RISV A - EEE- 19-2
(1994. 11. 4)

F oy TR EOBMELT

ANIE: TS
mizuhito@ntt-20.ntt.jp
N T T EBEHZERT

=8t

AEETREMEILEOHIETH 5, ¥r v 7RERFFOREMEL
HEREREL. BT E2RETI2HG50EV2 T -HERT Frv
7R R o BSE -1 Kruskal 028 ® Friedman i€ X 34K
RicFES L, & biC multiset path ordering (status &AW
IRAEKEIER) DIERDEAAS & LTS =mge EEELS f(f(z)) —
flo(f(x))) oFIEHEEZRT. Ll Puel ® SRPO & H~-14ricii
Ne Bz BVOTIEFOT ¥4 v EAHROBETH 5,

Simple termination with
gap-condition

Mizuhito Ogawa
mizuhito@ntt-20.ntt.jp
NTT Basic Research Labos.

Abstract
This paper reports an extension of simple termination, called simple
gap termination, based on Kruskal’s theorem with gap-condition.
- Its modularity (with shared constructors) is also shown.
A trial to design an ordering i,,4,, which is an extension of multiset
path ordering, is also given. However, this ordering is neither a
strict ordering nor powerful compared with Puel’s SRPO. Further

investigation is needed for designing orderings.

1 Introduction

A Term Rewriting System (TRS, for short) is
a set of directed equations, and is widely ap-
plied for a computational model, theorem prov-
ing, etc. Two important properties of a TRS
are confluence and termination. Frequently used
method to show termination is simple termination

[N.D82, J.W92]. Simple termination has good
properties:
1. Simple termination satisfies modularity

(with shared constructors) [MA92)]. (i.e, For
any pair of TRSs R; and R; s.t. their all
common function symbols are constructors,
R; and R, are simply terminating if and only
if B; U Ry is simply terminating.)

2. Simple termination includes
practically useful precedence-based term or-
derings. Namely, LPO (Lexicographic Path
Ordering), RPO (Recursive Path Ordering),
etc. [N.D87, M.R87] These orderings have
automatic procedures for proving termina-
tion [DR85)!.

Simple termination is a practically powerful
method, but fails in following cases.

& Simple termination is based on Kruskal’s the-
orem [J.K60, CW63], thus simple termina-
tion cannot treat a rule in which the lhs is

embedded into the rhs, such as f(f(z)) —
flg(f(=))).

o Precedence-based term orderings may cause
conflicts on precedence. For instance, an ad-
dition + in Cohen-Watson system for inte-
ger arithmetic [DP91] cannot be proved by
precedence-based term orderings.

o Frequently used RPO (with status) may
cause conflicts on status. For instance, ez-
plicit substitution in TRS format [H.Z94] can-
not be proved by RPO.. .

IThough termination and simple termination are un-
decidable even for an one-rule TRS [AC91, AB93].

For the first tree-embedding case, S-embedding
based on Higman’s lemma with unavoidable pat-
terns [L.P89, P.192] is quite effective. An S-
embedding is based on a precedence on unavoid-
able patterns instead of a precedence on func-
tion symbols. A set of unavoidable patterns is a
set of patterns which will match to almost every
terms (i.e., except for finitely many terms). For
instance, patterns {f(0),¢(f(0)), g(¢(0))} with
a precedence g(f(0)) < f(O) lead the termina-
tion of f(f(z)) — f(¢9(f(z))) by RPO-like man-
ner. Unfortunately, modularity is unclear in her
method.

For all cases, semantic labeling [H.Z94] is useful.
Semantic labeling distinguishes occurrences of a
function symbol under a suitable model - then a
function symbol is labeled with a value of its sub-
terms. This avoids conflicts in precedence and ob-
tains freedom to determine precedence. Semantic
labeling is too strong in some sense - A TRS is
terminating if and only if there exists a suitable
semantic labeling. Thus, semantic labeling lost
both modularity[Y.T87] and an automatic termi-
nation detection.

This paper proposes simple gap termination,
which is a proper extension of simple termina-
tion. This extension is based on an extension
of Kruskal’s theorem due to H.Friedman, called
Kruskal’s theorem with gap-condition [S.G85,
1.K89, L.G90] (other than Higman’s lemma with
unavoidable patterns in [L.P89]). Kruskal’s
theorem with gap-condition employs a tree-
embedding v : s — t which satisfies ¥ (succ(a)) <
b for each vertex a in s and each vertex b of ¢ s.t.
¥(a) < b < (succ(a)), under some total prece-
dence < on function symbols. The basic idea is to
replace a condition f(---,s,--+) > sin simple ter-
mination with C[---,s,-+-] > s if each function
symbol f on a path from the root of C[---,s,- -]
to the root of s satisfies f > root(s). The mod-
ularity (with shared constructors) of simple gap
termination is shown similarly to simple termina-
tion [MA92].

A trial to design an extension of term order-
ings gives MGO (Multiset Gap Ordering) mgo,
and this can prove the termination of f(f(z)) —
f(g(f(z))). However, this ordering is neither a

strict ordering nor powerful compared with Puel’s
SRPO. Further investigation is needed for de-
signing orderings. :

2 Preliminaries

Let F be a set of function symbols and V a count-
ably infinite set of variables s.t. F and V are
disjoint each other. For every f € F, a natural
number arity is associated with f. Function sym-
bols with arity 0 is called constant. The set of
all terms built from F and V is defined as usual.
The set of variables occurring in a term ¢ is de-
noted by V(t). A term t is said to be ground if
V(t) = 0. A term t without repeated occurrence
of a variable is said to be linear.

A substitution is a map from variables to terms
and the domain is naturally expanded to whole
terms. Application of a substitution ¢ to a term
t is written as to. A substitution o is also writ-
ten as {z; = t1,...,2, := %,}, where z;’s are
variables s.t. z;0 # z;.

Let O be a special constant symbol. A con-
text C[] is a term in T(F U O,V). When C|[]
is a context with n O’s and ty,---,t, are terms,
Clt1,- - ,ta] denotes the term obtained by replac-
ing all @’s in C[] with ¢;’s in left-to-right manner.
A term ¢ is called a subterm of a term s if there
is a context C[] s.t. C[t] = s.

The set of positions P(t) of a term ¢ is defined
as below:

1. P(t) = Aif tis either a constant or a variable.

2. P(t) ={A}u{i-u|l <i<nandu€P)}
ift= f(tl,...,tn).

For a position p € P(t), t/p is the subterm oc-
curring at p. The set {p|t/p € V} is denoted by
Py(t). For terms ¢, s and a position p € P(t),
t[p «— s] is the term obtained by replacing the
subterm at p in ¢ with s.

For positions p;, ps, we write p; < p, if p; is
a prefix of py, and p; L p, if neither p; < p; nor
p2 < p;. The longest common prefix of p; and
p is denoted by A(p1,p2). The concatenation of
sequences p; and ps is p1-p2- I p1 < p2, p1\p2 is a

sequence which- is obtained from p; by removing
its prefix p;.

A reduction system — is a binary relation, i.e.
a set of pairs of an underlying domain. An ele-
ment of a reduction system is called a reduction,
and denoted by a — a’. A symmetric closure, re-
flexive transitive closure, and reflexive transitive
symmetric closure of — are written as «, —*
and, «~, respectively. We also call « a reduc-
tion. If there is no reduction s.t. a — a/, a is a
normal form of a reduction system.

Definition 2.1 A reduction system — is ter-
minating if there is no infinite sequence s.t. a; —
ag — - .

A term rewriting system (TRS, for short) Ris a
finite set of rewrite rules. A rewrite rule [— r is
a pair of terms [, r satisfying following properties:

1. lis not a variable,
2. V() 2 V(r).

A reduction system —p on the set of terms is
defined from a TRS R as:

—g = {C[l0] »r C[rf] | C[]is a context, 8 is
a substitution, and [— r € R}

For a: s — t, a position where a reduction rule is
applied is denoted by p(a). We call I8 a redex of
R. We often do not distinguish a term rewriting
system' R and a reduction system —p.

3 Simple gap-termination

3.1 Kruskal’s theorem with gap-

condition

Definition 3.1 - A transitive binary relation R
on an objective set A is called an order.

o If an order R is reflexive, R is called a quasi-
order (QO, for short).

e If an order R is irreflexive, R is said to be
strict.

s If an order R is antisymmetric, R is called a
partial order.

¢ If each pair of different elements in A is com-
parable by an order R, R is said to be total.

o If a partial order R is total, R is called a
linear order.

The notations are as in Table 1.

Lemma 3.1 If an order » is strict, » is a par-

tial order.

Proof Assume » is not antisymmetric. Then,
there exists s,y (z #y) s.t. %>y and z < y.
Then, from transitivity, z » y » z implies = = z.
This is contradiction. 1

Lemma 3.2 If » is an order, > is a strict or-

der.

Proof We will show that s 3% ¢ > u implies s >
u. fs=t>u, st u Thus, s = u. Assume
s < u. Then, since s = ¢, t < u. This contradicts
to t > u, and > is an order. Furthermore > is
obviously irreflexive, thus strict. 1

Definition 3.2 An infinite sequence a;, as,- -+
of A is good if there exist ¢,j s.t. ¢ < j and
a; < aj. An infinite sequence ay,a,--- is bad
if ay,az,--- is not good. A QO (A4,C) is a well
quasi-order (WQO, for short) if every infinite se-
quence of A is good.

Definition 3.3 A pair of vertices v, v’ of a tree
t satisfy v < v/ if v is in a path from the root of
t and v'. We denote v < v' if v < v’ and v # v/,
and v = parent(v’) if v is the maximum vertex
st. v < o', We call v an infima of vy,v; if v
is the maximum vertex s.t. v < vy,v.. A ftree
embedding ¢ : s — t is a strictly increasing {one-
to-one) mapping from vertices of s to those that
of ¢ preserving each existing infima.

Theorem 3.1 Let < bea WQO on a set F of
labels, and let T'(F") be the set of all finite trees
with labels from F. Then, <; is a WQO on the
set T(F), where s <, t if there exists a tree em-
bedding ¢ : s — ts.t. v < $(v) for each vertex v
of s.

Several extensions, called Kruskal’s theorem
with gap-condition, -have been proposed in lit-
eratures [S.G85, 1.K89, L.G90]. We employ the
original form by H.Friedman [S.G85].

Theorem 3.2 Forn < w, T'(n) is the set of all
finite trees with labels less-than-equal n. Then <,
is a WQO on the set T'(n), where s <, t if there
exists a tree embedding ¢ : s — ¢ s.t.

1. label(v) = label(¢(v)) for each vertex v of s.

2. Let v,v’ be vertices s.t. v’ is an immediate
successor of v. Then, label(w) > label(v') for
each w s.t. ¥(v) <w < P(v').

Corollary 3.1 Notations are same as in the
theorem. <g is a WQO on the set T'(n) where
s <gt if there exists a tree embedding ¢: s — ¢
s.t.

1. If v is a leaf vertex of s, ¢(v) is a leaf vertex
of t.

2. label(v) = label(¢(v)) for each vertex v of s.

3. Let v,v’ be vertices s.t. v’ is an immediate
successor of v. Then, label(w) > label(v') for
each w s.t. ¥(v) < w < P(v').

4. label(w) > label(root(s)) for each w s.t. w <
P(root(s)).

Proof Let t* be a tree obtained from ¢ by
adding 1 to each label. Let f be a tree obtained
from t* by (1) adding the new root vertex labeled
0 and its only child vertex is the original vertex,
and (2) adding a new leaf vertex labeled n + 2 to
each original leaf vertex.

Let t1,t5,- -+ be an infinite sequence of trees in
T(n). Then, &,%3,--- is an infinite sequence in
T(n + 2). Thus from theorem 3.2, there exists a
pair £; and #; s.t. ¢ < j and £; <, ¢;. This implies
ti SG tj. . L B |

There are two variants of its extensions [I. K89,
L.G90] for labels of infinite ordinals.

RIRT|R\R!'|R'\R|RU=|R'U=|RNRI[(RNR U=
order > | < - =~ = = ~ ~
quasi-order | J | C s C 3 C = =
partial order | > | < > < > < = =

Table 1: Notations for orderings

3.2 Simple gap-termination

Definition 3.4 An ordering }» is monotonic if
for each context C[] s 3 t implies C{s] = C[t] for
each context C[]. An ordering » is stable if for
each substitution 8 s » ¢t implies s8 3= ¢4.

Definition 3.5 The relations —,u and —gq,
on terms are defined below:

o s —gy tiff s =C[L.

® 5 —gap tiff s = Ct] and f > root(t) for all
f on a path from the root of C[t] to the root
of the proper subterm ¢.

Definition 3.6 [N.D82] A monotonic strict
order > is a simplification ordering for a set of
ground terms T if s —,,, ¢ possesses s > t.

Theorem 3.3 [N.D82] Let R be a TRS. If
there exists a simplification ordering > over the
set of terms T s.t.

6> ro

for each rule I — r.€ R and each ground substi-
tution 6, then R is terminating.

Definition 3.7 Let F be a finite set of func-
tion symbols and let > be a linear order over. F.
A monotonic strict order > over a set of ground
terms T(F) is a simplification gap-ordering if
8 —¥g0p t pOSSESSES 5 > 1.

Theorem 3.4 Let F be a finite set of function
symbols and let > be a linear order over F. Let
R be a TRS. If there exists a simplification gap
ordering > over the set of terms 7 s.t.

16 ro

for each rule | — r € R and each ground substi-
tution #, then R is terminating.

Proof Assume there exists an infinite reduc-
tion sequence s; — S3 — s3 — --- of terms S;.
Since variables in the rhs of each reduction rule
are included in its lhs, a set V, of variables ap-
pears in 8; — $3 — 83 — --- is finite. Let 6 be
an arbitrary ground substitution for V,. Then,
818 — 830 — s30 — ... is an infinite reduc-
tion sequence of ground terms. Since > satisfies
18 > r8, there exists an infinite descending chain
510 = 830 > s30 > - .. However, there exist 1, j
s.t. 2 < j and s; <¢ s; from corollary 3.1, and
s gt for terms (i.e., with a fixed arity) is induc-
tively obtained by

o There exists u s.t. s =0, v and u <, ¢.

o If s = f(s1,-+,80) and ¢ = f(ts, -, ta),
8 gty for all ¢,

Since > is the simplification gap-ordering, s; <,
s; implies s; < s; or s; = s;. This contradicts to
Si > ;.]
Theorem 3.5 Simple gap-termination is
modular (with shared constructors).
Proof Let —,; and —,5, be contextual clo-
sures of —+,, and —ye,. The proof is obtained
from the proof of the modularity of simple termi-
nation in [MA92], by replacing —,;, with — 5.
1

4 Designing orderings

4.1 LPO and RPO

Definition 4.1 Let F be a set of function sym-
bols. A partial ordering > over F is called a prece-
dence. If > is total, > is called a total precedence.

Definition 4.2 [N.D82] Let < be a precedence
on a set F of function symbols. A multiset
path ordering (for short, MPO) »np, is induc-
tively defined as follows: For a pair of terms
s = f(s1, " ,8m), t = g{t1, -~ tn)y 8 >mpo t if
either of cases below.

LI f>g,8>mp t; for all .

2. I f=g,[s1," ", 8m] ™ mpo [t1,"**,] Where
> mpo 15 a multiset extension of >mp,-

3. There exists ¢ s.t. $; Zmpo t-

Definition 4.3 Let < be a precedence on a
set F of function symbols, and status(f) €
{left,right,multi} for each f € F. A recur-
sive path ordering (for short, RPO) >, is in-
ductively defined as follows: For a pair of terms
s = f(s1,"y8m), t = g(t1, - -,tn), S >rpo tif
either of cases below.

1. X f>g,s =m0 t; forall j.

2. If f=yg,
o status(f) = mault
and [s1, -+, Sm] ™ rpo (t1, -+, tn] Where

>>rpo 15 @ multiset extension of >,

o status(f) = left, s =ppo tj for all j, and
there exists ¢ s.t.
t;_1 and s; >rpo t;.

o status(f) = right, s = 1
all j, and there exists ¢ s.t. s, =
tny 'ty Sitl = Tigt and s; > rpo Li-

81 =ty 0,8 =

for

3. There exists ¢ s.t. s; >rpo t.

Lemma 4.1 [J.S89] For a total precedence >,
RPO are linear orders (up to permutations).

Lemma 4.2 [J.S89] Let > be a partial prece-
dence. If s >,,, t then there exists a total prece-
dence >' s.t. >'2> and s >, t.

Thus, in practice a total precedence is enough.
Under a total precedence, most of known simpli-
fication orderings - PSO (Path of Subterms Or-
dering), PDO (Recursive Decomposition Order-
ing), PSD (Path of Subterms ordering on De-
compositions), etc. - are unified. Actually, PSO

is equivalent to RPO under a total precedence
[M.R87], and PDO, PSD are equivalent to RPO
on ground terms under a total precedence [J.S89].
Since existential fragments of RPO are decid-
able [JPM91], RPO can be extended to RPO™ by
s >ppo- t iff 8.s8 >grpo tf for all ground substi-
tutions . Thus, they can be unified for general
terms.

4.2 Designing orders

In this section, we will show a trial to design sim-
plification gap-orderings.

Theorem 4.1 [N.D87] A total monotonic or-
dering > is well-founded for derivations, if and
only if it is simplification ordering.

This is because t > C[t] leads t > C[t] >
C[C[t]] » --- from monotonicity and strict-
ness. This contradicts to well-foundedness. Thus,
weaker restrictions than a simplification ordering
must lose either monotonicity, strictness, or to-
tality. Actually, Puel’s SRPO [L.P89] - which
is quite powerful - loses both monotonicity and
stability, and requires complex arguments. The
next example M GO is a quasi-order defined from
a total precedence. '

Definition 4.4 Let < be a total precedence
on a set F' of function symbols. Let € be a fresh
unary function symbol s.t. € is the least element
wrt <, and let Fy and F; be a partition of F s.t.
¢ € Fy. (ie, F is a disjoint union of Fiand F3.)
A multiset gap ordering (for short, MGO) =g
is defined for a pair of terms s = f(s1, -, 8m),
t = g(t1, - -,tn) 8.t. 8 =mgo t if either of cases
below. ,

LI f>g,s>mgotj forall j.

2. If f=g,[s1,"**,Sm] P rpo [t1,"* -, 1n] Where
mgo 15 a multiset extension of >pg,.

3. If f > gor f € F,, there exists 7 s.t. 8; Zmgo
t for all 7.

4. If f>gand g € Fi, § =g t; for all ;.

Lemma 4.3 Let > be a total precedence over

F.

1. »mgo is transitive.
2. ¥mgo are monotonic.

3. ¥mgo is stable.

Lemma 4.4 Let Ft = {1, T}UF and a
precedence > on F*t is an extension of a total
precedence > on F with 1 as the least unary
function symbol and T as the maximal constant
symbol. Let >, 00=%mgo — <mgo and let 1 be
a substitution s.t. zf+ = T for each variable z.
Then,

s >mgo t.
L(8) >mgo -L(1).
507 >‘mgo tg-r.

imply C[s0] >mgo C[to] for each context C[] and
each substitution o.

Proofs for these lemmas are due to the induc-
tion on A(s)+A(t)+ A(w) and case analysis, where
A(s) is the length of the term s. These lemmas
show the termination of {f(f(z)) — f(g(f(=)))}
by >mgo-

Example 4.1 For f(f(z)) — f(g(f(z))), take
the total precedence as f > g, F; = {g} and

F= {f}

5 Conclusion

This paper reported an extension of simple termi-
nation, called simple gap termination, based on
Kruskal’s theorem with gap-condition. Its modu-
larity (with shared constructors) was also shown.

A trial to design gap-orderings g0, which is
an extension of >, was also shown. However,
this ordering is neither a strict ordering nor pow-
erful compared with Puel’s SRPO. Further in-

vestigation is needed for designing ordering.

References

[AB93] A.Middeldorp and B.Gramlich. Sim-

ple termination is difficult. In Proc.
RTA’93, pp. 228-242, 1993. LNCS 690.

A.-C.Caron. Linear bounded automata
and rewrite rules: Influence of initial
configurations on decision properties. In
Proc. Int. Conf. on Theory and Prac-
tice of Software Development, pp. 74—
89, 1991. LNCS 493.

C.S5T.J.A.Nash-Williams. On well-
quasi-ordering on finite trees. Proc.
Cambridge Phil. Soc., Vol. 59, pp. 833~
835, 1963.

D.Cohen and P.Watson. An efficient
representation of arithmetic for term
rewriting. In Proc. RTA’91, pp. 240-
251, 1991. LNCS 488.

[AC91]

[CW63)]

[DP91]

[DR85] D.Detlefs and R.Forgaard. A procedure
for automatically proving the termina-
tion of a set of rewrite rules. In Proc.

RTA’85, pp. 255-270, 1985. LNCS 202.
[H.Z94]

H.Zantema. Termination of term
rewriting by semantic labelling, 1994,

preprint.

LKfiz. Well-quasiordering finite trees
with gap-condition. proof of harvey
friedman’s conjecture. Annals of Math-

ematics, Vol. 130, pp. 215-226, 1989.

J.Kruskal. Well-quasiordering, the
tree theorem, and vazsonyi’s conjecture.
Trans. AMS, Vol. 95, pp. 210-223, 1960.

[LK89]

[J.K60)

[JPM91] J.-P.Jouannaud and M.Okada. Satisfia-
bility of systems of ordinal nottions with
the subterm property is deciadable.
In Proc. 18th International Colloguium
on Automata, Languages and Program-

ming, pp. 455-468, 1991. LNCS 510.
[J.589]

J.Steinbach. Extensions and compari-
son of simplification orderings. In Proc.

RTA 89, pp. 434-448,1989. LNCS 355.

[J.W92] J.W.Klop. Term rewriting systems. In [Y.T87] Y.Toyama. Counterexamples to termi-

[L.G90]

[L.P89]

[MA92]

[M.R87]

[N.D82]

[N.D87]

[P.L92]

[5.G85]

D.Gabbay

S.Abramsky and T.Mainbaum, editors,
Handbook of Logic in Computer Science,
volume 2, pp. 1-112. Oxford University
Press, 1992.

L.Gordeev. Generalizations of the
kruskal-friedman theorems. Journal of
Symbolic Logic, Vol. 55, No. 1, pp. 157-
181, 1990. '

L.Puel. Using unavoidable set of trees to
generalize kruskal’s theorem. Journal of
Symbolic Computation, Vol. 8, pp. 335—
382, 1989.

M.Kurihara and A.Ohuchi. Modularity
of simple termination of term rewrit-
ing systems with shared constructors.
Theoretical Computer Science, Vol. 103,
pp. 273282, 1992.

M.Rusinowitch. Path of subterms or-
dering and recursive decomposition or-
dering revisited. Journal of Symbolic
Computation, Vol. 3, pp. 117-131, 1987.

N.Dershowitz. Ozrdering for term-
rewriting systems. Theoretical Com-
puter Science, Vol. 17, pp. 279-301,
1982.

N.Dershowitz. Termination of rewrit-
ing. Journal of Symbolic Computation,
Vol. 3, pp. 69-116, 1987.

P.Lescanne. Well rewrite orderings and
well quasi-orderings. Journal of Sym-
bolic Computation, Vol. 14, pp. 419-
435, 1992.

S.G.Simpson. Nonprovability of cer-
tain combinatorial properties of finite
trees. In L.A.Harrington, editor, Har-
vey Friedman’s research on the founda-
tion of mathematics, pp. 87-117. Else-
vier, 1985.

nation for the direct sum of term rewrit-
ing systems. Inform. Process. Lett.,
Vol. 25, pp. 141-143, 1987.

