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1 Introduction

Computational reflection[4] (or simply, reflec-
tion) is the process in which a computational
system can deal with itself, in the same ways
that the system deals with its primary subject
domain.

The question we are considering is whether
a representation-independent model of computa-
tional reflection exists. We use abstract rewriting
systems as general operational models of compu-
tation. We define reflection based on the notion
of implementation morphisms on ARSs.

This paper presents our preliminary results;
In Section 2, we first introduce basic tools — ab-
stract rewriting systems (ARSs) and implemen-
tation morphisms on ARSs — for our construc-
tion. In Section 3, we formally define the no-
tion of computational reflection using implemen-
tation morphisms.

2 Abstract Rewriting Systems

Abstract rewriting systems are commonly used as
general operational models of computation. In
this section, we introduce implementation mor-
phisms between abstract rewriting systems, with
which later we define the notion of computational
reflection.

2.1 Basic Definitions

Definition 1 (Abstract Rewriting System)
An abstract rewriting system (ARS) is a struc-
ture!

(z,-)
consisting of
e a set ¥ and,

e an irreflexive binary relation — on X.

lWe define an ARS with just one rewriting rela-
tion. Usually (for example, [1]), an ARS is defined as
(Zy(=a)aer)- :

We write s—s' to indicate that (s,s’) €—. Ele-
ments of ¥ are called states. ]

The transitive closure (transitive reflexive clo-
sure) of — is written as =% (—*); i.e., we write
a =%t b (a —* b) if there is a sequence of rewrit-
ing stepsa=ag — a1 = - —a,=bforn>0
(n>0).

Definition 2 For any s,s' € L4, we say that s’
is reachable from s if s —* s'. R(s) indicates
all the elements of ¥4 reachable from s; i.e.,

Ra(s) ={s' €Ta|s—" s}

Further, if R4(s) = {s}, we call s a normal form
of A. We write NF4(s) to indicate that s is a
normal form of A. ‘ |

Definition 3 (sub-ARS) Let

A (¥4,—4) and
B = (Zp,—n)

be ARSs. Then A is a sub-ARS of B if
e X4 CXp,
o — 4 is the restriction of —p to X4; t.e.,
Vs,d €EXp.5ops &s—as
and
e A is closed under —p; i.e.,

Vs€B,,8 €8p.s—ps =5 €Ty
We write A C B when A is asub-ARSof B. =

2.2 Implementation Morphisms

Definition 4 (ARS-morphism) Let A and B
be ARSs. A function f : ¥4 + g is called an
ARS-morphism if

s—as’ = f(s)—p f() V f(s) = f(s)

for any s,s' € 4. We write f : A+ B when f
is an ARS-morphism. =



Obviously, the identity function on ¥ specifies
the identity ARS-morphism. The composition of
two ARS-morphisms is also an ARS-morphism.
We say an ARS-morphism f is partial when f is
a partial function on the states.

An ARS-morphism preserves reachable states:

Proposition 1 Let A, Bbe ARSsand f: A+
B be an ARS-morphism. For each s € X4,

f(Ra(s)) S RB(f(s))

e, Vs' € Ra(s) . f(s') € Rp(s).

proof It is easily checked from the defini-
tions of reachability (Definition 2) and ARS-
morphisms (Definition 4). (]

There exist some trivial ARS-morphisms be-
tween any pair of ARSs. For example, a function
which maps every element of £4 to an element
of ¥y should be an ARS-morphism. To model
the meta-relation on ARSs properly, we pay our
attention to the special ARS-morphisms which
preserves meaningful computation.

Definition 5 (implementation morphism)
Let A and B be ARSs. An ARS-morphism
f: Aw B is an implementation morphism if

® NFs(s) = NFp(f(s)) and
o NFp(f(s)) = [Vs' € Ra(s) . f(s') = f(s)]

for any s,s' € 4. [

Proposition 2 Let A, B and C be ARSs. Then
the following holds.

1. The identity ARS-morphism (specified by
the identity function on the set of states)
is an implementation morphism.

2.f f: A~ B and g : B+~ C are imple-
mentation morphisms, then the composition
gof : A Cis also an implementation mor-
phism.

proof
1. Obvious.

2. By Definition 5, NF4(s) implies NFg(f(s)).
So NFc(g(f(s))) holds. Conversely,
NFc(9(f(s))) implies that g maps all the
elements of Rp(f(s)) to g(f(s)) (by Defi-
nition 5). By Proposition 1, f(Ra4(s)) C
RB(f(s)). So go f maps all the elements of
Rals) to 9(f(s))- .

Definition 6 An ARS-morphism f : A+~ Bis
a strong implementation morphism if:

e NF4(s) = NFp(f(s)) and
* Rp(f(s)) = f(Ral(s))

for any s € 4. ]

It is easily checked that strong implementation
morphisms are implementation morphisms.

Using implementation morphisms, we define
the implementation relation between ARSs.

Definition 7 (implementation) Let A, B be
ARSs. We say that A implements B with f
(notation A >y B), if f : A — B is an im-
plementation morphism. If f is strong, we say
that A strongly implements B with f (notation

*
A by B). n

*
We sometimes omit subscripts of I>¢, I>; when
which morphisms are used is not concern.

*
Proposition 3 >, D are reflexive and transi-
tive.

proof By Proposition 2. ]

3 Formalizing Computational
Reflection

Following Smith’s observation in [2, 3], we can
regard a computational system as a pair of a
processor (interpreter) and its state (called struc-

tural field by Smith). We adopt an ARS for the

processor and an element of ARS-states for state.



Definition 8 (computational system) A
computational system is a structure

(4,s)
where A is an ARS and s is an element of 4. &

A computational system can be regarded as
again an ARS. If we take the set {A} x X4 as a
state, we gain an ARS

({4} x B4, 5)
where % is defined as
(4,s) 5 (4, s &f —4 5.

The rewriting rule L, is called the universal rule
of the system (A,s). Obviously, the following
holds.

Proposition 4 ({4} x T4,5) & 4 =

For a reflective system, in addition to the uni-
versal rule, there is a computation rule which
affect the system itself, such as

(4,5) 5 (4,s).
where both A-and A’ are sub-ARS of an ARS.

We call 5 a reflective rule.

Definition 9 (reflective ARS) An ARS A =
(Z,—) is reflective if

Ap UsaxzT,Suly

where A, is the set of sub-ARSs of 4 and D is
a reflective rule. ]

4 Concluding Remark

Suppose that A is a reflective ARS. For any A’
which is a sub-ARS of A, A implements A’ with
a non-trivial (non identity) implementation mor-
phism. Because

(AaxB,5HuDy by A

for any A’ € A4 and non-trivial f. In addi-
tion, A' € A4 implements A with an implemen-
tation morphism which is a partial function on
the states of A’. This implies that

Proposition 5 Let A be a reflective ARS. Then
A >y A for non-trivial f. ]

Since - is not empty, f cannot be identity.
The above proposition states the existence of
reflective tower[2]; that is

o PDrADfADFA

with a non-trivial partial implementation mor-
phism f.
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