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Abstract: In this paper, we give an efficient algorithm for the following k-pairwise node
disjoint path problem in n-dimensional hypercubes H,: Given k = [2] pairs of 2k distinct
nodes (s1,t1),---,(sk,t) in Hy, n > 4, find k node disjoint paths, each path connecting
one pair of nodes. Our algorithm finds the k£ node disjoint paths in O(n?log" n) time which
improves the previous result of O(n?logn). The length of the paths constructed in our
algorithm is at most n + [logn] + 1 which improves the previous result of 2n as well. The
result of this paper shows that the k-pair-diameter dF%](Hn) of H, satisfies dF%](Hn) <
n+ [logn] + 1.
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1 Imtroduction

Node disjoint path problems have attracted much at-
tention in both mathematical terms and interconnection
network studies due to its numerous applications in fault
tolerant routing and so on [1, 9, 8, 12, 4]. In what fol-
lows, we will use disjoint path for node disjoint path. In
this paper, we give an efficient algorithm for the follow-
ing k-pairwise disjoint path problem in n-dimensional hy-
percubes H,: Given k = [}] pairs of 2k distinct nodes
(s1,t1)y+++, (Sk»tx) in Hy, find k node disjoint paths, each
path connecting one pair of nodes. For & < 2, the & paths
in the k-pairwise disjoint path problem can be found in
Poly(|V]) time for arbitrary graphs G(V, E) [14]. How-
ever, for k > 3, the existence of the & paths in k-pairwise
disjoint path problem is NP-complete [10]. A necessary
condition of a graph G having k disjoint paths for the
problem is that G is (2k — 1)-connected [15]. In intercon-
nection network studies, much work has been done on
efficient algorithms for k-pairwise disjoint path problem
in practical interconnection networks [11, 2, 6, 7).

Hypercubes are interesting interconnection topologies
for parallel computation and communication networks.
Many commercial and experimental multi-processor sys-
tems have been built based on hypercube interconnection
topologies. Several disjoint path problems in hypercubes
have been studied [13, 12, 11, 3, 7, 5]. For k-pairwise
disjoint path problem, Madhavapeddy and Sudborough
proved that [%] disjoint paths exist in H, for n > 4,
which is n-connected and has 2" nodes, and gave an al-
gorithm that finds the [%] disjoint paths in O(n®logn)
time [11]. The length of the paths given by the algo-
rithm in [11] is at most 2n. Recently, Gu and Peng gave
an O(n?logn) time algorithm which finds [%] disjoint
paths of length at most 2n for k-pairwise disjoint path
problem in H, for n > 4 [7]. In this paper, we propose
a new algorithm for k-pairwise disjoint path problem in
H,. Our algorithm finds [}] disjoint paths of length
at most n + [logn] + 1 for the problem in O(n?log* n)
time. Our results improves the previous ones both in time
complexity of the algorithm and the length of the found
paths.

In the next section, we give preliminaries of this pa-
per. The algorithm for k-pairwise disjoint path problem
is given in Section 3. Section 4 concludes the paper.

2 Preliminaries

An interconnection network is presented as an undi-
rected graph G(V, E), where nodes of G represent the
processors, and edges of G represent the communication
channels between processors. A path in a graph is a se-
quence of edges of the form (s1,52)(s2,83)...(Sk—1, k)
si € V,1<i<k,ands; #sj,i# j. Thelength
of a path is the number of edges in the path. We some-
times denote the path from s; to sy by s; — sg. For
a path P = s; — sk, we also use P to denote the set
{51,..., 5k} of nodes that appear in path P. The nodes
s; and s in path s; — s are called end nodes. Given

two paths P = {s1,82,...,5¢} and Q = {t1,¢2,..., 41}, P
and Q are disjoint if P\ Q = 0, and P and Q are weakly
disjoint if (P — {s1,5:})(Y(Q — {t1,t:}) = 0, where s;
and sy, are end nodes of P, and t; and #; are end nodes
of Q. For any two nodes s,t € G, d(s,t) denotes the
distance between s and t, i.e., the length of the shortest
path connecting s and ¢. The diameter of G is defined as
d(G) = max{d(s,t)|s,t € G}.

An n-dimensional hypercube H, is a graph, where the
nodes of H, are in 1 — 1 correspondence with the n-bit
binary sequences aias .. .d,, and two nodes a; ...a, and
by ...b, are connected by an edge if and only if these
sequences differ in exactly one bit. There are 2™ nodes
in H,, and each node has exactly n edges incident upon
it. H, is n-connected and has diameter d(H,) = n. H,
can be partitioned into two disjoint (n — 1)-dimensional
subcubes by fixing the kth bits of the binary expressions
of nodes in H,, into 0 and 1, respectively, for some k with
1 < k < n. The following topological properties of H,
are important in this paper.

Proposition 1 For any node s € H,, n > 1, parti-
tion H, into two disjoint (n — 1)-dimensional subcubes
H,_1, and H,_; 3 such thats € H,_,;. Then there are
n weakly disjoint paths of length at most 2 that connect s
to n distinct nodes in Hy,_; 3.

Proof: Assume the kth bits of nodes in H,,; and
H,_, are 0 and 1, respectively. Assume s =aj0;...0a,
with a; = 0. The path

Pr:s—a;...0k_10,0k41...0, € Hn_l’z

is the path of length 1 that connects s to anodein H,_, 3,
where dj, is the logical negation of aj. And the paths

Pi:s — a...d;...a5...a,

— Q1...05...8k...Qn € Hn_l,g,

1 <j<nandj#k, are n — 1 paths of length 2 that
connect s to » — 1 distinct nodes in H,_; 3. These n
paths are node disjoint except at the common end node
s. O

In what follows, we will say paths Py,..., P, route s into
Hn—l,z-

Proposition 2 For s € H,_,,1, let P1,...,P, be the n
paths given in Proposition 1 that route s into H,_15.
Then

1. for any node v € H,, v # s, v can block at most one
of the n paths P, ..., P,;

2. for any path Q with length at most 2, s ¢ Q, and
|Q Hn-1,2| =1, Q can block at most one of the n
paths Py, ..., Py;

3. for any path Q with length at most 2, s & Q, and
IQMN Hp-1,1] = 1, Q can block at most one of the
n—1 paths P;, 1 <j <nand j #k, of length 2 (Q
may block the path Py of length 1 as well).
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Proof: The proof of (1) is trivial. For any nodes z €
(Pi—{s})andy € (P;~{s}),1<i#j<nandi,j+k,
if z,y are in the same subcube then d(z,y) = 2, otherwise
d(z,y) = 3. Therefore, from the conditions of (2) and (3),
(2) and (3) hold. O

The above propositions show that a node s can be routed
into the opposite subcube by n different paths, and a
routing path of length at most 2 for some other node can
block at most 1 of the n—1 routing paths of length 2 for s.
To simplify the descriptions of this paper, we introduce
the concept of fault cluster which was defined in [7].

For a graph G, a cluster C of G is defined to be a
connected subgraph of G. We will use C to express the
cluster and the set of nodes in the cluster as well if no
confusion arises. The number of nodes in C and the di-
ameter of C' are denoted as |C| and d(C), respectively. A
cluster C is called foult cluster if all nodes in C are faulty.
Let F be a set of fault clusters in a graph G. |F| denotes
the cardinality of F, d(F) = max{d(C)|C € F} denotes
the diameter of F, and F = UceF C denotes the set of
nodes of the clusters in F. From Proposition 2, a fault
cluster C of diameter at most 1 in H,, can block at most
one of the n — 1 routing paths of length 2 for s (C may
block the path Py of length 1 as well). We call a path a
fault-free path, if there is no fault-node in the path.

Finally, we introduce a parameter which is the optimal
upper bound of the length of the paths in k-pairwise dis-
joint path problem. Let G be a n-connected graph, L(P)
be the length of a path P in G, and P be a set of paths
in G. Define L(P) = max{L(P)|P € P}. For k-pairwise
disjoint path problem, define

df (36, t:)%.,) = min{L(P)|P :
set of k disjoint paths for (s;,#;)% ;]

The k-pair-diameter of G, 1 < k < [2], is defined as:
di (G) = max{sf ((si t:)iy)|si,t: € GY.

Clearly, d(G) < df(G) for 1 < k < [2]. The result of
this paper shows that dﬁﬂ(Hn) < d(H,)+ [logn] + 1.

3 Algorithm for k-Pairwise Disjoint Path
Problem

Lemma 3 Given any set F of n — 1 fault nodes and any
two non-fault nodes s and t i H,, n > 1, a fault-free
path of length at most n + 1 connecting s and t can be
constructed in O(n) time.

Proof: Partition H, into two disjoint (n—1)-dimensional
hypercubes H,_1, and H,_;, such that s € H, 1,1
and ¢t € H,_;,. Assume that H,_, contains at most
"T_l fault nodes of F. Since there are at most n — 1
fault nodes, from Proposition 2, we can find a fault-
free path of length at most 2 from s to some node
s ¢ Hyu1,2. Let H,_15 be H, 1, and repeat the
above process, finding a fault-free path of length at most
2 from s to s(i+1) ¢ H,_(iy1),2, until sGt1) = ¢

or F(\H,_(i41),2 = § (Without loss of generality, we
assume that when H,_; is partitioned into Hy_(i41)1
and Hy,_(i11y,2, s ¢ Hy (iy1)1, t € H,(i41),2, and

n—(i+1),2 contains at most half of the fault nodes in
H,_; for all 5). Since |F(\Hn_(it1)2] < |[F\Hooizal/2
and |F| < n — 1, we can get a hypercube Hp log(n—1)]
such that F'()H, _fog(n-1)] = # and s([og(n=1)1) " de-
noted as ¢', and t are in Hy_flog(n—1)]- Then s’ and ¢
can be connected by a fault-free path of length at most
d(s',t) in Hy_fiog(n—1y] in O(n) time.

For s = aya5...a, (3(0) = 3? and t = byby...b,, let
D; = {jla; # b;}. If s — s(+1) 5 5 path P;, for some
Jji € D; then d(s(i"'l),t) = d(s(i),t) - L(s(i) — S(H'l)),
where L(s() — s(+1)) is the length of the path s( —
s+ Otherwise, d(s(),t) = d(s(it1),t). From this,
(st t) = d(s(),¢) — L(P;,) if there exists a fault-free
path P;, j; € D;, and d(s(+1),t) = d(s(),¢) if for all
Ji € Dy, Pj’s are faulty. Since |D;| = d(s(),¢), a fault-
free path Pj,, j; € D;, can be found if |F(Hnoig <
|D;|. We claim that in the path s — s(1) — ...
at most [log 77257 paths 5@ — sU+1) are the paths P,
with j; ¢ D;. To prove this, let j be the integer such
that §() — s(+1) is the path P, with j; ¢ D;. Assume
that in the path s — s — ...50() sGH) ;1 <
m <'j + 1, paths s() — s(+1) are the paths P;, with
Ji € Di. Then |Djyq1| = d(sUtV) ) = d(s,¢) — 2(j + 1 —
m) and |F(\ Hy_(j41)2] < &7+, From the algorithm,
d(sU+D ¢) = d(s\9),¢) > 2. Therefore, If m = [log Feol
then

— s -4,

n—1 n—1 1

25+ ey iti-m
. onm—1_ d(st) d(s,t)
T a 2i+1-m 95+i-m

IA

d(s,t) —2(j +1 - m).

From this, it is easy to get |F(\H,_;2| < |D;| for all
t > j+1, ie, the path P; with j; € D; can be found for
i > j 4+ 1. This completes the proof of the claim.

From the claim and L(P;,) < 2, we can find a fault-free
path of length at most

[log(n—-1)] ) ]
d(s',t) + Z L(s(“l) —»s('))
=1

= d(slvt)'l' Z L(Pji)+ Z L(Pji)
Ji€D; Ji#D;

= d(s,t)+ Z L(P;;)
Ji€D;

<

d(s,t) + 2[log E‘?—t)] <n+l

The time for the ith iteration is O(£) since there are no
more than 2!1, nodes needed to be explored at the ith
iteration. Therefore, the total time of the construction is

logn

T(n)=0(n) + O(3_ ;) = O(n).

0
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Lemma 4 Given any set F of fault clusters with |F| <
n —2 and d(F) < 1, and non-fault nodes s and t in H,,
a fault-free path of length at most n 4 2 that connects s
and t can be found in O(n) time.

Proof: Partition H, into two disjoint subcubes H,_; 1
and H,_y2 with s € Hy_;; and t € H,_; . Then one
subcube contains at most |F|/2 < n — 2 fault nodes of
F. Assume that H,_; contains at most n — 2 fault
nodes. Then from Proposition 2, we can find a fault-
free path of length at most 2 in O(n) time that routes s
into a node s(!) in H,_;3. From Lemma 3, s(1) and t
can be connected by a fault-free path of length at most
(n—1)+1=mnin O(n) time in H,_;,. O

Theorem 5 Forn > 4 and 1 < k < |}, given a set
F of fault clusters with |F| < n — 2k and d(F) < 1,
and k pairs of distinct non-fault nodes (31,t1),...,(Sk,tk)
in H,, there are k disjoint paths of length at most n +
[log k] + 2 that each path connects one pair of nodes.

Proof: The theorem is proved by induction on k. For
k = 1, the theorem holds from Lemma 4. Assume that
the theorem holds for £ — 1 > 1. We prove the theorem
for k < |%]. We first show that the & disjoint paths can
be found and then analyze the length of the found paths.

Partition H, into two disjoint subcubes H,.;; and
H,.1, such that at least one node pair is separated.
Without loss of generality, we assume k', 1 < k' < k,
node pairs are separated and s1,...,8 € Hp_11 and
t1,...,te € Hp.1,2. After the partition, we want to route
s; or t;, 1 <14 < kK, into the opposite subcube by fault-
free disjoint paths such that, after these initial routings,
no node pair is separated and each subcube contains at
most k— 1 node pairs and at most (n —1) — 2(k — 1) fault
clusters of diameter at most 1.

For any separated node pair (s;,¢), 1 < ¢ < k&, we
now show that there are two fault-free paths of length
at most 2 that route s; into H,_; 2 and ¢; into H,1,,
respectively. From Proposition 1, s; can be routed into
H,_,, by n disjoint paths of length at most 2. The n
paths for s; may be blocked by the routing paths for the
node pairs (s;,t;), j # i, and fault clusters in F. From
Proposition 2, one of the routing paths for s; or ¢; can
block at most one path of length 2 for s;. One cluster in
F can block at most one path of length 2 for s; as well.
Therefore, at most 2(k—1)+n—2k = n—2 paths of length
2 for s; can be blocked. Thus, from Proposition 1, at least
one routing path of length 2 that routes s; into H,_; o
does not contain any node of F, any node of (s;,t;), j # 1,
or any node in the routing paths for (s;,¢;). Similarly, t;
can be routed into H,_1,; by a fault-free path of length
at most 2 as well.

From the argument above, the direction of routing sep-
arated node pairs can be controlled and the number of
node pairs in each subcube after the routing can be bal-
anced. Assume that for the rest k — k' unseparated node
pairs, k; pairs are in H,_;; and ky pairs are in H,_ s,
0 < ky,ky <k—Fk and ks +ky = k — k. We further
assume that k; > ky. If ky — ky > k' then we route
815-+- 8k to Hy_1 2 by fault-free disjoint paths of length

at most 2. Otherwise, we route the nodes si,...,s; into
H,_1 and the nodes t;11,...,ty into Hy_1 such that,
after the initial routing, each subcube contains half of the
node pairs to be connected.

Assume that si,...,s;, 1 < i < k', are routed into
H,_12. Then there are at most k — 7 < L"z;lj node
pairs to be connected in H,_1;. On the other hand,
the routing paths for si,...,s; should not be touched in
the further routing in H,_y,1, and thus, after the initial
routing, i new fault clusters of diameter at most 1 are
generated in H,_y 1, resulting in at most [F|+i < n—2k+
i < (n—1)—2(k—2) fault clustersin H,_;,;. Similarly, in
H,_1,, there are at most k—j < ["z;lj, j=ki+k —i>
1, node pairs to be connected and at most |F|+ &' —i =
n—2k+k —i < (n—1)—2(k—j) fault clusters. Therefore,
by the induction hypothesis, the k disjoint paths that
pairwisely connect the k node pairs in H,, can be found.

For a separated node pairs (s;,t;), we denote the des-
(1)

tination node u at the routing path s; — u for s; by s;

and denote the destination node of sgg ) as sgg“). From

the routing strategy above, it is easy to see that there
are at most [ﬁ;] node pairs to be connected in the

(

subcube where sgg) and tih) reside in. Therefore, each
node pair will be separated at most [log k] times. Thus,
the length of the paths is at most

d(Hp—fog#1) +2 + 2[log k] = n + [log k] +2

m]

The above theorem implies that for even n, & = n/2
disjoint paths of length at most n + [logn] + 1 can be
found. To get the [n/2] disjoint paths for odd n > 5,
some further works are needed.

Lemma 6 For s € H, 11, let P, be the routing path
of length 1, Pj, 1 < j < mnandj # k, be then — 1
routing paths of length 2 that route s into H,._,3, and
fort € Ho_13 (t € Hyp—1,1), let Qy be the routing path of
length 1, Q;, 1 < j < n and j # k, be the n — 1 routing
paths of length 2 that route t into H,_; (route t into
Hn—I,Z)' Then,

1. fort € H,_1,5 and d(s,t) > 2, at least 2n — 2 paths
of Py,...,P,,Qy,...,Qn are disjoint except at the
end nodes s or t; and

2 fort € Ho_1, andt # s, at least 2n — 2 paths of
Pi,...,P,,@,...,Qn are disjoint except at the end
nodes s ort.

Proof: We only prove (1). (2) can be proved similarly.
Assume s = aja3...a, and b = by by ...b, with d(s,t) >
2 and ay, = by. If d(s,t) > 4 then obviously the 2n paths
P,...,P, and Q,,...,Q, are disjoint except at the end
nodes s or t. For d(s,t) = 2, assume that aj = by,
aj=1;j, and a; = b;, 1 <i<nandi#jk Itiseasy
to see the path Py, meets the path Q;, the path P; meets
the path Qy, and none of any other pair of paths P; and
Q.. has the common node except the end nodes s or %.
Thus, take P = {P;,Q;,1 < i <n, i #j}, the pathsin P
are disjoint except at end nodes s or ¢t and |P| =2n — 2.
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For d(s,t) = 3, assume a; = by, a; = b;, a; = by, and
a; =b;, 1 <i<mnandi#jk . Then in the 2n paths
Py,...,P, and @y,...,Qn, path P, meets path Q; and
path P; meets path Q;, and none of any other pair of
paths has the common node except the end nodes s or ¢.
Thus, there are 2n — 2 paths of the above 2n paths are
disjoint except at the end nodes s or ¢. O

Lemma 7 Given a set F of fault clusters with |F| <
n—3, dF) <1, and |F| < 2n — 7, and two pairs of
non-fault distinct nodes (s1,t1) and (s2,t) in H, with
n2>4,81,8 € Hy 1) and ty,t; € H,_1 2, we can find
two fault-free disjoint paths of length at most 2, one path
route sy or sy into H,_; 5 and the other path route ty or
ty into H,_1 1 such that each subcube contains one node
pair after the routing.

Proof: If s, and #; can be routed into H,_;, and
H,,_, 1, respectively, by fault-free disjoint paths of length
at most 2, then the Lemma holds. If all the n paths for
one of the nodes s; or ¢, are blocked, then we will prove
that s; and t; can be routed into H,_;5 and Hp_y 1,
respectively. Assume all the n paths for s; are blocked.
Then it must be the case that one cluster of diameter 1
blocks one path of length 1 and one path of length 2 and
the other n — 2 paths of length 2 are blocked by the rest
n — 4 fault clusters and the nodes s; and ¢;. From this,
d(s1,t1) > 2 and at least n — 4 + 2 = n — 2 fault nodes
appear in the routing paths for s;. From Lemma 6, there
are at least n — 2 routing paths of length at most 2 for
t; that are disjoint with the routing paths for s;. The
nodes in the routing paths for s; can not appear in the
n — 2 routing paths for ¢;. The number of fault nodes
in fault clusters that do not appear in the routing paths
for s; is at most 2n — 7 — (n ~ 2) = n — 5. Therefore,
at most n — 3 routing paths for ¢; can be blocked (fault
clusters block n — 5 paths, s; blocks 1, and ¢, blocks 1).
From this, ¢; can be routed into H,_,; by a fault-free
disjoint path of length at most 2. Similarly, there are at
least n — 2 routing paths of length at most 2 for s, that
are disjoint with the routing paths for s;. And at most
n — 3 routing paths for s, can be blocked (fault clusters
block n — 5 paths and the routing path for ¢; blocks 2).
Thus, the lemma holds. O

Theorem 8 For even n > 4, given a fault node
f and k = n/2 pairs of non-fault distinct nodes
(s51,t1)y+ -+ (8K tk) in Hy, and for odd n > 5, given
k = [%] pairs of distinct nodes (s1,t1),...,(sk,tx) in
H,, there are k fault-free disjoint paths of length at most
n+ [logn]+1 that each path connects one pair of nodes.

Proof: We prove the theorem for n > 7 here. For
4 < n < 6, the theorem is proved by an enumerate argu-
ment (see Appendix). Similar to the proof of Theorem 5,
we partition H, into two disjoint subcubes H,_;,; and
H,,_,,5 such that at least one node pair is separated. As-
sume that s1,...,80 € Hy 13 and iy,...,te € Hog g,
1 < k' < k. Then we show that s; or t;, 1 < i < k/, can
be routed into the opposite subcube by fault-free disjoint

paths such that, after the initial routing, no node pair is
separated and each subcube contains at most k — 1 node
pairs. The proof is divided into two cases:

Case 1: k' =1 and s;,t; € Hy_y 1 for 2<i < k.

For odd n, since H,,_1,» contains only #;, s; can be routed
into H,_12 by the path of length 1. After the routing,
H,,__; » contains only one node pair to be connected and
the connection is trivial. H,_;; contains ¥ — 1 node
pairs and one fault node (node s;). Since n — 1 is even
and k —1 = (n — 1)/2, the theorem can be recursively
applied to H,_1;.

For even n, if the fault node f is in H,_; 5, then, from
Propositions 1 and 2, s; can be routed into H,_; 2 by a
fault-free disjoint path of length at most 2, since at most
2(k—1)+1 = n—1 routing paths for s; can be blocked by
f, and the 2(k — 1) nodes in node pairs (s;,¢;), 2 <i < k.
After the routing, obviously, Theorem 5 can be applied to
H,_132. Hp_1,; has k—1 node pairs to be connected and
one fault cluster (the routing path for s;) of diameter at
most 1. Since k—1= |27l and (n —1)-2(k - 1) =1,
Theorem 5 can be applied to H,_; ;. Assume that f €
H,,—1,1. Then s; can be routed into H,,_; 5 by the routing
path of length 1. After the routing, the connection of the
node pair in H,,_; 3 is trivial. H,,_;; has k—1 node pairs
to be connected and two fault nodes (the given one and
node s;). Treating the two fault nodes as one node pair
to be connected, there are k node pairs to be connected in
H,_,;. Since k = ["—;—1], the theorem can be recursively
applied to Hy,_1,1.

Case 2: ' > 2 or ¥ = 1 and 3(syt;) € Hyy,1 and
El(smvtm) € Hn—l,z-

In this case, we show that Theorem 5 can be applied to
H,_,, and H,_,, after the first initial routing. Assume
that for the rest k — k' unseparated node pairs, k; pairs
are in H,_;, and k; pairs are in H,_; 5, where 0 <
ki, ks <k —k" and k; + kg = k — k. We further assume
that k; > k. If ky — ks > k' then we route sq,...,8, to
H,,_; » by fault-free disjoint paths of length at most 2 as
follows: For odd n and arbitrary node s;, 1 < i < k/, at
most 2(k—1) = n—1 of the n routing paths can be blocked
by the 2(k — 1) nodes in node pairs (s;,t;), 1 < j <k
and j # i (Proposition 2 assures that the routing path
for 55, 1 < j < k' and j # i, can block at most one
of the n routing paths of s;). Similarly, for even n and
i, at most 2(k — 1) + 1 = n — 1 of the n routing paths
can be blocked by the 2(k — 1) nodes in (s;,t;) and the
fault node f. After the initial routing, H,_; 2 contains
k' +ky < |k/2] node pairs and at most 1 fault node. Since
k' 4k, < L&;;I_J and (n—1)~2(k'+ky) > 1, Theorem 5 can
be applied to H,_15. H,_;, contains k — (ks + k') node
pairs and at most k' fault clusters for odd n (k' routing
paths for si,...,8,) and at most &' + 1 fault clusters
(plus the fault node f) for even n of diameter at most
1. From the condition of Case 2, ky + k' > 2. Therefore,
E— (k4 k)< |22, (n—1) — 2(k — (ks +&')) > &' for
odd n, and (n—1) — 2(k — (ka + &’)) > k' + 1 for even n.
Thus, Theorem 5 can be applied to H,_; ; as well.

Assume that k; — ks < k’. In this case, we route I; s;'s
and I t;’s in the separated node pairs into H,,_; 2 and
H,, 1,1, respectively, such that each subcube contains half
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of the node pairs to be connected. The routing is done
as follows: We first pair up the separated node pairs into
Iy groups such that each group has two separated node
pairs, one is to be routed into H,_; and the other is
to be routed into H,_;;. Next we route the node s;’s
in the rest k' — 2l separated node pairs into H,_; 5 as
we did in the case k; — ks > k’. Finally, we route the
two node pairs in each group into H,_;,; and Hy,_;,
respectively, as shown in Lemma 7. While routing the
two node pairs (s1,¢1) and (s2,%;) in some group, there
are at most k—2 routing paths for other node pairs (s;, t;),
say for s;’s, k — 2 nodes t;’s, and one fault node f if n
is even, which may block the routing paths for (s1,?;) or
(s2,t2). This results in 2(k — 2) = n — 3 fault clusters for
odd n or results in 2(k — 2) + 1 = n — 3 fault clusters for
even n, total at most 2(k—2)+(k—2)+1 < 2n—7 fault
nodes for either cases. After the initial routing, H,—1
contains k; + I3 = |k/2] node pairs and at most I; fault
clusters for odd n and at most /; + 1 fault clusters for
even n, and H,_, » contains k; + I; = [k/2] node pairs
and at most I, fault clusters for odd n and at most Iy +1
fault clusters for even n. From n > 7 and k = [n/2],
ky 41y =k — (k2 + 1) < [252]. On the other hand, for
oddn>7and k= [n/2],(n—1)-2(k1 +bh)=(n-1)~
2|k/2] > [k/2] > I, and for even n > 8 and k = n/2,
(n—1)-2(k1 +b) = (n—1)—2{k/2] > [k/2]+1 > 1 +1.
Thus, Theorem 5 can be applied to H,_1,;. Similarly,
Theorem 5 can be applied to H,,_y 2.

We have shown that the & disjoint paths can be found.
If the separated node pair is routed in Case 1 then the
path for this pair is at most n + 1. If the separated node
pairs are routed in Case 2, following a similar argument
in Theorem 5, the length of the paths for those node pairs
is at most n + [logk] +2 < n + [logn] + 1. O

Theorems 5 and 8 implies an algorithm for A-pairwise
disjoint path problem in H,. We now show the time
complexity of the algorithm.

Lemma 9 For a node v € H,, let N(u) = {v|jv €
H,, d(u,v) < 1}. For any set of nodes X C H, define
f(z) = {ylz € N(y),y € X}|, and F(X) = 3, x f(z).
Then F(X) < |X|log|X].

Proof: The lemma is proved by induction on |X|. It is
trivial to show that the lemma holds for | X| < 4. Now we
assume that the lemma holds for | X| < m — 1, and prove
the case of | X| = m. We partition H, into two subcubes
H,_y,; and H,_; 3 such that H,_;; and H,_, 3 contain
! and m — I nodes of X, respectively, with 1 <1 < m —~1.
From the induction hypothesis we have F(X (Y Hp—_1,1) <
llogl and F(X(Hn-1,2) < (m = log(m —1). Tt is
clearly that each node of H,_;; is a neighbor node of
exactly one node in H,_; 5 and vice versa. Therefore, we
have

F(X) < llogl+ (m —l)log(m — 1) + 2min{l,m — 1}.
It is not difficult to show that
llogl+ (m —1)log(m — 1) + 2min{l,m — I} < mlogm

for 1 <1 <m — 1. Thus, the lemma holds. O

Lemma 10 Let X,Y C H, with |X| > |Y|. Forz € X,
define f(z,Y) = {ylz € N(y),y € Y}| and F(X,Y) =
Yeex F(@,Y). Then F(X,Y) = O(|X|log|Y]).

Proof: Partition X into » = |X|/|Y| disjoint subsets
Xi,...,X, with the same size. Then from Lemma 9,

F(X,Y) = Y F(X,Y)
=1
< YR Y) = 0(x}log Y1),
i=1
m]
Theorem 11 Given k = [%] pairs of distinct nodes

(815t1),---,(8k>t) tn Hy,, k disjoint paths of length at
most n + [logn] + 1, each path connecting one pair of
nodes, can be found in O(n?log* n) time.

Proof: Theorems 5 and 8 implies an algorithm that finds
the k disjoint paths of length at most n+ [logn]+1 for k-
pairwsie disjoint path problem. We now analyze the time
complexity of the algorithm. There are two basic works in
the algorithm. One is to connect a node pair in a subcube
which can be done in O(n) time (Lemma 4), and the other
is to partition H, into two disjoint subcubes and to find
the routing paths for the &’ separated node pairs, after
the partition. Each partition takes O(n) time. In each
partition, for a separated node pair (s;,;), if m; of the 2n
routing paths are blocked then it takes O(m;) time to find
the routing path for (s;,%;), and it takes O(Zil m;) time
to complete the initial routing for all the separated node
pairs. Let Y be the set of nodes in separated node pairs
and X be the set of nodes which may block the routing
paths needed. Then f(z,Y’) defined in Lemma 10 gives
an upper bound on the number of the routing paths for
separated node pairs that are blocked by the node z € X.
Therefore, from Lemma 10,

.
> mi < F(X,Y) = O(|X|log|Y ).

=1

From this, |X| = O(n), and Y| = O(k'), It takes
O(nlogk') time to find the routing paths for the k' sep-
arated node pairs in each partition. We claim that there
are at most O(n/k') partitions that generate at least k'
separated node pairs in the algorithm. To prove this, we
look at the strictly binary partition tree Tp of H,, given by
the algorithm. ! The root of T'p is H,, with k node pairs.
Each tree-node denotes a subcube with certain node pairs
to be connected in it. The two children of a non-leaf tree-
node H denote subcubes obtained by the partition and
initial routing in H. For any tree-node with at least &’
node pairs separated in the partition of the tree-node,
from the initial routing strategy of the algorithm, each of
its two children contains at least k'/2 node pairs. Now,
we delete the tree-nodes with less than %'/2 node pairs
from the partition tree T'p. In the resulting subtree of Tp,

1A strictly binary tree is a binary tree that each non-leaf
tree-node has two non-empty children.
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if we delete every tree-node of outdegree 1 and connect
its child to its father then we can get a strictly binary tree
Tr such that each tree-node in T with at least &’ node
pairs separated appears in Tg (the tree-node with outde-
gree 1 has less than %’ node pairs separated, since one of
its children has less than A’/2 node pairs). Since there
are at most k = [n/2] node pairs in the leaves of T, Tr
has O(n/k') tree-nodes. From this, our claim holds.

Let ng = n and n; = logn;_;, i > 1. Then
the total time used in the partition and initial routing
that involve n; < k' < n;_; separated node pairs is
O(n/n; x nlogn;—_1) = O(n?). Let j be the minimum
number such that n; < 2. Then j = log* » and the total
time of the algorithm is }7_, O(n?) = O(n?log* n). O

4 Conclusional Remarks

In this paper, we an efficient algorithm for the k-
pairwise disjoint path problem in n-dimensional hyper-
cubes H,. Our algorithm finds the %k node disjoint paths
in O(n?log* n) time which improves the previous result
of O(n’logn). A trivial time lower bound on the k-
pairwise disjoint path problem in H, is O(n?). The
length of the paths constructed in our algorithm is at
most n + [logn] + 1 which improves the previous re-
sult of 2n as well. The result of this paper shows that
the k-pair-diameter d}[’%] (H») of H, satisfies d@] (Hp) <
n + [logn] + 1. A trivial lower bound on df’%](Hn) is
d(H,)+ 1 = n + 1. Finding better upper bounds on
df—’%](Hn) are worth further research attention.
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Appendix

Lemma 12 Given a fault cluster of diameter at most 1
and a fault node, and two distinct non-fault nodes s and
t in a 3-dimensional hypercube Hj, a fault-free path of
length at most 4 that connects s and t can be found in
O(1) time.

Proof: Trivial. O

Lemma 13 Given a fault cluster C of diameter at most
1 and two pairs of distinct non-fault nodes (s1,t,) and
(s2,t2) in an Hy, 2 fault-free disjoint paths of length at
most 6, each connecting a pair of nodes, can be found in
O(1) time.

Proof: Partition Hy into two disjoint subcubes Hj; and
Hj,5 such that if d(C) =1 (i.e,, C = (f1, f2)) then f; €
H3,; and fy € Hy 5 and if C is a single fault node f then
f € Hs,.

Case 1: No node pair is separated.

Assume that s;,%1,52,t5 € H3 ;. Connect s; and t; by
a fault-free path in Hj ;. If the path can not be found
then it must be the case that f; (or f) is the neighbor of
s1 (or ¢1). Viewing the nodes s; and f; as a fault cluster
of diameter 1 and ¢; as a fault node, from Lemma 12, s,
and ¢, can be connected by a fault-free path of length at
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most 4 in Hz ;. Obviously, s, and ¢; can be routed into
st and ¢} in Hj 5, respectively, by fault-free disjoint paths
of length 1 and then sj and ¢} can be connected in Hj s
by a fault-free path of length at most 3. The case that
d(C) =1 and sq,11, $3,t2 € H3 5 can be proved similarly.
Assume that f € Hj; and sy3,t1,89,t9 € Hz,. Since
Hj ; has only one fault node, the nodes s; and ¢; can be
routed into H3; by two fault-free paths, one of length 1
the other of length at most 2. After the routing, Hj,
has one node pair, one fault cluster of diameter at most
1, and one fault node. Then the two node pairs can be
connected in Hj; and Hjy by fault-free paths of length
at most 3 and 4, respectively.
Case 2: One node pair is separated.
Assume that 5; € Hs,; and 1,52, € Hz 3. Obviously,
t; can be routed into Hjz; by a fault-free path of length
at most 2. Thus, from Lemma 12, the two node pairs can
be connected in Hs; and Hj s, respectively.
Case 3: Two node pairs are separated.
Assume 51,53 € Hj; and ty,t; € Hzy. Obviously, ¢
and s; can be routed into H3; and Hj3y by fault-free
disjoint paths of length at most 2. After the routing, each
subcube has one node pair, one fault cluster of diameter
at most 1, and one fault node. Thus, from Lemma 12,
the connection can be done.

Obviously, it takes O(1) time to find the paths and the
length of the found paths is at most 6. O

Lemma 14 Give three pairs of distinct non-fault nodes
(s1,t1), (82,12), and (s3,%3) in an Hs, 3 fault-free disjoint
paths of length at most 8, each connecting a pair of nodes,
can be constructed in O(1) time.

Proof: Partition H; into subcubes Hy; and Hy g such
that at least one node pair is separated. Assume s; €
H4’1 and tl, 32,t2,33,t3 € H4’2. Then route 1 into H4,1
by a fault-free path of length 1. Assume s,,39 € Hy,
and t3,1%s, 83,13 € Hy . Then route t; and t; into Hy
by fault-free disjoint paths of length at most 2. Assume
51,82,83 € Hy, and ty,t3,t3 € Hy . First, route #; into
Hy,; and then route t; and s3 (or t3 and sp) into Hyy and
H, 5, respectively, by Lemma 7 (treat the routing path
for ¢; as a fault cluster of diameter 1 and s; as a fault
node). It is easy to see that Lemma 13 can be applied to
both Hy; and H,, after the routing. O

Lemma 15 Give @ fault node f and three pairs of dis-
tinct non-fault nodes (s1,t1), (s2,t2), and (s3,t3) in an
Hg, 3 fault-free disjoint paths of length at most 10, each
connecting a pair of nodes, can be constructed in O(1)
time.

Proof: Partition Hg into two subcubes Hy; and Hj ,.
Assume f € Hy ;. Then, we route all the nodes to be con-
nected that reside in Hy ; into Hj by disjoint, fault-free
paths of length at most 2 and connect them pairwisely in
Hj 5 by disjoint fault-free paths of length at most 8 using
Lemma 14. O
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