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On Merging Resolution and Induction

MasaMl HAGIYA ,* HIROSHI WATANABE ' and TosHIKO KITAMURA?

In this paper, we deal with the old problem of merging resolution and induction from a new
perspective. Unlike most works on inductive theorem proving in logic programming, where
implicational formulas are proved by computation induction, we use the simple induction
schema on natural numbers and make induction by a simple method similar to loop detection.
In order to increase the power of the induction schema, we introduce a higher order language
having recursion terms and functional variables together with the unification procedure that
copes with those constructs and some arithmetic computations. We also point out that the
notion of constraint can further enrich our framework.

1. Introduction

One of the reasons of the success of logic pro-
gramming is that relatively well established and
stable functions of theorem provers are care-
fully selected and combined into a rigid com-
puting paradigm. Among such functions are
backtracking and first-order unification. The
success of constraint logic programming is also
along this line. Functions of a domain specific
theorem prover that can efficiently solve a re-
stricted class of equations are built into the in-
terpreter of logic programming. We can there-
fore derive a principle that functions of theorem
provers that are more specific and restricted
have more chances to be actually used in logic
programming.

In this paper, we deal with the rather
old problem of merging resolution and in-
duction from a new perspective. Begun by
Kanamoril? and followed by Fribourg®:®),
there are a series of works in logic program-
ming that are concerned with inductively prov-
ing properties of logic programs. ’

Most of those works are based on computa-
tion induction. For example, assume that we
have the following clauses for the predicate p.

p(t0).

p(t2) :- p(t1).

From these clauses we obtain the following in-
duction schema.
p(t) q(t0) q(t1)=>q(t2)

q(t)
By this schema, we can prove p(X)=>q(X)
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for any X if we have proved q(t0) and
q(t1)=>q(t2), where variables in t0, t1 and
t2 are universally quantified.

Unlike those works, where implicational for-
mulas such as p(X)=>q(X) are proved, ours does
not directly handle implications. Instead of us-
ing computation induction and proving implica-
tional formulas, we rely on a stronger language
in which the general form of solutions of a query
can be represented. More specifically, we use a
higher order language with recursion terms and
functional variables.

As an example, consider the following set of
clauses.

all(g,[]).

all(E, [EIL]) :- all(E,L).
list([1).

1ist({EIL]) :- 1list(L).

Given the query

?- all(true,L)."
our extended interpreter with the ability of
proving goals by induction returns the following
solution.

L = r(N, X\Y\[truelY], [1);
The term r(N,X\Y\[truelY],[1) is called a
recursion term and r is an operator called re-
cursor. The first argument of the recursor is
a natural number meaning how many times
the second argument is applied to the third.
In the above recursion term, the second argu-
ment X\Y\[truelY] is applied to the third ar-
gument [] for N times. The second argument
X\Y\[truelY], written in a AProlog-like nota-
tion!Y, is a function with two parameters X and
Y, though the first parameter X does not appear
in the function body [truelY].

If N is a concrete number, say 3, we have the
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following equation.

power of higher-order logic, because as we said

r(3, X\Y\[truelY], [1) = [true,true,truelat the beginning of the introduction, more spe-

In general, we have

r(3, X\Y\a(X,Y), b) = a(2,a(1,a(0,b))),

where the function X\Y\a(X,Y) are given two
arguments, the number increasing from 0 to N-1
and the previous term in the iteration.

Having the solution L=r (N, X\Y\ [truel Y], [1),
we can issue the following query that contains
the recursion term.

?7- list(x(¥, X\Y\[truelY], [1)).

This query is answered yes by our interpreter
without instantiating the free variable N. If the
answer to the first query has enumerated all
the solutions to the query, we have proved that
the implication all(true,L)=>1ist(L) holds
for any L. In this case we can actually guarantee
that there is no other solution than the above
one.

As can be seen from the above example, our
interpreter does not fix an instance of the in-
duction schema in advance. Instances are con-
structed as the interpreter proceeds in a deriva-
tion.

Consider now the opposite direction. To the
query

7- list(L).
the interpreter returns the following solution.

L = r(N, X\NWIF(X)1YD, (D).

In the recursion term, the variable F denotes an
arbitrary function from natural numbers.

If we take this solution and issue the query

?7- all(true, r(N, X\Y\IF(X)1Yl, [1)).
we do not obtain a simple answer. The inter-
preter returns the constraint on the variable F
that is decorated by a bounded quantifier.

F(X) = true for any X st 0<=X<N
This constraint means that we should have
F(X)=0 for any natural number X satisfying
0<=X<N\.

In this paper, we first explain how the meta-
circular interpreter of Prolog, called the vanilla
interpreter, can be extended to have the func-
tion for constructing inductive proofs. The
function is basically that of detecting a possi-
ble infinite loop!®, because we only have the
simple induction schema on natural numbers.

To increase the power of induction and the
representability of solutions, we adopt a higher-
order language with recursion terms and func-
tional variables. We do not rely on the full

cific and restricted functions have more chances
to be actually used in logic programming.

Since we have recursion terms whose first ar-
gument is a term denoting a natural number,
we also alow the interpreter to do some arith-
metic computations. At this moment, we only
have the commutative and associative addition.

Having higher-order constructs, we should ex-
tend the unification procedure. Since higher-
order unification is undecidable even in our re-
stricted language, we introduce some heuristic
rules for dealing with recursion terms.

Our unification procedure is not complete. It
may miss some unifiers. But we paid our atten-
tion so that the procedure reports when it has a
possibility to loose a unifier. We can then con-
clude that an answer to a query enumerates all
the solutions if the procedure does not report a
missing unifier.

After describing the unification procedure, we
finally discuss an extension of our framework
by the notion of constraint. This extension is
currently under design and implementation.

2. Adding Induction to Resolution

In this section, we start with the vanilla in-
terpreter of Prolog and gradually add to the
interpreter the function for constructing induc-
tive proofs. The vanilla interpreter of Prolog is
as follows.

prove(true).

prove((G1,G2)) :-

prove(G1l), prove(G2).

prove(A) :- cl(A,B), prove(B).

The predicate c1 looks up a clause whose head
matches the atomic goal A.

We add to the above vanilla interpreter a
mechanism to keep the history of parent goals
and to record possibilities of induction. The
first argument AL of prove holds a list of atomic
goals.

prove(AL,true,HL).

prove(AL,(G1,G2) ,HL) :-

prove(AL,G1,HL), prove(AL,G2,HL).
prove(AL,A,HL) :- c1(A,B),
prove([AlAL],B, [HIHL]).
Notice that when a clause is looked up, the
atomic goal A is pushed onto the list AL. The
role of the third argument HL will be explained



below. )

Having done the above modification, we can
check whether the current goal is similar to one
of the parent goals. For example, if A is of the
form p(X) and if one of the parent goal is of
the form p(X+1), then we obtain a derivation
of p(X+1) from p(X), which can be used as the
induction step of some inductive proof.

Let us assume that we have a predicate
called expect_induction(4,G), which judges
whether it is possible to construct an induc-
tion step from G to A, where G is the induction
hypothesis and A is the induction conclusion.
With expect_induction, we add the following
clause.

prove(AL,G,HL) :-

member2(A,AL,ih(G),HL),
expect_induction(4,G).
Here the goal G in prove(AL,G) is assumed to
be atomic. The predicate member2 selects a
member of AL and a member of HL that are
at the same position in AL and HL, respectively.
The predicate member2 is defined as follows.
member2(A, [AIAL] ,H, [HIHL]).
member2(A, [_IAL],H, [_IHL]) :-
member2(A,AL,H,HL) .
If the predicate expect_induction predicts
that the interpreter will be able construct an
induction step from G to A for some member A
of AL, then the predicate prove instantiates the
member H of L that corresponds to the member
A in AL. By the call member2(4,AL,ih(G),HL),
the member H is instantiated to the term ih(G),
which keeps the induction hypothesis G in it.

The clause

prove(AL,A,HL) :- cl(4,B),

prove([AlAL],B, [H|HL]). ]

simply throws away the information obtained
by the invocation of prove([A}AL],B, [HIHL])
and stored in H. We should add some code for
constructing an inductive proof at this point.
As we said in the introduction, we want to enu-
merate all the solutions to a query even when
we construct an inductive proof. We therefore
collect all the possibilities in which the goal A
can be proved. If we use the predicate setof
of Prolog, we can write a clause that begins as
follows.

prove(AL,G,HL) :-

setof ((A:-H),
( copy_term(G,A),

c1(A,B),
prove([AalALl,B, [HIHL])),
L))

Here G is an atomic goal and it is copied to &
inside the body of setof. Since the variables A
and H appear in the pattern of setof, i.e., in its
first argument (A:-H), they are considered as
bound variables of setof. All the possibilities
of (A:-H) that satisfy the body of setof are
collected in the list L.
As a simple case, let us assume that the list
L is of the form

[(p(x+1):-ih(p(X))), (p(n):-H)],
where H remains to be a variable. In this case,
we can conclude that p(n+N) holds for any nat-
ural number N. In general, from an induction
step in L of the form (p(X+1):-ih(p(X))), we
first derive a clause

p(¥+x) :- p(X),
where both N and X are variables denoting nat-
ural numbers. The body p(X) of this clauses is
then matched with the induction bases in L.

Based on the above consideration, we obtain
the following clause for prove, which contains
some predicates that are not explicitly defined
here.

prove(AL,G,HL) :-

setof ((A:-H),
( copy_term(G,A),
c1(a,B),
prove([AlAL],B, [HIHL])),
L),
split_step_base(L,SL,BL),
SL=[(IC:-ih(IH))],
matches(G,IH),
make_induction(IC,IH,PNX,PX), !,
member ((B:-_),BL),
(B=PX, G=PNX; G=B).
The predicate split_step_base(L,SL,BL) splits
the list L into the list SL of induction steps and
the list BL of induction bases. The next equa-
tion SL=[(IC:-ih(IH))] checks if there is only
one induction step in SL. This is a restriction
due to the induction schema we use here.

The next condition matches(G,IH) checks if
the induction hypothesis IH matches the goal G,
i.e., IH is an instance of G. This check is required
because the above clause can only search for
induction bases that are instances of the goal
G.



The predicate make_induction(IC,IH,PNX,PX)

checks, as in the above explanation, if IC and
IH are of the forms p(X+1) and p(X), respec-
tively, and then binds atoms p(N+X) and p(X)
to PNX and PX, respectively. It is described more
formally in the next section.

At the end of the clause, the goal G is instan-
tiated using each induction base B in BL. There
are two cases. In one case, B is unified with PX
and G is unified with PNX. In the other case, G
is simply unified with B. This last case is un-
necessary if B is an instance of PX, because it is
subsumed by the first case.

The call of setof enumerates all the possibil-
ities of (A:-H). We expect that each possibility
is represented by one element of L. However, de-
pending on the implementation of setof, the
list L may contain duplicate elements. We
therefore have to merge equivalent elements in
L before proceeding further. This requires some
modifications of the clause.

We finally add the following clause.

prove(AL,G,HL) :-

cl(A,B),

prove([A]AL],B, [truelHL])).
This clause is used when G is proved while in-
duction is inhibited since true is pushed onto
HL. If matches and make_induction succeed in
the previous clause, this is not invoked.

Though the predicate expect_induction has
not been defined, its definition greatly influ-
ences the performance of the interpreter. The
simplest definition is as follows.

expect_induction(4,G) :-

A=..[PI_], G=..[P|_].
By this definition, expect_induction(a,G)
succeeds when A and G have the same predi-
cate symbol. We can do a more detailed check,
considering the tradeofl between the cost of the
check and the possibility in which the corre-
sponding call of make_induction fails.

Since we extend the language of terms to a
higher-order one, we will have our own unifica-
tion procedure. We therefore have to introduce
a call of the unification procedure to appropri-
ate places including those where the predicate =
is called. The predicates make_induction and
matches also use the procedure.

3. Making induction

The predicate make_induction(IC,IH,PNX,PX)

roughly works as follows. It first renames vari-
ables in IH and gets IH’. Let the renaming be
denoted by p. The predicate then unifies IR’
with IC. The unification must succeed with a
unifier 6 that only instantiates variables in IH’.
If 6 is of the form

[x+1/%’, a(X,Y,v)/Y’,

z1/21, ..., Zk/Zk]
and p is of the form

[x:/x, Y'/v,

Z21'/2%, ..., 2k’/Zk],
then we return IH as PX, and obtain PNX from
IH by substituting terms N+X and

(N, X\Y\a(X,Y,F(X)), Y)
for X and Y, respectively. Here F is a new func-
tional variable. Variables X, Y and V are as-
sumed to be distinct from 21, ...,Zk.

In the above explanation, only three variables
are involved in the induction schema. Variable
X ranges over natural numbers, and Y and V
on non-numbers. We can easily generalize the
number of variables in the induction schema.

4. Higher-Order Language

As we said in the introduction, we use
a higher-order language with recursion terms
and functional variables to make the induction
schema on natural numbers more powerful. A
recursion term beginning with the recursor r is
of the following form.

r(n, X\Y\a(X,Y), b)

The first argument n of the recursor is a term
representing a natural number. We assume that
terms representing natural numbers are distin-
guished from other terms by some typing sys-
tem. The second argument of the recursor is a
A-abstraction; its body a(X,Y) denotes a term
containing parameters X and Y. We allow A-
abstractions only in this context. The third
argument b is an arbitrary term.

Terms representing natural numbers is re-
stricted by the following syntax.

n::=X1] 01l s(n) | ntn
Here X 1s a variable on natural numbers. Con-
stant 0 and operator + are interpreted as usual.
Operator + is therefore commutative and asso-
ciative. Operator s denotes the successor func-
tion. We can relax the restriction by introduc-
ing, for instance, subtraction and multiplication
by a constant, but a more powerful extension
will immediately make unification undecidable



and impractical. By the above restriction, uni-
fying two terms representing natural numbers
is reduced to solving a system of linear integral
equations.

As is usual, terms s(0), s(s(0)), etc., are
written 1, 2, etc.

Some reduction rules are defined on recursion
terms. Following are the standard ones.

r(0, X\Y\a(X,Y), b) = b

r(n+1, X\Y\a(X,Y), b)

= a(n, r(n, X\Y\a(X,Y), b))

Two terms are considered equal if they are
reduced to the same term by the above two
rules under an arbitrary substitution of natural
numbers for variables denoting natural num-
bers. By this definition of equality, we have
equations like the following ones.

r(n, X\Y\a(X+1,Y), a(0,b))

= a(n, r(n, X\Y\a(X,Y), b))

r(n, X\Y\a(X+m,Y),

r(m, X\Y\a(X,Y), b))

= r(n+m, X\Y\a(X,Y), b)
These rules make the entire reduction proce-
dure complex and inefficient. Moreover, they
seem to destroy the Church-Rosser property of
the reduction system. However, we have ten-
tatively incorporated them into our reduction
procedure, because they sometimes simplify so-
lutions obtained by induction.

We finally introduce functional variables.
A functional variable represents a function
from natural numbers. Unlike other higher-
order extensions of logic programming such as
AProlog!V), ours regards functions not as inten-
sional but as extensional. Therefore each func-
tional variable is considered to denote -an in-
finite list or a table whose indices are natural
numbers. If we have an equation

F(3) = true,
then this equation is solved by recording true
as the value of F at 3. Afterwards, if a term
contains F(3) as a subterm, F(3) is replaced
with true.

5. Unification

Unification involving recursion terms is diffi-
cult in that the most general unifier does not
always exist. More basically, unification prob-
lems are undecidable in general.

We first list those cases where an equation
with a recursion term can be deterministically

reduced. If terms a(X,Y) and b do not share
their leading functors and term b’ has the same
functor as that of b, then the equation

r(n, X\Y\a(X,Y), b) = b’
is reduced to the following ones.

n =20

b = b’

If terms a(X,Y) and b do not share their leading
functors and term a’ has the same functor as
that of a(X,Y), then the equation

r(n, X\Y\a(X,Y), b) = a’
is reduced to the following ones.

n = N+1

a(N, r(¥,x\Y\a(x,Y),b)) = a’

Here N is a new variable denoting a natural
number.

If two recursion terms with the same second
and third arguments are compared, i.e., if we
have an equation of the form

r(n, X\Y\a(X,Y), b)

= r(m, X\Y\a(X,Y), b),
we can reduce it to n=m, provided that a(X,Y)
and b do not share their leading functors. More
generally, an equation of the form

r(n, X\Y\a(X,Y), b)

= r(m, X\Y\a’(X,Y), b’)
can be reduced to

n=m

a(X,y) = a’(X,y) for any X st 0<=X<n

b=0Db’,
if terms a(X,Y) and a’(X,Y) have the same
path from their roots to some occurrences of
Y. For example, terms [true|Y] and [F(X)[Y]
satisfy this condition. The second equation

a(X,y) = a’(X,y) for any X st 0<=X<n
refers to the bound variable X and the new con-
stant y. This is a constraint that is discussed
in Section 6.

In other cases, having an equation

r(n, X\Y\a(X,Y), b) = t,
we must nondeterministically try two cases:
n=0 and n=N+1, where N is a new variable de-
noting a natural number. When the unification
procedure stops this case splitting in order to
avoid infinite computation, it reports that some
unifiers are lost.

A unification problem on natural numbers
corresponds to a system of linear integral equa-
tions. We therefore have to emply some proce-
dure for solving linear equations. In our current
experimental implementation, we only have the



following simple and deterministic rules for re-
ducing equations between natural numbers.
n+k=m+k ==> n=m

n+m=0 ==> n=0, m=0
n+m=k+1 ==> n=N+1, N+m=k
n+m=k+1 ==> m=M+1, n+M=k

Here n, m and k are terms representing natural
numbers; N and M are variables denoting natural
numbers.

6. Extension by Constraints

If an equation obtained during unification has
a functional variable whose argument contains
variables, it cannot be further reduced. For ex-
ample, if we have

[truell] = (N, X\Y\[F(X)IY], 1),
we obtain

N = N’+1

true = F(N)

L = (N, X\WWIF(X) 1Y], [1).
Here the second equation cannot be solved un-
less N is instantiated by a fixed natural number.
We therefore leave true=F(N) as a constraint,
which is solved again when N gets instantiated.

Such constraints may be decorated by a
bounded quantifier when an inductive proof is
constructed. From induction conclusion p(X+1)
and induction hypothesis p(X), we can obtain
a clause

p(N+X) :- p(X).
If an unsolved constraint C(X) has been at-
tached to the induction hypothesis, we have
to add the following constraint to the above
clause.

C(X’) for any X’ st X<=X’<N+X
Here X’ is a universal variable on natural num-
bers whose range is restricted by terms X and
N+X. In general, we must manipulate constraints
having more than one quantifiers.

If we have a constraint of the form

F(n) = t for any ...,
and have a subterm F(m) in a term being re-
duced, we can replace F(m) with t, provided
that m satisfies the conditions of bounded quan-
tifiers. For example, if we have

F(X) = true for any X st 0<=X<N+1,
then we can replace F(N) with true.

Formal treatments of such constraints and
concrete algorithms for solving them are under
development.
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