il =7 AN/
(1996. 3. 2

% KLIEG:

WHETaTnmrarsIyriki
:i%i%&ﬁﬂmﬁﬁ@%K

V7
TR AARy bT =85 =

BHIES EETKES SEM Sk
RREL¥ERT FHRELARR B3 - SHERFER
{toyoda,shizuki,etsuya,shin}@is.titech.ac.jp

ARCREV2TVRLEFITOY T IV 7I2BNT, TOEAFY T =70 K
OY-BIUTO I VEBRATAREMELT, TRy P TIN5 =¥
EVIBEARRET S, TULARY NI RF—VEHAVWLIET, L{fiib
NBLFI T OT S APy — v RBET DI L, BLUSY — vk kA RIEEE B
(7D HERETAI LTI RS, BAZIOWEE, 7OEALAN) —A

WEZEICLAEIICS 27 V7075 I VB KLIEG ICEA L. ZORE
TNy —VOEHRB LI UHHHZHAERRZ AW THRENICT) 2&TE 5,

KLIEG: A Visual Parallel Programming Environment
Using Process Network Patterns as Flexible Reuse Units

Toyoda Masashi Shizuki Buntarou Takahashi Shin Shibayama Etsuya
Department of Mathematical and Computing Sciences
Tokyo Institute of Technology
{toyoda,shizuki,etsuya,shin}@is.titech.ac.jp

We propose the notion of process network pattern, which is a visual abstraction
representing the topology and protocol of a process network, and can be a flexible
and high-level unit of reuse for visual parallel programming. In this paper, we show
the power of process network pattern. With process network pattern, we can first
design a common pattern of parallel programs and reuse it later for solving various
problems. We introduce this notion into the visual parallel programming environ-
ment KLIEG in which we can reuse and define patterns visually and interactively
with its graphical user interface.

6—5
6)

1 Introduction

In design of parallel programs, we usually use
network diagrams composed of processes (the units
of parallel execution) and communication channels.
It is complicated work to translate network dia-
grams to textual programs during the implementa-
tion, moreover, it is difficult to read such textual
programs.

To solve these problems various visual program-
ming environments have been developed, such as
HeNCE(1] and CODE2.0[6}, in which a parallel pro-
gram is a data-flow diagram, and each node in it

represents a sequential process. These environments -

allow using diagrams directly as programs, however,
they still have the reusability problem of programs.
That is, although it is possible to reuse concrete
nodes and diagrams, in practice partially specified
diagrams are often more reusable in parallel pro-
grams.

Now we discuss this problem in more detail. In
parallel programs, we use various sorts of process
networks, such as divide-and-conquer networks, and
pipelined structure of processes. The topology of
a network and the protocol among its processes can
often be reused for solving many problems. Network
topologies and protocols are some of the basic design
aspects of parallel programs, and can be considered
as the patterns of programs.

Recently, in object-oriented community, design
pattern approaches have emerged to describe such
basic design aspects in object-oriented systems. A
design pattern is a document that consists of class di-
agrams, object diagrams, state transition diagrams,
descriptions, and example programs. Catalogs of
design patterns such as [3] have been already pub-
lished. The design pattern approaches are important
because they make it easier to reuse programming
techniques and structures of large scale programs.

Our goal of this research is to reconstruct the no-
tion of design patterns suited for visual program-
ming environments. As the first step toward the
goal, we introduce the notion of patterns of parallel
programs called process network patterns' based on
process network diagrams, and support interactive
reuse and definition of patterns in a visual program-
ming environment." We put emphasis on the pat-
terns of network diagrams, because they correspond
to class/object diagrams that are the central part of
design pattern catalogs. The following is the most
important design issues of process network patterns:

Reusability Patterns should be highly reusable.
Definition of Patterns Patterns should be user
definable.

!In the following, the simplified term “pattern” may be
used instead “process network pattern”.

Dynamic Networks Not only static but also dy-
namic networks should be represented as pat-
terns. Still however, the visual representations
of such patterns should be static.

User Interface Patterns should be defined and
reused in a visual programming environment.

Considering the above issues, we implemented a
visual parallel programming environment KLIEG.
The KLIEG environment provides a support for pro-
cess network patterns. Using process network pat-
terns, we can reuse and define the topologies of net-
works. We also reuse the protocols among processes
to some extents.

This paper consists of six sections. In Section
2, we introduce the basic programming model of
KLIEG. Section 3 explains the process network pat-
terns. Section 4 describes the environment and its
implementation. We compare KLIEG with related
works in Section 5. We conclude in Section 6.

2 Basic Programming Model

In KLIEG, basic programming constructs are pro-
cesses, which are units of parallel execution. A pro-
cess has input and/or output ports, and can have its
own state. During the execution, processes compose
a process network in which their ports are linked for
representing channels, and communicate with each
other via their linked ports.

A KLIEG program consists of process network di-
agrams, and definitions of process behaviors. In the
following, we describe each of them.

2.1 Process Network Diagrams

Using process network diagrams, the user can de-
scribe process networks hierarchically. The largest
rectangle in Figure 1 illustrates an example of a pro-

cess network diagram, which computes Zr’:l=1(”2 +
n). This diagram contains three processes, natu-
rals, squares, and sum, which have their input and
output ports represented by sunken and raised rect-
angles, respectively. The diagram also contains its
own ports N and Sum for the processes to be able to
communicate with outside processes. The process
network is constructed by linking the ports in the
diagram.

There are two types of ports, stream ports and
singleton ports. Stream ports transfer a sequence of
data, and singleton ports transfer only one datum.
Stream ports and singleton ports are represented
by rectangles and round rectangles, respectively. In
Figure 1, the port N of naturals is an input single-
ton port, and the port Out of naturals is an output
stream port. Then, the behaviors of the processes
are as follows: naturals generates a stream of inte-
gers from 1 to N; squares generates the stream of the

squares of the received integers; and sum computes
the sum of the received integers.

Figure 1: Process network diagram (color original)

Data can be multi-casted by linking a single out-
put port to multiple input ports. In Figure 1, the
output stream of naturals is multi-casted to the input
stream ports of squares and sum. It is also possible
to merge multiple streams to one stream by linking
several output stream ports into one input stream
port. In a merged stream, the order of data is rion-
deterministic, but the arrival order among data from
the same output stream is preserved. In Figure 1,
two output streams from naturals and squares are
merged into the input stream of sum. Thus,; sum
computes the sum of both natural numbers less than
or equal to N and their squares so that it outputs
2:,':‘=1(n2 + n) to the port Sum.

The user can use a process network as a single
process called a composite process. For example, the
diagram in Figure 1 can be used as the composite
process sum_of shown at the top. Using compos-
ite processes in network diagrams, the user can con-
struct process networks hierarchically.

We can also describe dynamic changes of the
topologies of networks using process network dia-
grams and some extra mechanisms. However, these
are not the main issues of this paper, we omit these
explanations.

2.2 Process Behaviors

To describe behaviors of a non-composite process,
we use pictorial rules that represent state transitions
of the process. The basic model of KLIEG is based
on KL1[9]?, and a rule is the pictorial representation
of a single KL1 clause. However, the rules are too
low-level to construct large programs, so the envi-
ronment of KLIEG provides higher level units such
as process network patterns (See Section 3), and de-
crease the use of low-level descriptions. We also omit
the explanation of the rules in this paper.

2KL1 is a parallel logic programming language developed
at ICOT.

3 Process Network Patterns

Process network patterns are flexible reuse ele-
ments of process networks and protocols among pro-
cesses. We can reuse a pattern, which is an incom-
plete process network, for solving various problems
by specializing the pattern with specific processes.
In KLIEG, a process network pattern is represented
as a process network some of whose internal pro-
cesses are not specified. We can substitute a process
that works appropriately in the pattern for an un-
specified part called a hole, so that we can reuse
the network topologies. The protocol among pro-
cesses can be also reused to some extent. We can
also construct patterns hierarchically to define com-
plex patterns. Moreover, we can achieve both reuse
and definition of patterns simply and intuitively us-
ing the drag-and-dropping interface of KLIEG. In
this way, process network patterns provide high-level
abstraction of process networks.

3.1 An Example

As a first example, we show the master-worker
pattern, which provides a simple load balancing
scheme that involves a master process and a col-
lection of worker processes. The master partitions
a problem into sub-problems, and each worker com-
putes sub-problems in parallel. Figure 2 depicts the
master-worker pattern in KLIEG. A pattern is rep-
resented by a large sunken rectangle that includes a
process network. The pattern master_worker 3 con-
sists of the master pattern and the workers pattern.
The master pattern is composed of two processes,
generator and dispatcher 4. The generator process
simply generates a stream of sub-problems. The dis-
patcher process receives sub-problems from genera-
tor and messages from workers, and sends the sub-
problems to ready workers. It also sends all the so-
lutions from workers to Answer. The dispatcher pro-
cess makes streams corresponding to the workers,
and sends them via the Workers port to communi-
cate with the workers. The number of streams is de-
termined by the input port WorkerNum. Then, dis-
patcher forwards the sub-problems via correspond-
ing streams. The workers pattern represents multiple
workers, and the number of workers is dynamically
determined by the number of streams in Ws. The
workers pattern is defined by a sequence pattern that
represents such a sequence of processes (See also Sec-
tion 3.3.2). Each worker receives sub-problems, and
solves them, then returns answers to the master.

3The first letter of the name of a process, a hole, or a
pattern is lower case, and the name of a port begins with an
upper case letter.

4A process can be iconified to save the space. The dis-
patcher process is iconified, so its ports are hidden.

Figure 2: Master worker pattern in KLIEG

As shown in Figure 2, a pattern has its own
ports as a process does, so they can be used as pro-
cesses. For example, master has the ports Answer,
Ans, Workers, and WorkerNum. To represent holes,
we use sunken rectangles that may include ports.
For example, there are holes named generator and
worker in the master_worker pattern.

3.2 Reusing Patterns

We can reuse topologies of networks simply by
substituting specific processes for holes of patterns
by drag-and-dropping processes to the holes. Ports
in a hole restrict processes that can be embedded
in the hole. That is, when a process is substituted
for a hole, it must have at least the same type ports
defined in the hole. When a process is substituted
for a hole, the ports of the process are automatically
linked as the ports of the hole were connected. If
there is ambiguity, the ports of the process may not
be linked properly as the user intended. In that case,
the user can change links among them correctly.

The master_worker pattern can be used for solv-
ing many problems, such as ray-tracing computa-
tions and various search problems. For example,
we solve N-Queens problem by AND-parallel search
using the master_worker pattern. Figure 3 depicts
the program for the N-Queens problem. To con-
struct this program, we only have to drag-and-drop
the nqueensGenerator and the nqueensWorker to the
appropriate holes and to add necessary ports to
the pattern. The nqueensGenerator generates par-
tial solutions whose first columns are fixed, and each
nqueensWorker solves those sub-problems sent to it.
When all the holes in a pattern are specified, the pat-
tern can be treated as a concrete process. To repre-
sent this change visually, the patterns become raised

Figure 3: N-Queens by the master worker pattern

shapes. The port Size and Depth are added to des-
ignate the size of the chess board and the number of
columns fixed by the nqueensGenerator, respectively.

We can also reuse the protocol among processes
to some extent. When some of processes in a pat-
tern represent a part of the protocol, and are com-
mon to many problems, we can reuse the pattern
whose holes are substituted by those processes. For
example, dispatcher in the master_worker pattern rep-
resents a part of the protocol among master and
workers so that it is specified in Figure2. Note that
the user can change the protocol of a pattern by
changing specified processes. For example, when
we reuse the master.worker pattern for OR-parallel
search problems, we change the dispatcher process to
a process that terminates all the computation when
it receives one answer from workers.

3.3 Defining patterns

The user can define patterns by constructing net-
works with holes and ports, and by substituting
some of their holes. It is also possible to construct
large and complex patterns hierarchically by substi-
tuting a pattern for a hole. This makes it possible to
reuse large and complex networks flexibly, and pro-
vides some scalability to programs. Currently, the
user can define two kinds of patterns, static patterns
and sequence patterns. A static pattern represents
a static network whose holes and ports are freely
arranged by the user. A sequence pattern repre-
sents a dynamic network composed of a sequence of
processes in one static diagram. In this section, we
describe, as an example, how to construct the mas-
ter_worker pattern in Figure 2.

3.3.1 Static Patterns

Static patterns represent static process networks.
The user can define static patterns by arranging
holes and ports freely, and by linking ports. For ex-
ample, we define a base pattern of the master_worker
pattern as a static pattern. Figure 4 illustrates the
base pattern of master-worker pattern in KLIEG.

Figure 4: Base of master-worker pattern

3.3.2 Sequence Patterns

A sequence pattern represents a dynamic network
composed of a sequence of processes sharing the
same definition in one static diagram. The number
of the processes and their topologies are dynamically
determined. The internal processes in a sequence
pattern are arranged in a sequence, and each of them
may or may not communicate with its neighbors and
with outside processes by the pattern’s own ports.

Figure 5: Multiple workers

Figure 5 depicts the workers pattern which repre-
sents the worker part of the master_worker pattern.
A sequence pattern includes three holes in the se-
quence with an ellipsis (- - -) between the second and
the third holes. Each hole represents the first, sec-
ond, and the last process respectively. Changes to
one of these holes are propagated to all the other
holes. For example, when the user specializes one
of these holes by a process, all the other holes are
automatically specialized by the processes with the
same definition.

The user can use three kinds of special ports to
define the topologies of sequence patterns. The fol-
lowing is the list of special ports. A description in
parentheses represents available types for each port.

Map port (input/output, stream) An input
map port maps its elements to processes. An
output map port sends outputs of all processes
in the same order of the processes.

Broadcast port (input, stream/singleton) It
broadcasts its data to all processes.

Merge port (output, stream) It merges output
streams of all processes.

For example, the workers pattern includes two spe-
cial ports. The port Ws is a map port. Ws includes
a sequence of the stream ports that is represented by
three ports with an ellipsis (- -). Each port is linked
to the Probs ports of the corresponding worker. An-
other port Ans in workers is a merge port. It merges
the outputs from the Ans port of the all processes.

It is still the problem how many processes should
be created in the pattern. In the workers, it is con-
trolled by the input map port Ws. That is, the num-
ber of internal processes is adjusted to the number
of elements of the port.

Sequence patterns can represent various topolo-
gies. Pipelined and bi-directional communication
structures can be described by linking the ports of
neighbors. Divide-and-conquer structures can be de-
scribed by combinations of the special ports. It is
also possible to mix these communication structures.

3.3.3 Hierarchical Composition of Patterns

To define larger and more complex patterns,
KLIEG allows hierarchical compositions of patterns,
which provides some scalability to programs. We can
achieve this by substituting a pattern for a hole by
drag-and-dropping the pattern to the hole. For ex-
ample, we can substitute the workers pattern in Fig-
ure 5 for the worker hole of the base master_worker
pattern in Figure 4. We can define the master_worker
pattern in Figure 2 by substituting, in addition, an
appropriate pattern for the master hole.

4 Environment and Implementation

The KLIEG environment consists of three main
components: editor, translator, and tracer. Figure 6
shows the snapshot of the KLIEG environment. In
this Figure, the user has completed the program on
the editor (the left window) and is viewing the exe-
cution on the tracer (the right window).

The editor is used for constructing processes and
patterns and composing them up into a KLIEG pro-
gram. The user can edit some modules, a set of pro-
cesses and patterns related to each other, in mul-
tiple windows. The translator parses a pictorial
KLIEG program and translates it into KL1 codes.
The translated code has information about position
and size of processes in the program as comments
for the tracer. The tracer visualizes the creation

Figure 6: Snapshot of the KLIEG environment

of processes and dynamic changes of the network
topology during the execution of a program. On the
tracer, processes are automatically layouted based
on the geometric information, such as the position
and scale of processes, in the code. In addition, it
can display the contents of streams and zoom in/out
a part of the network in which the user is interested.
To execute translated KL1 codes, we use KLIC[2], a
portable compiler of KL1 developed at ICOT.

All components of the KLIEG environment are
implemented mainly in C++ and Amulet[5] user in-
terface development environment.

5 Related Work

In this section, we compare KLIEG with several
related works, and discuss about them.

VISTA([7] is a visual multiparadigm programming
environment. VISTA’s programming constructs are
processors, which may have an internal network of
processors. A processor can have some internal pro-
cessors called public processor that can be substi-
tuted by another processor having a compatible in-
terface. A public processor can be substituted dy-
namically, but the topology of the network is static.
In KLIEG, process cannot be substituted dynami-
cally, but the topology of the network can be dynam-
ically changed. Therefore, KLIEG provides more in-
tuitive diagrams of dynamic networks. In addition,
A processor substituted for a public processor must
have a compatible interface in VISTA. In KLIEG, a
process doesn’t have to have a compatible interface
of a hole, that is, the process can have more ports
than the hole. Thus KLIEG provides higher-level
abstraction for process networks than VISTA.

There are also some visual languages based on
parallel logic programming language, such as Pic-
torial Janus[4] and PP[8]. Both Pictorial Janus and
PP provides a single form of pictorial rewriting rules
to visualize clauses of parallel logic programming

languages, so that it is difficult to construct large
scale programs. KLIEG provides higher-level ab-
straction such as processes, streams, and process
network patterns, so that it is easier programming
in the large.

6 Conclusion

In this paper, we have proposed the notion of pro-
cess network pattern, which is flexible and high-level
element of reuse, and introduce this notion into the
visual parallel programming environment KLIEG.
Process network patterns provide high-level abstrac-
tion of process networks. They make it possible to
define and to reuse the topologies and the protocols
of process networks. The user can reuse patterns vi-
sually and interactively by drag-and-dropping pro-
cesses or patterns to their holes.

In future work, we will extend the process network
patterns more flexibly and expressively for more gen-
eral network and protocol reuse. In addition, we will
make the catalogs of various patterns using process
network patterns.

References

[1] A. Beguelin, J. J. Dongarra, G. A. Geist, R.Manchek,
and V. S. Sunderam. Graphical development tools for
network-based concurrent supercomputing. In Proceed-
ings of Supercomputing 91, pp. 435444, 1991. '
Tetsuro Fujise, Takashi Chikayama, Kazuaki Rokusawa,
and Akihiko Nakase. KLIC: A Portable Implementation
of KL1. In International Symposium on Fifth Genera-
tion Computer Systems 1994, pp. 66-79. ICOT, Decem-
ber 1994.
[3] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns — Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

Kenneth M. Kahn. Concurrent Constraint Programs to
Parse and Animate Pictures of Concurrent Constraint
Programs. In Proceedings of the International Confer-
ence on Fifth Generation Computer Systems, pp. 943-
950. ICOT, 1992.

Richard McDaniel and Brad A. Myers. Amulet’s Dy-
namic And Flexible Prototype-Instance Object And Con-
straint System In C++. Technical Report CMU-CS-95-
176, Carnegie Mellon University School of Computer Sci-
ence, 1995.

[6] P.Newton and J.C.Browne. The code 2.0 graphical paral-
lel programming language. In Proc. ACM Int. Conf. on
Supercomputing, July 1992.

Stefan Schiffer and Joachim Hans Fréhlich. Visual Pro-
graming and Software Engineering with Vista. In Vi-
sual object-oriented programming: concepts and environ-
ments, chapter 10, pp. 199-227. Manning Publications
Co., 1995.

[8) Jiro Tanaka. Visual programming system for parallel logic
languages. In The NSF/ICOT Workshop on Parallel
Logic Programming and its Program Environments, pp.
175-186. the University of Oregon, 1994.

Kazunori Ueda and Takashi Chikayama. Design of the
Kernel Language for the Parallel Inference. The Computer
Journal, Vol. 33, No. 6, pp. 494-500, December 1990.

)

[4

o)

[5

[7

)

[9

