fnfﬁivf%ﬁﬁ'ﬁﬁ'%ﬁ— 19—14
(1994. 11. 4)

FEZE2EEE _EREME

W e R E

N
* NTT #EH

FRTIE, BB L ABEREE L, FRICIABTELXERTAT — ¥y =2 %1,
“ESEMEYEZEL, CEREORISKYTAT - IR—AD1DOD T AR5 L5,
—RBRET O T AREDFERE L, FOEBEFVIIESHZWT P ADESPEDOIES
ET BT = N—ABVCE, ZEBEOHAIRILT LI L RTT, SOF— 7 N—
AD 77 A, Gabbay ODARKICLBBEL DPEREZF LT — I R—ZADI T AL R
%5,

Negation as Inconsistency and Double Negation Problem

Susumu Yamasaki * and Wataru Adachi **

*

Faculty of Engineering, Okayama University
* NTT, Chugoku Branch

In this paper, we deal with Gabbay et al’s database, which is proposed to realize negation
as inconsistency, containing negation as failure, from the point of double negation problem.
We give a class of databases in which the double negation law may hold. The database
in the class consist of a general logic program as a positive declaration, and of a set, as a
negative declaration, each of which is not a member of a stable model of the general logic
program. It is shown the class is different from the class of databases in which the negation
as inconsistency is regarded as negation as failure

1 Introduction

Since Reiter proposed the closed world assumption[n],
the extended or generalized closed world assumption has
been considered [4, 7). In logic programming, negation as
failure (NAF, for short) has been combined with SLD res-
olutions, and examined in refined details [6, 12, 13, 14, 15].
On the one hand, NAI may be made use of in abduction
frameworks. The model theory for general logic programs
is developed 13, 13] and made clear in relation with de-
fault theory and abduction applied to the general logic
programs [8].

In [2], negation as inconsistence (NAI, for short) is pre-
sented to be realized in a database so that it might involve
NAF. The database for NAI consists of a logic program
and a set of goals. Given a database with a query as a goal,
it is checked whether the query is successful or finitely fails
for the logic program by means of resolution deductions.
If some in the given set of goals is successful as a query at
some point in deductions, then the database is regarded
as inconsistent, and the negation of the original goal is
interpreted as holding. That is, negation as inconsistency
is supported. In the database, the goal, which is defined
recursively by negations and logical conjunctions, may be
a query. That is, the goal takes the form —(a A —b). a is
added to the logic program, whereas b is given to the set
of goals. Such dynamical extensions makes the database
transformed.

In such a database, even if a double negative of a goal is
successful as a query in the database, the goal may not be
successful. We see later in the database that the double
negative of a goal is successful whenever the goal is suc-
cessful. We say the double negation law holds if the goal
is successful whenever its double negative is successful. In
general, the double negation law does not necessarily hold
in the database. We consider a class of the databases in
which the double negation law holds. It may be effec-
tive to apply the double negation law to the database if
it holds, when we are concerned with the deductions for a
query. This is a motive to consider the law. In addition,
we are motivated by the interest in what law in classi-

cal logic holds in such a database. Since the database is .

closely related with negation as inconsistency, the dou-
ble negation law should be investigated. Gabbay et al.
dealt with general logic programs in their presentations of

databases, whereas more sophisticated logic prograins, like .

disjunctive logic programs, have not yet been treated. We
think the treatment of negation in general logic programs
is still significant, because it is fundamental. Therefore
we assume that the database involves the general logic
program, the model of which we pay attention to.

In model theory from 2 valued logic approach, the sta-
ble model B is basic, whereas the perfect model 9,101 j5
concerned with priorities of predicate symbols included in
a given general logic program. Although a stable model
is a fixpoint of a nonmonotonic function and there is no
constructive way to get it, it is simple and general when
we have got it by some estimation. Therefore, we take the
stable model to study the database in which the double

negation law holds.

We show a negation of goal is the logical consequence
of the union of a given general logic program and the set
of negated atoms, each of which is not included in a stable
model of the general logic program, iff the goal is success-
ful in deductions for the database consisting of the general
logic program and the set of atoms, each of which is not in-
cluded in the stable model. By the above proposition, we
present the database which consists of a general logic pro-
gram and the set of atoms, each of which is not included
in a stable model of the general logic program, and show
in it the double negation law holds. To make the discus-
sion simpler, we treat with the database in propositional
logic. The extension of the database to that in first-order
logic will be just mentioned with a brief reason.

2 NAI in Propositional Logic

We have the following terminologies regarding the
database Gabbay et al. proposed, and abbreviated by
GDB in this paper.

A general logic program is a set of clauses of the form
p « lj ... 1n, which is said to be a program clause, where
p is an atom, and Iy, ..., I, are literals. A literal I is an
atom p or the negation of an atom p, that is, p, where =
stands for the classical negation.

An atom is an expression of the form P(t;,...,t,)
(n > 0), where P is a predicate symbol, ¢i, ..., t, are
terms. The term is recursively defined: (i) A variable is a
term. (i) f(t1,....tn) (n >0) is a term if f is a function
symbol, and ty, ..., f, are terms.

Each program clause p—1l..
first-order formula

Vzy...ap(-h V

where i, ..., z} are variables occurring in the program
clause. Iy ...l is said its body, and p its head.

In this paper, we restrict our treatments with formulas
to propositional. Now we examine the problem of double
negation law. To do it, we take the stable model into ac-
count, and present a theorem on the double negation law
in the database, by applying the stable model theory to
the construction of it.

I, is interpreted as a

V=l Vp)s

2.1 GDB in Propositional Logic

We define several definitions concerning GDB following
[2]. The clausal form mentioned in the following defini-
tion will be referred to as just a clause.

Definition 2.1 :

(1) An atom q is a clause, and a goal as well. A literal [
is a clause, and a goal as well.

(2) A conjunction of goals is a goal, and a ncgamon ofa
goal a goal.

(3) If A is a goal and ¢ an atom, g + A is a clause.

Definition 2.2
A database is an expression of the form (P, N), where
P is a set of clauses and NV a set of goals.

The intuitive meaning of N is as follows: N is regarded
as N\en 7 and A,y —n as added to P. (P, N) is inter-
preted as inconsistent if some n € N succeeds from the
database (P, N). The notion (P, N)(?I)G = 1 follows [2].
That is, it means the goal G succeeds from a database
(P, N) as follows. Below the goal G means a query ?G
standing for =G.

Definition 2.3 (a) For G atomic, (P,N)(?I)G = 1, iff
either

(i) GePor

(i) for some clause (G — A) € P, (P,N)(?])A = 1.
The goal G is said to fail finitely, and denoted
(P,N)(?I) = 0if G € P and for cvery (G «— A) € P,
(P,N)(?I) = 0.

(b) (P, N)(MI)G1A...AGy = 1iff for each 2, (P, N)(?I)
Gi=1.
The goal Gy A ... A G,, is said to fail finitely if for some
i, (P, N)(?I)G; fails finitely. We denote it by (P, N)(?I)
G1 /\.../\Gn = 0.

(&) (BN ~(A; ¢i A \;—B;) = 1 iff, for some A €
NUU,{Bs}, (PUU{aih, NUU (B DDA = L.
The original goal is said to fail finitely and denoted
(B, N)()~(A;i ¢ A A; ~B;) = 1if the present goal fails
gnitely. We denote it by (P, N)(?I) ~(U;¢: AA\; -B;) =

The inconsistency or consistency of a database (P, N)
is defined as follows.

Definition 2.4

(1) (P,N) is said inconsistent if some goal n € N suc-
ceeds from the database (P, N), that is, (P, N)(?I) n =1
for somen € N.

(2) (P, N) is said consistent if any goal n € N does not
succeed from the database (P, N), that is, (P, N)(?I) n #
1 for any n € N.

The success of a goal —¢ is defined by the incon-
sictency: —gq succeeds from a database (P, N) if the ex-
tended database (PU{q}, N) is inconsistent. Also the suc-
cess of a goal =~G is defined by the inconsistency. That
is, =G succeeds from a database (P, N) if the extended
database (P, N U {G}) is inconsistent.

Example 2.5 Let p,q,r be propositions.
(1) We define (P, N) to be as follows, and assume a goal
r, where the goal r means ?r standing for —r.

P N G
Tep, —pA-g Tr
T q.

The goal r does not succeed, because the (sub-)goal p
nor g does not succeed from (P, N). Note N does not
contribute to the success of r.

(2) Next consider the goal =—r.

P N G
Tep, —pA-g, Tmmr
req.

The database is transformed according to the definition.

Py Ny G
-pA=g, Tr {or Tmp A g)
e q. .

TP,

The candidate for a successful goal is 7, or ~p A =q.
Because a goal in [V, should be examined. If no goal is
successful, the goal =—r is not successful.

(a) The goal 7 finitely fails. It is due to the same reason
for (1).

(b) The goal —p A =g is checked. We must examine
whether both the goal —p and the goal —¢ are successful.

PQ N2 G2
rep, pA=g, 7o (Tog)
T q. T

The database (I, N2) is transformed to:

Py N3 Gy
rep, =pA-g, ?r(or T-pA-yg)
r e q. r

p

Py Ny Gy
re—p, =pA-q, Ir (or 7-pA-g)
T e q. r

g :

The goal r succeeds from the database (Py, N3), which
is inconsistent. Similarly (Pj, Nj) is inconsistent. There-
fore the goal =—r succeeds from (P, N). Note that r € Ny,
since the goal is =—r. Hence (P,N)(?I)-—r = 1. How-
ever. (P, N)(?I)r # 1. Asillustrated here, (P, N)Y(?I) =—r
= 1 does not necessarily imply (P, N)(?I)r = 1. We will
see that (P, N)(?I)r = 1 implies (P, N)(?I) =—=r = 1.

2.2 GDB and NAI

The following relationship between NAF and NAI means
that NAF may be realized by NAI, that is, NAI is more
general than NAF.

Theorem 2.6 [2] Let P be a general logic program, and
G a goal of the form A\; ‘li/\/\j -b;, where a;, b; are atoms.
Also let

N ={m|m isan atom, and P(?F)m = 0},
where P(?F)m = z means the goal G finitely fails for P
if . =0, and G succeeds if x = 1, by means of SLD res-
olution and NAF. (Note the goal G stands for «— G when
applied to SLD resolution.) Then

POIFYG=1& (P,N)?I)G = 1.

The following lemma is exploited for the proof of a the-
orem regarding the double negation law.

Lemma 2.7 Assume databases (P,N) and (P',N’).
Then

VP,N,P',N',G:
[PC P&N C N'&
(P,N)Y(I)G = 1= (P',N')(?I)G = 1].

Proof We define a predicate Q) to be

Q(P,N,P',N',G)
& PCP&NCN&
(P.N)()G =1= (P, N')(2)G = 1).

‘We show by induction on the reverse direction of rewrit-
ings of databases and goals.
(1) Assume (P,N)(?I)G = 1 for atomic G € P. Aslong
as PC P'and N C N', G € P'. Hence (P',N')(?I)G =
1. That is, if there is no rewriting of the database and the
goal (if there is the empty rewriting), Q(P, N, P', N',G).
(2) (a) Assume (P, N)(?I) G = 1 on condition G — 4 €
P and (P,N)(?I)A = 1. On the assumption of

Q(P,N,P',N', A),

(PLNY)A=1HPCP and NCN. AsG — A €
P', (P',N")(*I)G = 1. Therefore Q(P,N,P’,N', A) im-
plies Q(P, N, P/, N’,G). That is, in this case of rewriting
of the goal, the predicate Q is preserved.

(b) Assume (P, N)(?I) = 1 on condition that G = G,
A ...A G, and (P,N)(?I)G; = 1 for each i. Now as-
sume Q(P,N,P',N',G;) for each i. If P C P’ and
N C N, then (P',N')(?I) G; = 1 for each i. Hence
(P,N)(?I)G = 1. That is, Q(P, N, P',N',G;) for each ¢
implies Q(P, N, P', N’,G). Therefore, for the rewriting of
the goal in this case, the predicate @ is preserved.

(c) Assume (P, N)(?I) G = 1 on condition the goal G
takes the form ~(A; ¢: A A; =B;) and

(PUUdar. NuU{B;H(tDHA=1
for some A4 € N U U/{B;} Now assume
Q(P,N,P',N',A). { P C P' and N C N', then
(P'ulUdad, N UU{B;H(INA=1
for some 4 € NUU;{B;} ¢ N UU,;{B;}. Hence
(P',N')(?2I) G = 1. That is, if
QPUUL{eh, NUU{B). P! UUL {0}, VU B, 4),
then Q(P,N, P, N’,G). Therefore, for the rewriting of
the database and the goal, the predicate Q is preserved.
If (P, N)(?I)G = 1, then finite number of rewritings of
the database and the goal are made. In the reverse direc-

tion of rewritings, the predicate @Q is preserved. Taking
(1) into considerations,

VP,N,P',N',G: Q(P,N,P',N',G).

This completes the proof.

Q.E.D.

Lemma 2.8 If (P,N)(?I)G = 1, then (P',N')(?I)--G
=1.

Proof If (P,N)(?I)G = 1, then by Lemma 2.7 (P,N U
{G})(?I)G = 1. Because G € N U {G}, (P,N)(?I)-~G
= 1. Q.E.D.

3 Double Negation Problem in
GDB

3.1 General Logic Program and Stable
Model

Concerning GDB, as we have seen in Lemma 2.8,
(P, N)(*ING = 1 implies (P, N)(?I)=-G = 1. However,
as in Example 2.5, (P, N)(?I)~~G = 1 does not necessar-
ily imply (P, N)(?I)G = 1.

In this paper, we propose a class of databases concerned
with stable models [¥ of general logic programs. Also the
relation between the stable model and NAI is now pre-
sented.

Definition 3.1 Given a GDB (P, N) and a goal G, we
define

G =PN) oG & (P,N)()G = (P, N)(1])=~G.

We are now concerned with the stable model theory
briefly.

Rule 3.2 Let P be a general logic program in proposi-
tional logic. Also let M be the set of atoms, and Py
stand for the program obtained by removing (1) the pro-
gram clauses, and (2) the negative literals from P:

(1) the program clause whose body involves =B such that
Be M.

(2) the negative literal in a program clause which is not
removed by the procedure (1).

Py is a definite clause set (that is, negation-free clause

set). If M is equal to the minimal Herbrand model of Py,
then M is said a stable model.

In general, more than one stable model may exist for
a given general logic program. If there is a stable model
SMp, then we define the following set by means of SMp.

Definition 3.3 Let SMp be a stable model of a general
logic program P. We define

Asp, ={-n|n g SMp}, and Nsp, = {n|n & SMp}.

I' k= A means I is a logical consequence of I'. Assume
PU Agp, = L for a literal L.

By Decfinition 3.3, SMp is a model of P U Agps,. Thus

L € SMp if L is an atom, and L € Aguy, if L is a nega-

tion of an atom.

In the database involving Ngas,., we show that

PUASMP i= G & (P, NSM,,)(?I)G =1.

Before proving it, we see an illustration in which the dou-
ble negation law holds.

Example 3.4 Given a general logic program
P = {PxP —or, 7 e g}y
{p,7} is a stable model. Let it be denoted by SMp.. Then
Nsum,, = {q}.
We observe the double negation problem as below.
(1) For the atomic goal p, (P, Ns,,)(?I)p = 1, because

p € P'. Next we assume a goal =—p. The database is
referred to by (P, N).

P N G
P, g Tomp
p - ’r’

T &~ g,

Since the goal is the double negation of p, p may be
added to IV, and the goal g, or p € N is to be examined.

P N G
2 g g (or 7p)
pe=n—or, p

T & —g,

The goal p succeeds, and thus ~—p does from the first
database. Thus (P, Nsar,, }(?I)—~—p = 1.
(2) For the goal r, mg may be a goal by means of
r « =g. Then the goal ¢ may be put to P. Be-
cause ¢ € N, (P',Nsp,,)(?I)r = 1. By Lemma 2.8,
(P’,NSMP,)(?I)—W"I‘ =1.
(3) Since the goal g does not succeed for P’,

(P',Nsum,,)(M)g # 1.

Now we investigate if (P’, Nsar,,)(?I)-g # 1. The
goal ¢ may be added to N, since the double negation of ¢
is a goal. Then we can take ¢ as a goal.

P N G
P q 7q
p - 1',

T g,

Because the goal ¢ does not succeed,
(P, Nsp,,)(21I)=—g # 1.
Finally we see
L=PN) o,

if L =p,orqorr.

3.2 GDB by Means of Stable Model

Assuming the goal =G takes the form

=(A; 6 AN; - B;5).

we show that G =(PNssp) G, where P is a general
logic program, and Ngpy, is defined by using a stable
model SMp of P.

We firstly formulate a relation between the stable model

and NAL

Theorem 3.5 Given a general logic program P, let SMp
stand for a stable model. For a goal G,

PUAsy, EG < (P.Nar,,)(2IG = 1.

Proof (=) We show by induction on the structure of the
goa.l that if P U ASMP }: G, then (P, NSM,-)(?I)G =1.
Firstly assume PU Agpy, EG.

(1) In case G is a literal:

(a) If G = —q for an atom ¢, then

PUASMP '=ﬁq4=>(] QSMP.

Hence ¢ € Nsar,. Because (P U {q}, Nsprp)()g = 1,
(P., N’SMp)(71-)'1(] =1.
(b) If G = q for an atom g, then

PUAsr, Eqe qeSMp &= qeTor, 1w,

where Tsprp, 1 w is defined as follows: For the Herbrand
base Her of Py such that M = SMp, we define Tspr,.:
2Hev' —_ 2Her to be

Tspp(I)={peHer| Ip—qi...qu:

{g1s--yqu} C I}

Then set Tsprp 1w = Uje, Tsap 14, where

? (the empty set)
Tsa n= -
smp Tm { Tsarp(Tsatp 1 (2 — 1))

We next show by induction that
q€Tspp Tw= (P, Nspp) (Mg =1
(i) Assume g € Tp,, 1 1. Then g «—€ Psyy,, and

(n=0),
(n>0).

q— PP, € P,

where p; is an atom for cach j such that p; ¢ SMp.
(i-a) In case m = 0: ¢ «¢& P. Then ‘

(P,NSMP)(?I)Q = 1.
(i-b) In case m > 0: As we see in (1)(a),
(P Nsmp)()=p; =1 (1< j < m).

Hence (P, Nsp,p)(?)=p1 ... =pm = 1, where the body of
a clause is interpreted as a conjunction of literals (that is,

goals). Therefore

(P, Nspn (Mg = 1.
(ii) Assume ¢ € Tspr, T2 (12> 1). Then
(P, Nsnp)(2)g = 1.

Now assume ¢ € Tsy, T {n + 1) on condition ¢ « p1
...Dk € Pspp such that py, ..., px € Tspmp T n. By the
construction of Psps,,

g P1.-.-PETL.. . NEYTm € P

for r1, ..., 'm € SMp. By the induction hypothesis for
P1seeer Pk € Topmp T,

(PN)(H)pi =1,1<i <k
Asin (1)(a),
(P,N)(M)~r; =1,1<5 <m.

Hence (P,N)(?I)¢ = 1. This completes the induction
step. That is, if the goal is an atom ¢, then

PU ASMp ’= q
& g€ SMp
& g€ TSMP Tw
= (P,Nsmp)(M)g=1

By (a) and (b), if the goal G is a literal, then
PUAsy, |G = (P, Nemp) ()G = 1.
(2) Assume G =G A...AGy, and
PUAsyM, EGi= (P,Nsu,p)(M)Gi=1,1<i <1
By the induction hypothesis, we have
(P,Nsmp)(?)Gi=1,1<: <1
Thus (P, Nsum,)(?21)G = 1. That is,
PUAsu, | G = (P, Nsp,)(2)G = 1.

This completes the induction step.
(8) Assume G = ~(A; ¢i AA\; ~B;). Then

PU ASMP i= G
= (a)3¢;i: PUAsm, g, or
(b) 3iB; : PUAsm, E B;.
(Note G=V;~q: VV; Bj.)

In case of (a): Asin (i)(a), gi € SMp. Hence

qi € Nsump
= (PUU{a:} Nsmr UUHB (g =1
= (PN)(IDG =1.

In case of (b): Assume for Bj such that PUAgyy, = Bj,
(P,Nsmp)(?I)B; = 1. Then by Lemma 2.7,

(PuUdai} Nsm,, WU B N(MB; = 1.

By Definition 2.3, we have (P, Ns,)(?I)G = 1.
By (a) and (b), the induction step is completed.

" («=) We show by induction on the rewritings of the goal
that if (P, Nsy,)(2I)G = 1, then PU Agpr, = G. Now
assume (P, Nsp,)(?I)G = 1.

(1) For atomic goal G:
(a) In case G € P: G € SMp. Hence PU Asu, EG.
(b) In case G «— A € P and (P,Nsyp)(?[)A = L

By the induction hypothesis, P U Aga, = A. Hence
PUAgp, E G. This completes the induction step.

(2) Foragoal G=G, A...AGn:

From (P, Ngpy,)(?I)G = 1, it follows (P, Nsp,)(?1)G:
= 1 for each 7. By the induction hypothesis, P U Agsarp
E G; for each i. Therefore PU Agsarp E G. This com-
pletes the induction step.

(8) Foragoal G = ~(A\; i\ ; = B;): I (P, Nsar,)(H)G =
1, then ‘

34 € Nsu, UU;{Bj} -
{(PU Ui{qi},NSA"lP U UJ{B]}(7I)_4 =1.

(a) If 3q; : ¢; € SMp, then

—q; € Asmp
= PUAsMp i=—'q,'
= PU ASMP t: G.

(b) Assume Vg; : ¢; € SMp.
(b-1) Assume A € Nsprp. Then A € SMp. It follows
A¢Pand

A —~aj...ap=by..."b,, € P,

b (1< k<m) € SMp,

3B € NSMp UUj{Bj} :

(PuUda} U {oe} Nowp WU {B;H(P)B = 1.

This case is reduced to another case of (b-2) that B €
Uj{B.i}'

(b-2) Assume A € U;{B;}, that is, A = B; for some . We
have the following lemma.

Lemma 3.6 Assume Vq; € SMp, and for B; € U;{B;}

(PuUdai} Nem, VU{BHCDB = 1.
Then P U Asmp '= B,.

Proof We prove by structural induction on B;.

(i) (i-a) In case B; € PU;{¢:} for atomic B;: We have
B; € SMp. Hence PU Asp, l"—" By.

(i-b) In case B; is atomic and By « B € P such that
(PulUdai} Nsarp WU {B; () B = 1: Then either
(i-b-o) By € SMp, or

(i-b-B) By € SMp and

Jg € SMp(~¢in B):
(PUUdai} Nswp UUH{B; D(?)g = 1.

In case (i-b-a), PUAguy, E B

The case (i-b-/3) is reduced to the following case (ii-b), for
the goal to be successful.

(ii) In case By = —q for an atom ¢:

(ii-a) If ¢ € SMp, then ¢ € Nsppyp, and =g € Asp,.
Hence PU Asp, = —g. That is, PU Agy, = B

(ii-b) Assume ¢ € SMp. Since

(PU U;’{"Ii}ﬂVSArIF 6] UJ{B]})UI)_‘{I =1,

3C € Nsmp WU {Bj}:
(PUlUda} U{gh Nsar, VUH{B; HINC =1

For the same reason as in (b-1) of the proof of the the-
orem, the case C € Ngp, is reduced to the case below.
Even if the case C = By is repeated, the goal C' is not
successful. Hence we must consider the case C € U;{B;},
C = B; # By, as long as we assume the goal C is success-
ful. We can omit the repetition of the same goal, and this
case could be reduced to the case (i), (ii-a), (iii) or (iv),
where the cases (iil) and (iv) are given below.

(iii) In case By = Cy A ... A Cy: Tt follows

Vk: (PUU{gi}, Nsmp U Uj{Bj})(?I)C'L. = 1.
Since B; is a conjunction of goals,

U;{B;}
{B1,-..,Bi,..., B}
{Blau-,Bl_l,cl,...,cn,BH.],..A,Bm},

where C}, is supposed to be in (J;{B;} for each k. By the
induction hypothesis,

vk : PUASMP |= CL

Hence PUAgy, = Br.

(iv) In case B = ~(Aypir A A\j =Cje): Tt follows
3C € Nspp WU {B;}UulU; {Cy}
(PUUda}uUidpi}s
Nem, UU{B; U U {C DD = 1.

(iv-a) If 3p; : pir € SMp, then

= PUAgpy, = -pi
= PU ASMP }: By.

pir € Nsyp

(iv-b) If Vpy : py € SMp, then the case C € Ngpy, is
reduced to the following, as we see in the case of (ii-h).
Hence C € U;{B;} U U;{Cj}.
(iv-b-a) Assume C = Cj:. Since Cj is the form of a sub-
structure of By, by the induction hypothesis, PU Agps,
= Cj. Therefore PU Agp, = B
(iv-b-8) Assume C' = B;. This case is reduced to the case
(i), (ii-a), (iii), (iv-a), or (iv-b-a), for the goal to be suc-
cessful by finitely applying (i) - (iv). Lemma 3.6
QE.D.

By Lemma 2.6, PUAg, |= Bi. Hence PUAgyy, = G.
This completes the induction step of the case (3)(b).
Q.E.D.

4 Theorem of Double Negation
Law

In this section, a theorem of double negation law is given.

That is, we show the double negation law holds for the

database (P, Ngpy,,) if we take a stable model SMp for a
general logic program P.

Theorem 4.1 Assume a stable model SMp for a given
generel logic program P. Let

Nsap = {n|n ¢ SMp}.

Then.

G =(PNsap) (5.

Proof For a goal G, by Theorem 3.5,
PUAsn, =G (P.Nsp,)(7TI)G =1,

where Agar,, = {-n | n is an atom, and n € SMp}. In
propositional logic,

Py ASMp [: G& PU ASMP ’: --G.
Hence (P,Nsu,)(?1)G = (P, Nsar,)(1)=—G. That is,

G =(PNsump) oL Q.E.D.

As we see Theorem 2.6, given a general logic program

p,
Nypap = {m|{mis an atom, and P(?F)m = 0}
is presented so that
P?F)G =1 (P,Nyarp ()G = 1.
In this paper, for a stable model SMp of P,
Nsarp ={n|n g SMp}
is proposed such that
PUAsu, =G & (P Nsap)(MU)G = 1.

If m € Nyap,, then because of P(?F)m = 0
comp(P) = —m (see [6], for example). Because the sta-
ble model SMp is a model of comp(P) B SsMp = —-m.
Hence m ¢ SMp and m € Ngpy,. That is, if m € Ny ap,
then m € Ngar,. Since Ny.app C Ngar, by Theorem 2.6
and Lemma 2.7,

POIF)G=1 & (P,Nyar)(M)G=1
= (P, Nspp Y()G=1.

However, it does not necessarily follow
G =P Nsnp) oo

Ou the other hand, if we have P = {q,p « p}, then {g}
is a stable model of P. Let it be abbreviated by SMp.
Then p € Nsps,. But p € Ny ap,. Because there is no
finite failure for « p.

Therefore the class of databases (P, Ng Mp) is different
from that of databases (P, Ny .ap,) in [2].

5 Concluding Remarks

We have dealt with a problem of the double negation law
in the database, GDB. Taking the stable model into ac-
count, we have constructed Nsps, as a set of goals for a
stable model SMp of a given general logic program P.
For simplicity of treatment, we are concerned with only
propositional logic. For a stable model SMp, we define

{-n|nis an atom, and n ¢ SMp},

Asy, =
= {n| is an atom, and n ¢ SMp}

Nsump
and present the relation:
PUAsmp EG & (P, Nspy, ()G = 1.
By means of this relation, we have proven
G =PNsmp) oG,

To lift the primary result to the first-order logic, we can
take an existentially quantified goal, where the variables in
the goal may be bound to the terms with function symbols
occurring in the database. The treatment of existentially
quantified goals is exhaustively done by means of that in
propositional logic. (We will show it in another paper.)

The significance of the double negation law in GDB
comes from the reason ——G is regarded as the same as
G in (P,Ngp,) even if the goal G is hierarchically struc-
tured by negations and conjunctions. We may check if the
goal G is successful, when ——G is tested.

References

[1} K.Eshghi and R.A.Kowalski, Abduction Compared
with Negation by failure, Proc. 6th Int. Conf. on
Logic Programming, pp.234-254 (1989).

[2] D.M.Gabbay and M.J.Sergot, Negation as Inconsis-
tency,], The Journal of Logic Programming 1, pp.1-35
(1986).

[3] M.Gelfond and V.Lifschitz, The Stable Model Se-
mantics for Logic Programming. Proc. 5th Int. Cont.
Symp. on Logic Programming, 1070-1080 (1988).

[4] M.Gelfond et al,, On the relation between circum-
scription and negation as failure, Artificcial Intelli-
gence 38, pp.75-94 (1992).

[5] A.C.Kakas, R.A.Kowalski and F.Toni, Abductive
Logic Programming, J. Logic and Computation 2, 6,
pp.719-770 (1992).

[6] J.W.Lloyd, Foundations of Logic Programming, 2nd,
Extended Edition, Springer - Verlag (1987).

[7] J.Lobo, J.Minker and A.Rajaseker, Foundations of
Disjunctive Logic Programming, MIT Press (1992).

[8] W.Marek and V.S.Subralimanian, The relatinship
between stable, supported, default and autoepistemic
samantics for general logic programs, Theoretical
Computer Science 103, 365-386, (1992).

H.Przymusinska and T.C.Przymusinski, Semantic is-
sues in deductive databases and logic programs, in:
R.B.Banerji (ed.), Formal Techniques in Artificial In-
telligence: A Sourcebook, North-Holland, 321-367
(1990).

[10] T.C.Przymusinski, On the Declarative and Procedual
Semantics of Logic Programs, J. Automated Reason-
ing 5, pp.167-206 (1985).

[11] R.Reiter, On closed world data bases, in: H.Gallaire
and J.Minker (eds.), Logic and Data Bases, Plenum
Press, 55-76 (1978).

9

[12] J.C.Shepherdson, Negation as Failure : A Compar-
ison of Clark’s Completed Data Base and Reiter’s
Closed World Assumption, J. Logic Programming 1,
pp.51-79 (1984).

{13] J.C.Shepherdson, Negation as Failure, II, J. Logic
Programming 3, pp.185-202 (1985).

[14] J.C.Shepherdson, Negation in Logic Programming, in
J.Minker (ed.), Foundations of Deductive Database
and Logic Programming, pp.19-88, Morgan Kauf-
mann Publishers (1987).

[15] J.C.Shepherdson, A Sound and Complete Semantics
for a Version of Negation as Failure, Theoret. Com-
put. Sci. 65, pp.343-371 (1989).

