2 =B A AN
(1995. 1

N
N
-~
I
o

Towards a Foundation of Computational Reflection
based on Abstract Rewriting

(Preliminary Result)
Takuo Watanabe

School of Information Science,
Japan Advanced Institute of Science and Technology

15 Asahidai, Tatsunokuchi, Ishikawa 923-12, Japan
Phone: +81-761-51-1256, Facsimile: +81-761-51-1149
E-Mail: takuo@jaist.ac.jp

The question we are considering is whether a representation-independent model of computa-
tional reflection exists. We use abstract rewriting systems as general operational models of
computation. We define reflection based on the notion of implementation morphisms on ARSs.
This paper presents our preliminary results.

Keywords: Reflection, Computational Reflection, Abstract Rewriting

HREFR AT & D < B CRBEHROERTT

TR LR
Blel e s T NS TN
FHRA R
T 923-12 A)IREEERROETIES 15
B 0761-51-1256, 7 7 72X Y 0761-51-1149
B A—/V: takuo@jaist.ac.jp

HSERIRE AT, HERBERICHT SHRANRERYRA S, TIUTE DRGSR
LORNICHEE L3S (BIXIZ) 7L o7 47 - SU—%) Kk 5, BEDHEEFL -
ST LA BRI 2 ) T—RERSEY 5252 L2 BIE LTN5. ARCTH,

P E# X RIZHF 2 EB (implementation) PEfREFEE L, ThIZX > THERKBEEDE
BETOoTNA.

X¥—U—F: HOEBRHE, V7L rvay, MREERIR



1 Introduction

Computational reflection[4] (or simply, reflec-
tion) is the process in which a computational
system can deal with itself, in the same ways
that the system deals with its primary subject
domain.

The question we are considering is whether
a representation-independent model of computa-
tional reflection exists. We use abstract rewriting
systems as general operational models of compu-
tation. We define reflection based on the notion
of implementation morphisms on ARSs.

This paper presents our preliminary results;
In Section 2, we first introduce basic tools — ab-
stract rewriting systems (ARSs) and implemen-
tation morphisms on ARSs — for our construc-
tion. In Section 3, we formally define the no-
tion of computational reflection using implemen-
tation morphisms.

2 Abstract Rewriting Systems

Abstract rewriting systems are commonly used as
general operational models of computation. In
this section, we introduce implementation mor-
phisms between abstract rewriting systems, with
which later we define the notion of computational
reflection.

2.1 Basic Definitions

Definition 1 (Abstract Rewriting System)
An abstract rewriting system (ARS) is a struc-
ture!

(z,-)
consisting of
e a set ¥ and,

e an irreflexive binary relation — on X.

lWe define an ARS with just one rewriting rela-
tion. Usually (for example, [1]), an ARS is defined as
(Zy(=a)aer)- :

We write s—s' to indicate that (s,s’) €—. Ele-
ments of ¥ are called states. ]

The transitive closure (transitive reflexive clo-
sure) of — is written as =% (—*); i.e., we write
a =%t b (a —* b) if there is a sequence of rewrit-
ing stepsa=ag — a1 = - —a,=bforn>0
(n>0).

Definition 2 For any s,s' € L4, we say that s’
is reachable from s if s —* s'. R(s) indicates
all the elements of ¥4 reachable from s; i.e.,

Ra(s) ={s' €Ta|s—" s}

Further, if R4(s) = {s}, we call s a normal form
of A. We write NF4(s) to indicate that s is a
normal form of A. ‘ |

Definition 3 (sub-ARS) Let

A (¥4,—4) and
B = (Zp,—n)

be ARSs. Then A is a sub-ARS of B if
e X4 CXp,
o — 4 is the restriction of —p to X4; t.e.,
Vs,d €EXp.5ops &s—as
and
e A is closed under —p; i.e.,

Vs€B,,8 €8p.s—ps =5 €Ty
We write A C B when A is asub-ARSof B. =

2.2 Implementation Morphisms

Definition 4 (ARS-morphism) Let A and B
be ARSs. A function f : ¥4 + g is called an
ARS-morphism if

s—as’ = f(s)—p f() V f(s) = f(s)

for any s,s' € 4. We write f : A+ B when f
is an ARS-morphism. =



Obviously, the identity function on ¥ specifies
the identity ARS-morphism. The composition of
two ARS-morphisms is also an ARS-morphism.
We say an ARS-morphism f is partial when f is
a partial function on the states.

An ARS-morphism preserves reachable states:

Proposition 1 Let A, Bbe ARSsand f: A+
B be an ARS-morphism. For each s € X4,

f(Ra(s)) S RB(f(s))

e, Vs' € Ra(s) . f(s') € Rp(s).

proof It is easily checked from the defini-
tions of reachability (Definition 2) and ARS-
morphisms (Definition 4). (]

There exist some trivial ARS-morphisms be-
tween any pair of ARSs. For example, a function
which maps every element of £4 to an element
of ¥y should be an ARS-morphism. To model
the meta-relation on ARSs properly, we pay our
attention to the special ARS-morphisms which
preserves meaningful computation.

Definition 5 (implementation morphism)
Let A and B be ARSs. An ARS-morphism
f: Aw B is an implementation morphism if

® NFs(s) = NFp(f(s)) and
o NFp(f(s)) = [Vs' € Ra(s) . f(s') = f(s)]

for any s,s' € 4. [

Proposition 2 Let A, B and C be ARSs. Then
the following holds.

1. The identity ARS-morphism (specified by
the identity function on the set of states)
is an implementation morphism.

2.f f: A~ B and g : B+~ C are imple-
mentation morphisms, then the composition
gof : A Cis also an implementation mor-
phism.

proof
1. Obvious.

2. By Definition 5, NF4(s) implies NFg(f(s)).
So NFc(g(f(s))) holds. Conversely,
NFc(9(f(s))) implies that g maps all the
elements of Rp(f(s)) to g(f(s)) (by Defi-
nition 5). By Proposition 1, f(Ra4(s)) C
RB(f(s)). So go f maps all the elements of
Rals) to 9(f(s))- .

Definition 6 An ARS-morphism f : A+~ Bis
a strong implementation morphism if:

e NF4(s) = NFp(f(s)) and
* Rp(f(s)) = f(Ral(s))

for any s € 4. ]

It is easily checked that strong implementation
morphisms are implementation morphisms.

Using implementation morphisms, we define
the implementation relation between ARSs.

Definition 7 (implementation) Let A, B be
ARSs. We say that A implements B with f
(notation A >y B), if f : A — B is an im-
plementation morphism. If f is strong, we say
that A strongly implements B with f (notation

*
A by B). n

*
We sometimes omit subscripts of I>¢, I>; when
which morphisms are used is not concern.

*
Proposition 3 >, D are reflexive and transi-
tive.

proof By Proposition 2. ]

3 Formalizing Computational
Reflection

Following Smith’s observation in [2, 3], we can
regard a computational system as a pair of a
processor (interpreter) and its state (called struc-

tural field by Smith). We adopt an ARS for the

processor and an element of ARS-states for state.



Definition 8 (computational system) A
computational system is a structure

(4,s)
where A is an ARS and s is an element of 4. &

A computational system can be regarded as
again an ARS. If we take the set {A} x X4 as a
state, we gain an ARS

({4} x B4, 5)
where % is defined as
(4,s) 5 (4, s &f —4 5.

The rewriting rule L, is called the universal rule
of the system (A,s). Obviously, the following
holds.

Proposition 4 ({4} x T4,5) & 4 =

For a reflective system, in addition to the uni-
versal rule, there is a computation rule which
affect the system itself, such as

(4,5) 5 (4,s).
where both A-and A’ are sub-ARS of an ARS.

We call 5 a reflective rule.

Definition 9 (reflective ARS) An ARS A =
(Z,—) is reflective if

Ap UsaxzT,Suly

where A, is the set of sub-ARSs of 4 and D is
a reflective rule. ]

4 Concluding Remark

Suppose that A is a reflective ARS. For any A’
which is a sub-ARS of A, A implements A’ with
a non-trivial (non identity) implementation mor-
phism. Because

(AaxB,5HuDy by A

for any A’ € A4 and non-trivial f. In addi-
tion, A' € A4 implements A with an implemen-
tation morphism which is a partial function on
the states of A’. This implies that

Proposition 5 Let A be a reflective ARS. Then
A >y A for non-trivial f. ]

Since - is not empty, f cannot be identity.
The above proposition states the existence of
reflective tower[2]; that is

o PDrADfADFA

with a non-trivial partial implementation mor-
phism f.

References

[1] Klop, J. W. Term rewriting systems. In
Abramsky, S. et al. eds, HandBook of Logic
in Computer Science, volume 2, pp. 1-116.
Oxford Univ. Press, 1992.

[2] Smith, B. C. Reflection and semantics in
Lisp. In Proc. of the ACM Symposium
on Principles of Programming Languages

(POPL), pages 23-35, 1984.

—_—

[3] Smith, B. C. What do you mean, meta?
In Proc. of ECOOP/OOPSLA ’90 Workshop
on Reflection and Metalevel Architectures in
Object-Oriented Programming, 1990.

{4] Watanabe, T. A Tutorial Introduction to
Computational Reflection. Computer Soft-
ware, 11(3), pp. 5-14, JSSST, 1994 (in

Japanese).



