FH LD OB KERED
WH7a 75 L0EH
#H IRILT Elg HeEkt ® EAT

THRIASE KER TR
PRERY $E MRy —

List Homomorphism i, BAMICRSEME7T V) ALCELTEY, BFIT0s 7 I ¥ 705
BORAREELED TV, EROBRIIT Vhy 7 Ik bh @A o7, RRTE, [FH
EOGEHMOBRKEME] 2HEL LT, EHTHROBNTOS 7 L0 0HEOLVEFTT ST A
% FMl - oM 2 FEL HE L, List Homomorphism OEFMHEEICEIVWTER SRS
Tupling & Fusion £\) S7:D0ERBELIRET 5.

Formal Derivation of Parallel Program for
2-Dimensional Maximum Segment Sum Problem

Zhenjiang Hut Hideya Iwasakit Masato Takeichit

tDepartment of Information Engineering
University of Tokyo

iEducaiional Computer Centre
University of Tokyo

It has been attracting much attention to make use of list homomorphisms in parallel program-
ming because they ideally suit the divide-and-conquer parallel paradigm. However, they are usually
treated rather informally and ad-hoc in the development of efficient parallel programs. This paper
reports a case study on systematic and formal development of a new parallel program for the 2-
dimensional maximum segment problem. We show how a straightforward, and “obviously” correct,
but quite inefficient solution to the problem can be successfully turned into a semantically equiva-
lent “almost list homomorphism”, Qur derivation is based on two transformations, namely tupling
and fusion, which are defined according to the specific recursive structures of list homomorphisms.

1 Introduction

List homomorphisms are those functions on finite
lists that promote through list concatenation — that
is, function h for which there exists an associative
binary operator @ such that, for all finite lists zs
and ys,

h(zs+Hys)=hzs®hys

where 4+ denotes list concatenation. Intuitively,
the definition of list homomorphisms means that the
value of h on the larger list depends in a particular
way (using binary operation @) on the values of h
applied to the pieces of the list. The computations
of hzs and hys are independent each other and can
thus be carried out in parallel. This simple equation
can be viewed as expressing the well-known divide-
and-conquer paradigm of parallel programming.

Therefore, the implications for parallel program
development becorme clear; if the problem is a list ho-
momorphism, then it only remains to define a cheap
@ in order to produce a highly parallel solution.
However, there are a lot of useful and interesting
list functions that are not list homomorphisms and
thus have no corresponding @. One example is the
function mss known as (I-dimensional) mazimum
segment sum problem, which finds the maximum of
the sums of contiguous segments within a list. For
example, we have

mss [3,-4,2,-1,6,-3] =7

where the result is contributed by the segment
[2,—1,6]. The mss is not a list homomorphism, since
knowing mss zs and mss ys is not enough to allow
computation of mss (zs +ys).

To solve this problem, Cole [Col93] proposed an
approach showing how to embed these functions into
list homomorphisms in an ad hoc manner. His
method consists of constructing a homomorphism
as a tuple of functions where the original function
is one of its components. The main difficulty is to
guess which functions must be included in a tuple in
addition to the original function and to prove that
the constructed tuple is indeed a list homomorphism.
The examples given by Cole show that this usually
requires a lot of ingenuity from the program devel-
oper.

This paper reports results of a case study on for-
mal and systematic derivation of a new efficient and
correct O(log®n) (n denotes the number of elements
in a matrix) parallel program for the 2-dimensional
mazimum segment sum problem. This problem is of
interest because there are efficient but non-obvious

algorithms to compute it in parallel. In [Smi87],
the tuple consisting of eleven functions is used for
the definition of O(log?n) parallel algorithm but the
detailed derivation, which would be rather cumber-
some with Smith’s approach, was not given at all.

This paper is organized as follows. In Section 2,
we review the notational conventions and basic con-
cepts used in this paper. After giving a specification
for the 2-dimensional maximum segment sum prob-
lem in Section 3, we focus ourselves on deriving an
efficient (almost) list homomorphism from the spec-
ification with our two important theorems, namely
the Tupling and the Almost Fusion Theorems, in
Section 4.

2 Preliminary

In this section, we briefly review notational conven-
tions and the basic concepts in [Bir87], known as
Bird-Meertens Formalism, as well as the concept of
almost list homomorphism, which will be used in the
rest of this paper.

2.1 Functions

Functional application is denoted by a space and the
argument which may be written without brackets.
Thus fa means f(a). Functions are curried and
application associates to the left. Thus fab means
(f a) b. Functional application is regarded as more
binding than any other operator, so fa @ b means
(fa)®b but not f(a@®b). Functional composition

. is denoted by a centralized circle o. By definition,

(fog)a = f (g a). Functional composition is an asso-
ciative operator, and the identity function is denoted
by id.

The projection function 7; will be used to select
the i-th component of tuples, e.g., m (a,b}) = a.
The & and x are two important operators re-
lated to tuples, defined by (f 4 g)a = (f a, ga) and
(f x g)(a,b) = (fa, gb). The & can be naturally
extended to functions with two arguments. So, we
have a (B 2 Q)b=(a®b, a®b).

Infix binary operators will often be denoted by
@, ® and can be sectioned; an infix binary opera-
tors like @ can be turned into unary functions by:
(a®)b=a® b= (®b)a.

2.2 Lists

Lists are finite sequences of values of the same type.
A list is either empty, a singleton, or the concate-
nation of two other lists. We write [] for the empty

list, {a] for the singleton list with element a (and []
for the function taking a to [a]), and zs ++ys for
the concatenation of zs and ys. Concatenation is
associative, and [] is its unit. For example, the term
[1] ++[2] 4+ (3] denotes a list with three elements,
often abbreviated to [1,2,3].

2.3 List Homomorphisms

A function h satisfying the following three equations
will be called a list homomorphism.

h{] =
h [z] = fz
h(zs+ys) = hzs®hys

It soon follows from this definition that @ must be
an associative binary operator with unit tg. For ex-
ample, the functions sum is a list homomorphisms,
as

—00
z
maz xs T mazys

maz []
maz [z)
maz (zs +ys)

Il

sum [] =0
sum [z] =z
sum (zs ++ys) = sumzs+sumys

where 1 denotes the binary maximum function and
—o00 denotes a smallest value w.r.t. . For notational
convenience, we write (f, ®] for the unique function
hl, e.g., sum = (id, +).

2.4 Parallelism: Map and Reduction

Map is the operator which applies another function
to every item in a list. It is written as an infix *.
Informally, we have

f*[$1»$27"'1$n] = [le7f$2,""fxﬂ]'

Reduction is the operator which collapses a list
into a single value by repeated application of some
binary operator. It is written as an infix /. Infor-
mally, for an associative binary operator @ with unit
L, we have

. &/ [x1,22,,Zn] = Z1 D T2+ B Tn.

It is not difficult to see that * and / have sim-
ple massively parallel implementations on many ar-
chitectures. For example, @/ can be computed in

!Strictly speaking, we should write (g, f, ®) to denote the
unique function h. We can omit the tg because it is the unit
of ®.

parallel on a tree-like structure with the combining
operator @ applied in the nodes, whereas f* is to-
tally parallel.

The relevance of list homomorphisms to parallel
programming can be seen clearly from the Homo-
morphism Lemma [Bir87): (f,®) = (&/) o (f¥).
Every list homomorphism can be written as the com-
position of a reduction and a map.

2.5 Almost Homomorphisms

As stated in Introduction, quite a lot of interest-
ing functions are not list homomorphisms. Fortu-
nately, Cole argued informally that some of them can
be converted into so-called almost (list) homomor-
phisms by tupling them with some extra functions
[Col93]. An almost homomorphism is a composition
of a projection function and a list homomorphism.
Since projection functions are simple, almost homo-
morphisms are also suitable for parallel implemen-
tation as list homomorphisms do.

3 Specification

It is strongly advocated by Bird [Bir87] that spec-
ifications should be direct solutions to problems.
Therefore, our specification for a problem p is a sim-
ple, and “obviously” correct, but possibly inefficient
solution with the form of

p=ppo---oprop] (1)

where each p; is a (recursively defined) function. It
reflects our way of solving problems; a (big) problem
p is likely to be solved through multiple passes in
which a simpler problem p; is solved by a recursion.

3.1 1-Dimensional Maximum Segment
Sum Problem

Before giving a specification for the 2-dimensional
maximum segment sum problem, let’s start with a
simpler 1-dimensional maximum segment sum prob-
lem mss, an example given in the introduction. An
obviously correct solution to the problem is:

mss = maz o (sumx) o segs (2)

which is implemented by three passes; (1) computing
all contiguous segments of a sequence by segs, (2)
summing up each contiguous segment by sumx, (3)
selecting the largest value by maz.

The only unknown function in (2) is segs, which
is to compute all (contiguous) segments of a list. It

would be quite natural to give the following defini-
tion.

segs (zs +H-ys) = segs zs + segs ys +

(tails s Xy inits ys).

The equation reads that all segments in the sequence
s +ys are made up of three parts: all segments
in zs, all segments in ys, and all segments produced
by crosswisely concatenating every tail segment of
zs (i.e., the segment in zs ending with zs’s last ele-
ment) with every initial segment of ys (i.e., the seg-
ment in ys starting with ys’s first element). Here,

the functions, such as tnits, tails, and Xy , are stan-.

dard functions in [Bir87], though our definitions are
slightly different as will be seen later.

Unfortunately, this is a wrong definition for
segs, as you may have noticed that, for example,
segs ([1,2) ++[3]) # segs ({1] ++[2,3]) while they
are expected to be equal (to segs [1,2,3]). In fact,
the two resulting lists indeed consist of the same
elements, but these elements are listed in different
order. To solve this problem, we may impose the
order < to the resulting list. Let [z;,, Ti 41, -, Zj,]
and [Zi,, Tiy41,° - -, Zj,] be segments of the presumed
list [zla T2y 1$n]~

[xilyxil-{vl"")lel = [xizyxi2+la toT !sz] =def
(ily""]l) <D (izy"'ij)

where <p stands for the dictionary order. To sim-
plify our presentation while capturing the index in-
formation as above, for the rest of this paper, we
shall assume that each atomic element z (not a list)
in the presumed list (i.e., input list) is a record with
two fields: value field z.v and indez field z.d. Under
this assumption, we can redefine < by

[zla"'yxm]'<[y1)"'>yn] =def :
(z1.dy- -, Zm-d) <p (y1.d,"++, Yn.d)

Note that generally z.d should be a n-tuple in case
of n-dimensional structures. Furthermore, for no-
tational convenience, we write z for z.v when no
ambiguity happens.

Now our definition for segs is defined by

segs []
segs [z]
segs (zs+Hys) =

()

(l=]]

segs TS 4+ segs ys +H~
(tails zs Xy inits ys)

where ++ 4 merges two sorted lists into one with
respect to the order of <.

To make this paper self-contained, we give the def-
initions for other functions. The inits is a function

[x1t, %12, ... xIn),
[x21, x22, ..., x2n], [N N

[xm1.xm2, ... xmn] ()]

(a) Matrix in Bist of lists (b) rectangular region

(submatrix)

.. fal..ankpl.bm).] 3 1
. . N (¢) bis ylelds a list of rectangles
@ m.z:‘ﬁ,’..:ﬂ::;ﬁ" of passing vertically

() segs2asshayss)

Figure 1: Explanation of specification mss2

returning all initial segments of a list, while the tails
is a function returning all tail segments. They can
be defined directly by:

(1
([=]]

inits zs + (zs H) * (inits ys)

(]
([=]]

(++ ys) * (tasls zs) ++ tails ys.

inits []
inits [z}
inits (zs +ys)

[

tails]
tails [x]
tails (zs ++ys)

o n

The operator Xg is usually called cross operator, de-
fined informally by [z1,--,2n] X [y1,---,ym] = [z1 ®
Y1, 71 @ Ymy 5 Ta B Y1, T ernly which cross-
wisely combines elements in two lists with operator &.
The cross operator enjoys many algebraic identities, e.g.,
(f*¥) 0o Xp = Xyog.

So much for the specification of the mss problem. It is
a naive solution of the problem without concerning effi-
ciency and parallelism at all, but its correctness is obvi-
ous.

3.2 2-Dimensional Maximum Segment
Sum Problem

Let’s turn to the specification for the 2-dimensional
maximum segment sum problem, mss2, a generalization
of mss, which finds the maximum over the sum of all rect-
angular subregions of a matrix. The matrix can be natu-
rally represented by a list of lists with the same length as
shown in Figure 1 (a), and so does its rectangular subre-
gion as in Figure 1 (b). Following the same thought we
did for mss, we define mss2 straightforwardly as:

mss2 = maz o (sum2x) o segs2

where segs2 computes all rectangular subregions of a ma-
trix, then sum2 is applied to every rectangular subregion
and sums up all elements, and finally maz returns the
largest.

Function sum2, computing the sum of a list of lists, is
defined by sum2 = sum o sumx.

Function segs2, quite similar to that of segs, is defined
below.

(1

[} * (segs zs)

segs2 xss +H< segs2 yss +<
concat((bots zs5) Y x,, (tops yss))

segs2 [}
segs2 [zs]
segs2 (zss +yss)

[|

The last equation reads that all rectangular subregions
of £3s ++ yss, a matrix connecting zss and yss vertically
(see Figure 1 (c)), are made up from those in both zss
and yss and those produced by combining every bottom-
up rectangular subregion in zss (depicted by shallow-grey
rectangle) with every top-down rectangular subregion in
yss (depicted by dark-grey rectangle) sharing the same
edge. The order <’ over rectangles is defined by

[[z]ly"')xlﬂl]"")[$n11"'1xﬂmn <!
lyazs === vl [Wqrs - s Yapl]

=def
(z12-d, -+, Tam-d), -+ (Tn1, &y -+, Tnm-d)) <D
((yll-dx Tt)ylp‘d)r Tt (yql'dy Tty yqv'd))

bots is used to calculate a list of lists each of which com-
prises all rectangles with the same bottom edge. Symmet-
rically, tops calculates a list of lists each of which com-
prises all rectangles with the same top edge. They are
defined below, using another function bts which yields a
list of rectangles passing through the matrix vertically
(Figure 1 (e)).

bots []
bots [xs]
bots (zss ++yss)

(l

[* ([] * (segs =s))

((bots 383) TA(z,y).(-H- y)*z
(bts yss)) Ty (bots yss)

]

[] = ([] * (segs z5))

(tops zss) Ly ((bts zss)
'I].)\(z,y).((z-ﬂ—)ny) (tops yss))

tops (]
tops [zs]
tops (zss +yss)

bts []
bts [xs]
bts (zss +yss)

[+ (segs z3)
(bts zss) Ty (bts yss)

o

concat, a function to flatten a list, and the ‘zip-with
operator Tgq, a function to apply @ pairwisely to two
lists, are informally defined as foliows.

concat [zsl,‘ . ,:L'sn] =z ++ - H- TS,

[z1,- > Za]Tolyi, s 4a] = [F1®y1, -, Tn © yn]

4 Derivation

Our derivation of a “true” almost homomorphism from
the specification (1) is carried out in the following proce-
dure. '

1. Derive an almost homomorphism from the recursive
definition of p; (Section 4.1);

2. Fuse p; with the derived almost homomorphism to
obtain another almost homomorphism and repeat
this fusion until p, is fused (Section 4.2);

3. Let m; o (f,®) be the result obtained in (2). If f
or @ are much complicated, repeat (1) and (2) to
find an efficient parallel implementation for f and &
(Section 4.3).

4.1 Deriving almost homomorphisms

Our approach is based on the following theorem.
For notational convenience, we define ATf; =

frofal - 8 fo

Theorem 1 (Tupling) Let hy,--
fined as follows.

-, h, be mutually de-

hill = e
hi[z] = fiz (3)
hi (zs +ys) = ((AThi)zs) @i ((ATh:)ys)
Then
ATh; = (ATfi, AT®:)
and (t@,," ", t@,) is the unit of AT®;. g

Proof: (omitted)

Theorem 1 says that if A; is mutually defined with
other functions (i.e., ha,- - hy) traversing over the same
lists in the specific form of (3), then tupling hy,---,hn
will give a list homomorphism. It follows that h; is an.
almost homomorphism: the projection function 73 com-
posed with the list homomorphism for the tuple-function.
It is worth noting that this style of tupling can avoid mul-
tiple traversals of the same lists [Tak87] resulting in no
repeatedly redundant computations of hy,---, ks in the
computation of the list homomorphism of APh;. That is,
all previous computed results by hy,--+, h, can be fully
reused, as expected in “true” almost homomorphisms.

Let’s see how the tupling theorem is used in deriving a
“true” almost homomorphism from the definition of segs2
given in Section 3.

First, we determine what functions are to be tupled,
i.e., hy, -+, hn. As the tupling theorem suggests, the
functions to be tupled are those traversing over the same
lists in the mutual definitions. So, from the definition of
seqs2:

segs? (zss ++yss) = segs? xss < segs? yss +
concat((bots £3s) T x,, (tops yss))

we know that segs2 should be tupled with bots and tops,
because segs2 and bots traverse over the same list zss
whereas segs2 and tops traverse over the same list yss
as underlined. Similarly, the definitions of bots and tops
requires that bts be tupled with bots and tops. In sum-
mary, the functions to be tupled are segs2, bots, tops and
bts, i.e., our tuple function will be:

segs2 & bots & tops & bis.

Next, we rewrite the definition of each function in the
above tuple to be in the form of (3), i.e., deriving fi,®:
for segs2, fa,®2 for bots, f3,®; for tops, and fa, D4 for

bts. This is straightforward. The results are as follows.
For example, from the definition of segs2, we can easily
derive that

f1 zs =[] * (segs zs)
(51,01, t1,d1) @1 (82,b2,12,dp) =

51 -l—f-*: Sg H<r concat (bl'rx_"’ tg)
J2 x5 =[] * ([]* (segs z5))
(s1,b1,t1,d1) ®a (s2,b2,12,d3) =

(b1 Ta(z,y).(4 ez d2) T b2
Ja zs =[] = ([] * (segs z3))
(s1,b1,t1,d1) B3 (s2,b2, 2, dp) =

t Yo (di Cagz,p).((o4)ep) t2)
fa s =[] * (segs zs)
(51,b1,t1,d1) @4 (52,b2,t2,d2) =di Ty do

Finally, we apply Theorem 1 and get the following list
homomorphism.

segs2 & bots & tops & bis = (Al f;, Ale;)

And our almost homomorphism for segs2 is thus ob-
tained:
segs2 = m o (A fi, Alei). ()

4.2 Fusion with Almost Homomorphisms

In this section, we show how to fuse a function with an
almost homomorphism. Our fusion theorem for this pur-
pose is given below.

Theorem 2 (Almost Fusion) Let (A} f;, A?®;) and
h be given. If there exist ®; (i = 1,---,n) and a map
Ah=hy x --- x h,, where h; = h such that for all i,

Ve,y. hi(z @i y) = (AR) z®; (AR)y (5)
then

ho(m o (AL fi, AT®:)) = m1 0 (AT (ki © £,), AT®4)
Proof: (omitted) .

We have two remarks on Theorem 2. First, this theo-
rem suggests a rule of fusing a function A with the almost
homomorphism 7, o (A f;, A?@®;]) in order to get another
almost homomorphism; trying to find hg, - - -, h,, together
with @1,---,®, that meet the equation (5). Second, in
order to simplify our presentation, without loss of gener-
alization we restrict the projection function to be m; in
the theorem.

Returning to our example, recall that we have reached
the point:

mss2 = mazx o (sum2x) o (m o (Al fi, Ale,]).
We can fuse sum2+ with m; o (Aff;, Af®,;]) by Theorem
2, and then repeat this fusion for maz. And we can get

the following result (see [HIT96] for detail).

mss2 =m o (A1fY', Aj®]) (6)

where
(51,01, 81,d1) ® (52,02, 82, ds) =51 1 53 1 (1/ (by T,)
(51,01, t1,d1) ®5 (s2,b2,t2,d2) = (b T d2) Ty bo

(51,01, t1,d1) ®5 (82, b, 82,dp) =11 T4 (dy Yy)
(s1,b1,t1,d1) ®Y (s2,b2,10,do) =di T4 dy

and

maz o f]
(mazx)o fj = (sumx) o segs
(mazx) o fj = (sumx) o segs
ido f4 = (sumx) o segs

= mss

[

4.3 Improving Operators in List Homo-
morphisms

Equation (6) has given a homomorphic solution to the
2-dimensional maximum segment sum problem. Let
n be the number of elements of input matrix. By
a simple divide-and-conquer implementation of list ho-
momorphisms, the derived program can expect an
maz(0(A}f}"), (O(logn)*O(A!®"))) parallel algorithm.
With the assumption that Tg can be implemented fully
in parallel, i.e.,, O(Tg) = O(®), and that Xy with
associative operator @ can be parallelly executed in
O(logn) * O(®), we can see that O(AI®!) = O(logn)
and mss2 is an

maz(0(ALfl"), O(log®n))

parallel algorithm. It is, however, not so obvious about
efficient parallel implementation of f’. We can derive
(almost) list homomorphisms for them using the above

derivation strategy again (see [HIT96]).

References
[Bir87] R. Bird. An introduction to the theory of lists.
In M. Broy, editor, Logic of Programming and
Calculi of Discrete Design, pages 5-42. Springer-
Verlag, 1987.

[Col93] M. Cole. List homomorphic parallel algorithms
for bracket matching. Technical report CSR-29-
93, Department of Computing Science, The Uni-

versity of Edinburgh, August 1993.

[HIT96]) Z. Hu, H. Iwasaki, and M. Takeichi. For-
mal derivation of parallel program for 2-
dimensional maximum segment sum problem.
(http://www.ipl.t.u-tokyo.ac.jp/~hu), 1996.

[Smi87] D.R. Smith. Applications of a strategy for de-
signing divide-and-conquer algorithms. Science

of Computer Programming, (9):213-229, 1987.

[Tak87] M. Takeichi. Partial parametrization eliminates
multiple traversals of data structures. Acta In-
formatica, 24:57-77, 1987.

