers for in-
stance. Such infinite normal forms can be viewed as
the limits of infinite reduction sequences. Infinite
terms and reductions also arise in the correspon-
dence between lambda graph rewriting and lambda
calculus. Lambda graph rewriting extends lambda
calculus with sharing and is an important imple-
mentation technique for functional languages. Such
implementations might use cyclic graphs in order
to make certain optimisations. Cyclic graphs cor-
respond to certain infinite lambda terms; rewriting
cyclic lambda terms corresponds to infinite compu-
tations on lambda terms. A study of the soundness
of such implementation techniques requires a study
of infinite Jambda calculus.

2 Basic definitions

2.1

We assume familiarity with the lambda calculus, or
as we shall refer to it here, the finitary lambda cal-
culus. [Bar84] is a standard reference. The syntax is
simple: there is a set Var of variables; an expression
or term E is either a variable, an abstraction Az.E
(where z is called the bound variable and E the
body), or an application EjEy (where E is called
the rator and E5 the rand). This is the pure lambda
calculus — we do not have any built-in constants
nor any type system.

As customary, we identify a-equivalent terms
with each other, and consider bound variables to
be silently renamed when necessary to avoid name
clashes.

The following particular terms will be frequently
used.

Finitary lambda calculus

DEFINITION 2.1

I = Azz
K = Azlyz
Y = M.(z.f(zz))(Az.f(zz))
Yr = (AzAf.f(zzf))(Az Af.f(zzf))

Yr (called Turing’s fixed point operator) has the
property that Yrf —* f(Yrf), which makes it
sometimes more convenient than the more usual
fixed point operator Y, for which we only have that
for any f, Y f reduces (in one step) to a term Yy
having the property that Yy —~ f(Y;f).

2.2 What is an infinite term?

Drawing lambda expressions as syntax trees gives
an immediate and intuitive notion of infinite terms:
they are just infinite trees. Formally, we can define
this set as the metric completion of the space of
finite trees with a well-known (ultra-)metric. The
larger the common prefix of two trees, the more
similar they are, and the closer together they may
be considered to be. First, some terminology. A
position or occurrence is a finite string of positive
integers. Given a term M and a position u, the
term M |u, when it exists, is a subterm of M defined
inductively thus:

M{) = M
Az M)l v = Mlu
(MN1-u = Mlu
(MN)2-u = Nlu

Figure 1:

Mu is called the subterm of M at u, and when this
is defined, u is called a position of M. The depth of
u is its length.

Two positions u and v are disjoint if neither nei-
ther position is a prefix of the other. A set of po-
sitions or redexes is disjoint if every two distinct
members are.

Given two distinct terms M and N, let d be the
length of the shortest position u such that M |u and
Nlu are both defined, and are either of different
syntactic types or are distinct variables. Then the
larger d is, the more similar are M and N. The
distance between M and N is defined to be 27¢.
Denote this measure by d*(M, N). (The superscript
s will be explained later.) d°(M,M) is defined to
be 0. It is easily proved that this 1s a metric on
the set of finite terms. In fact, it is an ultrametric,
ie. d*(M,N) < maz(d*(M,P),d* (P, N})), although
this fact will not be important. The completion of
this metric space adds the infinite terms. We call
this set A%,

The above is the definition of infinite terms which
we used in our study of transfinite term rewriting,
but for lambda calculus the situation is a little more
complicated. Certain members of the class defined
above have problematic properties, and we will be
excluding them from our study. Consider the term
(((--.) I) 1, llustrated in Figure 1. This term has
a combination of properties which is rather strange
from the point of view of finitary lambda calculus.
By the usual definition of head normal form — be-
ing of the form Az;... Az, .yt; ...ty — it is not in
head normal form. By an alternative formulation,
trivially equivalent in the finitary case, it is in head
normal form — it has no head redex. It is also
a normal form, yet it is unsolvable (that is, there
are no terms Ni,..., N, such that MN; ... N, re-
duces to Az.z). The problem is that application
is strict in its first argument, and so an infinitely
left-branching chain of applications has no obvious
meaning. We can say much the same for an infinite

f Q@ Az @ Af
| |
z —— @ f+—Q@+— Xz
| |
z z—@
|
z
Figure 2:

chain of abstractions Az;.Azg.Az3. ...

Another reason for wishing to exclude terms with
infinitely left-branching chains of applications arises
from analogy with term rewriting. In a term such
as F(z,y, z), the function symbol F is at depth 0. If
it is curried, that is, represented as Fzyz, or explic-
itly @@(@(F,z),y),z) (as it would be if we were
to translate the term rewrite system into lambda
calculus), the symbol F now occurs at depth 3. We
could instead consider it to be at depth zero; more
generally, we may adopt a new measure of depth
which deems the left argument of an application to
be at the same depth as the application itself.

DEFINITION 2.2 Given a term M and a position u
of M, the applicative depth of the subterm of M at
u, if it exists, is defined by:

0

ADepth(M,u)
ADepth(M,u)

= 1+ ADepth(N,u)

ADepth(M,{())
ADepth(Az.M,1 - u)
)
)

I

ADepth(MN,1-u
ADepth(MN,2-u

i

The associated space of finite and infinite terms is
denoted A%, and the measure of distance d°.

The applicative depth of the subterms of the
term Y is shown visually in Figure 2. Note that
this is just the usual syntax tree, rotated clockwise
through 45°.

There are several other notions of depth we might
consider, depending on whether the depth is or is
not considered to increase when passing from an
abstraction to its body, or from an application to
either of its arguments. These three contexts give
eight different notions of depth. On of these—
discrete depth, which considers every subterm at
depth zero—generates the finitary lambda calculus
in which there are no infinite terms and no strongly

converging infinite reductions. The original notion
of depth, which increase in all three contexts, we
will call syntactic depth. In this extended abstract
we shall henceforth only consider the applicative
depth. The full paper will show that most of our
results do not depend on which notion of depth is
used.

The chosen notion of depth gives a metric on the
space of finite terms, from which we obtain a com-
plete mnetric space of finite and infinite terms and
a notion of convergent sequence. We shall write d
for applicative depth and A®.

2.3 What is an infinite reduction se-
quence?

We have spoken informally of convergent reduction
sequences but not yet defined them. The obvious
definition is that a reduction sequence of length w
converges if the sequence of terms converges with
respect to the metric. However, this proves to be
an unsatisfactory definition, for the same reasons
as in [KKSdV]. There are two problems. Firstly,
a certain property which is important for attach-
ing computational meaning to reduction sequences
longer than w fails.

DEFINITION 2.3 A reduction system admitting
transfinite sequences satisfies the Compression
Propertyif for every reduction sequence from a term
s to a term ¢, there is a reduction sequence from s
to t of length at most w.

A counterexample to the Compression Property
is easily found in A®*. Let A, = (Az.Aq41)(B™(2))
and B = Az.y. Then Ag =% C where C = (Az.C)
(B¥), and C — (Az.C)y. There is no reduction of
Ag to (Az.C)y in w or fewer steps.

The second difficulty with this notion of conver-
gence is that taking the limit of a sequence loses
certain information about the relationship between
subterms of different terms in the sequence. Con-
sider the term I of A®, and the infinite reduction
sequence starting from this term which at each stage
reduces the outermost redex: I¥ = I¥ =5 ¥ — ...
All the terms of this sequence are identical, so the
limit is /. However, each of the infinitely many
redexes contained in the original term is eventually
reduced, yet the limit appears to still have all of
them. It is not possible to say that any redex in
the limit term arises from any of the redexes in the
previous terms in the sequence.

A third difficulty arises when we consider trans-
lations of term rewriting systems into the lambda
calculus. Even when such a translation preserves

finitary reduction, it may not preserve Cauchy con-
vergent reduction. Consider the term rewrite rule
A(z) — A(B(z)). This gives a Cauchy conver-
gent term rewrite sequence A(C) — A(B(C)) —
A(B(B(C)))... If one tries to translate this by
defining Ay = Y (Af.Az.f(Bz)) (for some A-term
B), the resulting sequence will have an accumula-
tion point corresponding to the term A(B“), but
will not be Cauchy convergent. The reason is that
what is a single reduction step in the term rewrite
system becomes a sequence of several steps in the
lambda calculus, and while the first and last terms
of that sequence may be very similar, the interme-
diate terms are not, destroying convergence.

The remedy for all these problems is the same as
in [KKSdV]: besides requiring that the sequence of
terms converges, we also require that the depths of
the redexes which the sequence reduces must tend
to infinity.

DEFINITION 2.4 A pre-reduction sequence of length
« is a function ¢ from an ordinal a to reduction
steps of A%, and a function 7 from « + 1 to terms
of A®, such that if ¢(8) is a —" bthena = 7(8) and
b= r(8+1). Note that in a pre-reduction sequence,
there need be no relation between the term ¢(8) and
any of its predecessors when § is a limit ordinal.

A pre-reduction sequence is a Cauchy convergent
reduction sequence if T is continuous with respect
to the usual topology on ordinals and the metric on
A,

It is a strongly convergent reduction sequence if it
is Cauchy convergent and if, for every limit ordinal
A < a, img_,zds = oo, where dg is the depth of
the redex reduces by the step ¢(f3). (The measure
of depth is the one appropriate to each version of
A®)

If @ is a limit ordinal, then an open pre-reduction
sequence is defined as above, except that the do-
main of 7 is a. If 7 is continuous, the sequence is
Cauchy continuous, and if the condition of strong
convergence Is satisfied at each limit ordinal less
than «, it is strongly continuous.

When we speak of a reduction sequence, we will
mean a strongly convergent reduction sequence un-
less otherwise stated. k

COUNTEREXAMPLE 2.5 Strongly convergent re-
duction in A*® is not Church-Rosser. Let D =
Az.zz, A = Az.J(zz) Then DA — AA — I(AA)
—“ I¥. But DA — DD. Both DD and I* reduce
only to themselves, hence they have no common
reduct.

Note that this is also a counterexample to a spe-
cial case of the Church-Rosser property called the

Strip Lemma: one of the two sequences is only a
single step.

3 Descendants and residuals

3.1 Descendants

When a reduction M — N is performed, each sub-
term of M gives rise to certain subterms of N — its
descendants — in an intuitively obvious way. Ev-
erything works in almost exactly the same way as
for finitary lambda calculus.

DEFINITION 3.1 Let u be a position of ¢, and let
there be a redex (Az.M)N of t at v, reduction of
which gives a term t’. The set of descendants of u
by this reduction, u/v, is defined by cases.

e If u # v then u/v = {u}.
e Ifu=voru=uv-1then ufv=40

eIfu =v-2 -wthen ufv = {v-y- - w |
y is a free occurrence of z in M}. lfu = v-1w
then u/v = {v-w}.

The trace of u by the reduction at v, u//v, is defined
in the same way, except for the second case: ifu = v
or u =wv-1then uffv = {v}.

For a set of positions U, Ufv = J{u/v | u € U}
and Ufv = J{ufv|uve U}

The notions of descendant and trace can be ex-
tended to reductions of arbitrary length.

DEFINITION 3.2 Let U be a set of positions of ¢,

and let S be a reduction sequence from t to t'. For

a reduction sequence of the form S - r where r is a

single step, U/(S-r) = (U/S)-r. If the length of S is

a limit ordinal o then U/S = Up o Npcyca U/Sy-
UJ/S is defined similarly.

Strong convergence of S ensures that the above
limit exists.

LEMMA 3.3 Let U be a set of positions of redezes
of t, and let S be a reduction from t to t’. Then
there is a redez at every member of U/S. D

DEFINITION 3.4 The redexes at U/S in the preced-
ing lemma are the residuals of the redexes at U.

DEFINITION 3.5 Let u and v be positions in the
initial and final terms respectively of a sequence S.
If v € u/f S, we also say that u contributes to v (via
S). If there is a redex at v, then u contributes to
that redex if u contributes to v or v - 1.

Note that descendants, traces, residuals, and con-
tribution are not defined for Cauchy convergent re-
ductions, which is not surprising given the examples
of section 2.3.

THEOREM 3.6 For any strongly convergent se-
quence tg = t, and any posilion u of t4, the set
of all positions of all terms in the sequence which
contribute to u is finite, and the set of all reduction
steps contributing to u is finite.

3.2 Developments

DEFINITION 3.7 A development of a set of redexes
R of a term M is a sequence -in which every step
reduces some residual of some member of R by the
previous steps of the sequence. It is complete if the
final term contains no residual of any member of R.

Not every set of redexes has a complete devel-
opment. An example is provided by the term
IY = (Az.z)((Az.z)((Az.z)(...))). Every attempt
to reduce all the redexes in this term must give a
reduction sequence containing infinitely many re-
duction steps at the root of the term. Note that
the set consisting of every redex at odd depth has
a complete development, as does the set consisting
of every redex at even depth, but their union does
not.

Let M = (Az.y)(J*). Let R, be the set of re-
dexes in the subterm I* at odd depth. Let S; be a
complete development of R, followed by reduction
of the outermost redex. Let Ry be the set of re-
dexes in the subterm /* at even depth. Let Sy be a
complete development of Ry, followed by reduction
of the outermost redex. Then neither of the sets
R1/S3 and Ry/S) have complete developments.

THEOREM 3.8 Complete developments of the same
set of redexes end at the same term.

PROOF. In the finitary case one proves this by
showing that (1) this is true for a pair of redexes,
and (2) all developments are finite, and invoking
Newman’s Lemma.

In the infinitary case a more refined argument is
required. O

4 The truncation theorem

Some results about the finitary lambda calculus can
be transferred to the infinitary setting by using fi-
nite approximations to infinite terms.

DEFINITION 4.1 A A termis a term of the version
of lambda calculus obtained by adding L as a new
symbol. AT is defined from Ay as A® is from A,
and similarly for the other versions of A®.

The terms of A have a natural partial ordering,
defined by stipulating that 1< ¢ for all ¢, and that
application and abstraction are monotonic.

A truncation of a term ¢ is any term ¢’ such that
t’ <t. We may also say that t’ is weaker than ¢, or
t is stronger than t'.

THEOREM 4.2 Let g —% t, be a reduction se-
quence. Let so be a prefiz of to, and for f < «q,
let sg be the prefiz of tg contributing to to. Then
for any term rq such that so < rq there is a reduc-
tion sequence To =5 r, such that:

1. For all B, sp is a prefizx of rg.

2. If tg — tg41 is performed at position u and
contributes to so, then g — rpyy by reduction
al u.

3. If tg — tg41 is performed at position u and
does not contribute to so, then rg = r541.

As an example of the use of this theorem, we
demonstrate that A% is conservative over the fini-
tary calculus, for terms having finite normal forms.

COROLLARY 4.3 1. Ift = s and s’ is a finite
prefiz of s, then t is reducible in finitely many
steps to a term having s’ as a prefiz. In par-
ticular, if t is reducible to a finite term, it is
reducible to that term in finitely many steps.

2. If a finite term is reducible to a finite normal
form, it is reducible to that normal form in the
finitary lambda calculus. o

5 The Compressing Lemma

We have justified the interest of infinite terms and
sequences by seeing them as limits of finite terms
and sequences. In this light, the computational
meaning of a sequence of length longer than w may
be obscure — it is difficult to imagine performing
an infinite amount of work and then doing some
more work. We therefore wish to be assured that
every reduction sequence of length greater than w
is equivalent to -one of length no more than w, in
the same of having the same initial and final term.
This allows us to freely use sequences longer than
w without losing computational relevance.

THEOREM 5.1 (Compressing Lemma.) In A%,
for every strongly convergent sequence there is a
strongly convergent sequence with the same end-
points whose length is at most w.

PROOF. The corresponding theorem of [KKSdV]
shows that the case of a sequence of length w + 1
implies the whole theorem, and the proof is not de-
pendent on the details of rewriting — it is valid for
any abstract transfinite reduction system (as de-
fined in [Ken92]). O

REMARK 5.2 The Compressing Lemma is false for
Brnreduction.

For a counterexample, let M = Y (Af.Az.I(fz))
where Y = Af.(Az.f(zz))(Az.f(zz)) and | = Az.z.
Then Az.Mzz =% Az J(I(I(...)))z =y T(I(I(...)))-
However, Az.Mzz is not reducible in w steps or
fewer to J(I(I(...)))-

This is not really surprising. The 7-rule requires
testing for the absence of the bound variable in the
body of the abstraction; if the abstraction is infinite,
this is an infinite task, and such discontinuities are
to be expected.

6 Head normal forms and

Bohm trees

DEFINITION 6.1 A head normal form is a term of
the form Azy...Az,.yM; ... Mk, where y may be
any of z1,...,z, or any other variable.

A term has a head normal form if it can be re-
duced to one.

A term not in head normal form having a finite
left spine must have the form Az; ... Azn.(Ay.M)N
My ... M,. The redex (A\y.M)N is the head redex
of the term.

A term M is solvable if there are terms
Ni,...; N, such that MN; ... N, =% [

In AP, the same definitions apply. This means
that L is considered to be not a head normal form,
and is unsolvable, as are terms of the form L M
and Az. 1.

DEFINITION 6.2 The head normal forms Azy...
Azp.yMy ... Mg, and Azh. .. Azl y'M].. M| are
equivalent if n = n', k = k', and either y and v’
are both free and y = ¥/, or for some i, y = z; and

y =z

DEFINITION 6.3 The left spine of a term is the set
of all of its positions of the form 1" for all n. A
spine reder of a term is a redex whose position is
on the left spine.

THEOREM 6.4 A term M is solvable if and only
if there are terms Ny,..., N, such that MNy...
N, =" 1.

ProoOF. This is immediate from the Compressing
Lemma and the fact that a finite term such as [/
cannot be the limit of a reduction sequence whose
length is a limit ordinal.]

We can prove many relationships between head
reduction, solvability, head reductions and finite re-
duction sequences.

THEOREM 6.5 1. A term M is solvable if and
only if there are terms Ny,..., N, such that
MN;...N, =»* I.

2. A term is solvable if and only if it has a head
normal form.

3. If a term has a head normal form, then it is
reducible to head normal form in finitely many
steps.

4. A term has a head normal form if and only if
the head reduction sequence starting from that
term terminates in finitely many steps.

5. All head normal forms of the same term are
equivalent.

6. A term has no head normal form if and only
if there is a reduction sequence starting from
that term which contains infinitely many head
reductions.

7. A term has no head normal form if and only
if there is a reduction sequence starting from
that term which contains infinitely many spine
reductions.

8. The set of terms having head normal forms,
and the complement of that set, are both closed
under reduction.

Reduction sequences which perform no reduc-
tions in unsolvable subterms are closely related to
strong convergence.

LEMMA 6.6 Every Cauchy continuous reduction
sequence which performs no. reductions inside any
unsolvable subterm is strongly convergent.

PROOF. Suppose a reduction sequence is Cauchy
convergent but not strongly convergent. Then there
must be some position u such that the sequence
performs infinitely many reductions at u or descen-
dants of u at the same depth, and only finitely many

reductions at any proper prefix of u. Consider a fi-
nal segment of the sequence starting after the last
reduction at any proper prefix of u. The condition
on the metric implies that these reductions must
all be performed on the left spine of the subterm
at u. Let ¢ be the subterm at u of the term at the
beginning of such a segment. The segment gives
an infinite reduction of ¢ containing infinitely many
reductions on the left spine of u. By Theorem 6, t
must be unsolvable, contrary to the hypothesis that
no reduction is performed in unsolvable subterms.
a

THEOREM 6.7 A reduction sequence which per-
forms no reductions inside any unsolvable subterm,
and has mazimal length with respect to that prop-
erty, strongly converges to a term in which every
redez is contained in an unsolvable subterm.

PrROOF. Immediate from Lemma 6.6, and the fact
that all strongly convergent reduction sequences
have countable length. 0

DEFINITION 6.8 A reduction strategy is a function
which maps each term t to a set of strongly conver-
gent sequences which each start from t.

A strongly continuous sequence is generated by a
reduction strategy F from a term g if it consists of a
concatenation of segments {Sg : {5 — {41 | B < a}
such that Sg € F(tg) for all §.

A reduction strategy is strongly normalising if
every reduction sequence which it generates from
a term having a normal form reaches that normal
form.

A reduction strategy is strongly convergent if
every reduction sequence which it generates is
strongly convergent.

THEOREM 6.9 Every strongly convergent reduction
strategy is strongly normalising. In particular, a
reduction sequence which performs no reductions
inside any unsolvable subterm, and has mazimal
length with respect to this property, strongly con-
verges to a term in which every redez is contained
in an unsolvable subterm.

ProoOF. The first statement follows from the fact
that all strongly converging reductions are of count-
able length. The second follows from that and
lemma 6.6 '

DEFINITION 6.10 Béhm reduction is reduction in
AP by the f§ rule and the Bohm rule, viz. M —.L
if M is unsolvable and not L.

For technical convenience, we also define strong
Bohm reduction: this is Bohm reduction subject to
the restriction that the § rule may not be applied
to any subterm of an unsolvable subterm, nor may
the Bohm rule be applied to any proper subterm of
an unsolvable subterm.

A Béhm tree is a normal form of AT with respect
to Bohm reduction.

From the previous theorem it now follows that:

THEOREM 6.11 Fvery term has a normal form
with respect to Béhm reduction.

LEMMA 6.12 The Béhm rule (that is, the strategy

mapping each term to the set of one-step reductions

by the Béhm rule) is strongly convergent.
Reductions by the Béhm rule are Church-Rosser.

DEFINITION 6.13 Write B(t) for the unique normal
form of ¢ with respect to the Bohm rule.

LEMMA 6.14 Let R be a set of redexes of a term
t. If no member of R is contained in an unsolv-
able subterm of t, then every development of R is
strongly convergent. In particular, R has a complete
development.

THEOREM 6.15 Every term has a unigque normal
form with respect to Bohm reduction.

ProoF. Theorem 6.5 provides almost all ingredi-
ents for a proof as we have given in [AKK™*94].
It only remains to be proved that the following
Church-Rosser property holds: «*o0 —* C —*
0 ¢, a

LEMMA 6.16 If L does not occur in the Bohm tree
of a term, its Béhm tree is its f-normal form.

ProoF. If the construction of Theorem 6.11 pro-
duces a Béhm normal form not containing L, then
it consists entirely of #-reductions, hence yields the
B-normal form.]

THEOREM 6.17 Béhm reduction is Church-Rosser
and transfinitely normalising. Strong Bohm reduc-
tion is transfinitely strongly normalising.

PROOF. The first is immediate from Theorem 6.15.
The second is immediate from Lemma 6.9 and the
fact that strong Bohm reduction is strongly conver-
gent. m]

The last theorem enables us to prove the infinite
normal form property, a property which is slightly
weaker than the (falsified) Church-Rosser property.

THEOREM 6.18 A™ has the transfinite NF prop-
erty.

PrROOF. [-reduction is contained in Béhm reduc-
tion, and a B-normal form is also a Bohm normal
form. The theorem then follows from Theorem 6.15.
a

References

[AKK*94] Z.M. Ariola, J.R. Kennaway, J.W. Klop,
M.R. Sleep, and F.J. de Vries. Syntac-
tic definitions of undefined: On defining
the undefined. In Proc. Theoretical As-
pects of Computer Software, TACS 94,
pages 543-554. Sendai, Japan, LNCS
789, Springer Verlag, 1994.

[Bar84] H.P. Barendregt. The Lambda Calcu-
lus, its Syntaz and Semantics. North-

Holland, 2nd edition, 1984.

[Ken92] J.R. Kennaway. On transfinite abstract
reduction systems. Technical Report

CS-R9205, CWI, Amsterdam, 1992.

[KKXSdV] J.R.Kennaway, J.W. Klop, M.R. Sleep,
and F.J. de Vries. Transfinite reduc-
tions in orthogonal term rewriting sys-
tems. To apear in Information and
Computation, 77 Available by ftp from
ftp::/ftp.sys.uea.ac.uk/pub/kennaway/

transfinite.{dvi,ps}.Z.

