The Implementation of A-NETL on a Highly Parallel Computer
AP1000

Somchai Numprasertchai! Tsutomu Yoshinaga! Takanobu Baba!

¥F|F 7Yz 7 bIEETE A-NETL 1, PREO/D~KELFIME2T2) S 2 B E LTHREHS
N, 2—FIF ANET vV F a3 o~ ECEIERNLRETITRETH 5. T/, HRAZET) - ST~

Fa—#1Zb A-NETL FFEEEho0H 5.

ARTIE, BHF ST MRIAEEE A-NETL OB HIEHERE AP1000 ~OERK 2 EHEIZOVTHR

BT, EBHRERT.

The Implementation of A-NETL on a Highly Parallel Computer
AP1000

Somchai Numprasertchai! Tsutomu Yoshinaga! Takanobu Babal

A-NETL (Actors-NETwork Language) is a parallel object-oriented language intended to be used for
managing small to massive parallelism with medium grain size. The basic motivation of the A-NETL
design is to allow the users to describe large parallel programs and execute them efficiently on a highly
parallel machine, named the A-NET multicomputer. A-NETL is also being implemented on various
parallel and distributed computers. This paper describes the efficient implementation of the parallel
object-oriented language, A-NETL on a stock multicomputer, AP1000. Some preliminary results are also

included.

Keywords : parallel object-oriented language, message passing, language implementation

1 Introduction

Over the years both the scientific/engineering and
the commercial communities have placed grow-
ing demands on computer hardware and software.
This has led to dramatic improvement in com-
puter architecture to increase processing power
and cut program execution time. In addition
a lot of problems have parallel behavior inher-
ent in their algorithms. Therefore high perfor-
mance machines and parallel programming lan-
guages are necessary. Object-oriented languages
which are recognized as a promising approach
to parallel programming are considered. There
are many object-oriented programming languages
that have been implemented on several kind of
multicomputers, such as ABCL/onAP1000.[2]

t PIRERETER

Faculty of Engineering, Utsunomiya University

—151—

We have developed a parallel object-oriented
total architecture system, A-NET. This system
consists of the A-NETL, a local operating system
and the A-NET multicomputer. We have devel-
oped language processors for a variety of envi-
ronment such as A-NETL on a stock machine,
AP1000 machine, and A-NETL on a cluster of
workstations using PVM[5].

The purpose of this paper is to demonstrate an
efficient implementation of an AP1000 translator
which converts A-NETL programs to C language
programs. We begin by describing the overview
of A-NETL and AP1000 system in section 2. Sec-
tion 3 presents the implementation of the AP1000
translator and optimization method. Section 4
shows the experimental results.

2 A-NETL and AP1000

2.1 Overview of A-NETL

This section briefly describes our language, A-
NETL. A more comprehensive description of the
language A-NETL can be found in [3,4,7]. A-
NETL provides a tool for defining a large num-
ber of objects both statically and dynamically. In
static definition, indexed objects are groups of a
large number of similar objects. They can be de-
fined by attaching the number of required objects
to object name as follows.

object N ame[NumberOfObject]

For dynamic creation, a class is defined as a mold
object. The class definition is broadcast to all
nodes before execution. This is useful for pro-
grams that need to reconfigure their structure dy-
namically according to input data size and run-
time parameters.

A-NETL uses message passing to communicate
between objects. It has three types of message
passing, past, now and future[2] and their multi-
cast versions.

2.2 AP1000 multicomputer

The AP1000 is a highly parallel computer with
distributed memory which is suitable for fine-
gain and data parallel programs[6]. Each pro-
cessor(cell) runs its own program from its local
memory and communicates with other cells by
passing messages. Messages are sent from the
source cell to destination cell though the com-
munication network, Broadcast network(B-net),
Torus network (T-net) and Synchronous network
(S-net)[1].

In AP1000, there are two types of programs,
Host programs and Cell programs. They are
compiled and linked with libraries at the host
computer to create execution modules. There
are many communication functions supported the
AP1000 library. In our implementation, we use
h_send to send a message from cell to host and
[_asend to send a message to a specified task
identifier(tid) in a one-dimensional absolute cell
ID(cid).

3 Implementation

3.1 Configuration of the translator

We selected to translate A-NETL code to C lan-
guage code. The decision on using the C language
was based on maintaining portability on various
current and future machines. However, A-NETL
and C language syntax and semantics are differ-
ent. For example, message reception in A-NETL
is supported by the operating system in the A-
NET machine while we have to operate them in
the user mode in C language on AP1000. So we
have to implement several functions for things
such as polymorphic data, method, message and
object management. In addition A-NETL is sup-
ported by A-NET machine hardware.

In our implementation, the AP1000 translator
is divided into 2 phases. In Phase 1, an A-NETL
source file is translated to an intermediate lan-
guage and in Phase 2, the intermediate language
is translated into a C language program. Both
phases of the translator are grouped together as
the translator driver. The compilation and exe-
cution process of A-NETL on AP1000 is shown
as Figure 1.

A-NETL Source program

¥

[Translator Phase #ll l Allocator]

l Translator Phase #2|

Translator driver
¥

C Program

Libraries

[C Compiler on AP1000 |

Figure 1. The compilation and execution
process of A-NETL on AP1000.

—152—

3.2 Compilation of A-NETL
3.2.1 Methods

Methods contain temporary variables, and state-
ments that include several primitive opera-
tions such as arithmetic and logical operations.
Method execution is supported by A-NET sys-
tem.

In the C language, we have to execute methods
in user program level. We translate a method to
a C function and create several functions such as
method selector to select the current method to
be executed. A-NETL primitive operations are
implemented by cell libraries.

3.2.2 Message

We have to create several functions to implement
message sending and receiving on AP1000. In
the implementation, we need to realize the mes-
sage send/receive semantics on ready-made mes-
sage passing libraries. This forces us to define it
as a user-mode program without utilizing special
support from the underlying OS and architecture.

We designed the object identifier structure as
shown in Figure 2 so that it can be easily
mapped to the AP1000 message passing format
of 3 parts, Object_type contains the object type,
Object_No is mapped to AP1000 cell identifier
{or is equal 0 when it refers to the host pro-
gram) and Node_ID is mapped to the AP1000
task number.

31 % 1 9 0

Object No Nodz ID

Figure 2. Object identifier structure.

The receive object changes information in the ob-
ject identifier to the AP1000 format by changing
Node ID, Object_No and checking the message
type (O:return, 1:past, 2:now and 3:future type)
in this structure. The message structure is shown
in Figure 3.

1 3 2 Z

"

&

type of argument| identifier
sender-abjectID

selectorID

argument area

Figure 3. Message structure.

—153-

We created functions to map the three types of
A-NETL message and their multicast versions
to AP1000 message passing functions by using
h_send for communication between cell and host
and !_asend for communication among cells.

3.2.3 Indexed object and class

We keep indexed objects in indexed objects table
and refer to them by their index numbers. They
also refer themselves by using selfIndex.

For dynamic creation, we assign the dynamic
number for class and dynamic objects. The dy-
namic number for a class is zero. Numbers other
than zero are assigned to dynamic objects,

A class consists of methods, state variable val-
ues for each dynamic object and a list which
points to the first dynamic object. Each dynamic
object then has pointers which point to its’ vari-
able values in the class and the next dynamic ob-
ject as shown in Figure 4.

< — Class —
PN Fo #
4 D
!Illlllll'E
2]t # |

Figure 4. Class operation.

3.3 Code optimization

We have tried to implement the translator to pro-
duce a optimized code. However the code from
translator is still not as efficient as when the code
is hand written.

We therefore hand-optimizing the resultant C
code, changing some structure and reducing over-
head as follows.

1) Instead of dynamic memory space allocation
for things such as buffer, we do it statically.

2) Reduction of the overhead of method and con-
dition control by inlining code.

3) Reduction of the number of steps in message
passing.

4) If a context is ready and is not stored in con-
text queue, it is executed directly.

Another important process in code optimiza-
tion is a TAG treatment. A-NETL implies dy-
namic data types. This is good for execution
on the A-NET multicomputer which has a TAG
processor. However, this data type causes a
large overhead. In the optimization process, we
changed the TAG type to normal types in C, to
reduce the overhead and required memory.

3.4 Allocation of A-NETL objects
to AP1000 cells

The translator driver is designed to receive the
size of cell in X and Y axises for torus topology
in AP1000 from user.

We setup the configuration of the AP1000 cells
using the ccon fzy(ncelz,ncely) function and we
use [_ccreate to create and activate tasks in cells
specified by one-dimensional absolute cell ID.
This process is implemented in the host program.

One A-NETL object is allocated to one task
in one cell when there are enough cells compared
with the number of A-NETL objects. Otherwise,
multiple A-NETL objects are allocated to one cell
with different task identifiers, considering load
balance. For example, we allocate indexed ob-
jects with the same load to all cells in the first
step and then allocate the rest of the objects to
cells in another task identifier when the number
of cells is less than the number of objects.

3.5 System management

We designed a user interface as a host program.
The host program includes a message handler, a
message dispatcher and a message interpreter to
allow the user to process an input message.

We have also implemented function called
an object manager to manage message passing.
There are 2 main processes in the object man-
ager, (1) receive a message and create a context
and (2) start methods from context.

Figure 5 shows the structure of abject man-
ager. The bold line shows the process flow from
message transmission to message execution.

Network

SuspendList

radowd |,

[=
S : ondl
MethodDispatcher- Message a.n‘ e
object

Figure 5. Object Manager.

1)Message Interpreter: The message interpreter
receives and interprets input messages from the
user.

2)Message Handler: The message handler cre-
ates a context and puts it into the ready
queue. For multireceive, contexts are placed
in the DormantQueue. In the case of a re-
turn type message, the message is put into the
SuspendList. If the corresponding context is
found, the return message, stored in this context,
will be placed in the ReadyQueue. In this way, a
suspended message is made ready for execution.
In the message handler, a buffer is used to reduce
the waiting time for arrival messages.

3)Method Dispatcher: The method dispatcher se-
lects a method allocate in the ReadyQueue to
execute.

4 Experimental Results

4.1 Environment of experimenta-
tion

All of the experimental programs are compiled by
the gee compiler with the optimizing option and
their execution time is evaluated on caren(CAP
Runtime Environment) on the AP1000, which
consists of 64 cells by using both -NOLSEND op-
tion and -LSEND option.

4.2 Ping-Pong benchmark

To determine the efficiency of message passing,
the time taken to send a message from a sending
cell to a receiving cell and back was measured.
We improved the object manager by inserting a

—154—

buffer to reduce waiting time for arrival messages
and included a message handler to manage each
kind of message. We reduced the two way com-
munication time from 614 us to 310 us.

We further optimized the code by applying the
strategies in 3.3, and found that the two way com-
munication cost was reduced from 310 us to 223
us, while it took 180 pus by writing directly in C
language.

4.3 Result of example programs

To demonstrate the effectiveness of this imple-
mentation, we show the result of some sample
programs, Nqueens program(NQ): a search al-
gorithm to place eight queens, Molecular Dy-
namics(MD): modeling the behavior of molecules
based on the dynamics among 512 particles. The
experimental results are shown in Figure 6.

tirme(ma)
[] NQ with -NOLSEND —--i--—
500 j NQ with -LSEND -
MD with -NOLSEND ==**Q==-

A MD with -LSEND —eeefirmme

400 [~

200 -

L 3]1
10 20 30 Iy 50 s« cells

Figure 6. The result of NQ and MD programs.

Note that the resultant AP1000 program has 1
more object than the original A-NETL program.
In our experiment, we use 10 objects on 8 cells, 18
objects on 16 cells, 34 objects on 32 cells and 66
objects on 64 cells for NQ program. We used 66
objects on 8, 16, 32 and 66 cells for MD program.

In the early implementation of the NQ program
on 8 cells, it took 1053 and 3370 milliseconds for
its execution times in -NOLSEND and -LSEND
option, because there were heavy load in some
cells and light load in other cells as shown in
Figure 7. And it took only 517 and 444 mil-
liseconds with both options respectively after we

—155—

reallocated objects to balance load. The load is
shown in Figure 8. Needless to say, balance of
load in cell has effect on the total performance.

BEEN TN D

TRACEKIND(TTME) | 1

Figure 7. NQ program before balancing load.

L

) sy 9260 (o) 589260 EerTCTRMCY
o i 3
>IF

i N S

TRACEXIND(TIME, |]

Figure 8. NQ program after balancing load.

We also implemented the NQ program(NQ(2))
with 66 objects on 8, 16,32 and 64 cells with both
the NOLSEND option and again with the LSEND
option. We compared results in the Table 1.

Table 1. NQ in the different number of objects.
cells 8

Program 16 | 32 | 64

NOLSEND | 517 ms | 292 ms { 193 ms | 114 ms
NQ(1) LSEND | 444 ms {196 ms | 146 ms | 72 ms

the ber
of abjects 10 18 3¢ | 66

NOLSEND | 630 ms | 410 ms | 208 ms | 114 ms
NQ@ LSEND | 4002 ms|1872 ms| 529 ms{ 72 ms

e pumber | 66 66 66 66

We have a future plan to process the MD pro-
gram using a various number of abjects, because
we found that the number of tasks in each cell has
effect on program performance in NQ programs.

5 Conclusion

We have presented the implementation of A-NET
language on AP1000 and evaluated it by running
sample programs. We show that the execution
time is decreased when we increase the number
of cells. We clarified that the output performance
depends on several factors such as overhead, the
balance load of cells, the number of objects.

QOur future goal is to encourage widespread use
of the A-NET language. We plan to revise the
language and its processing system so that it can
attain a sufficient speedup in a wide range of ap-
plications without requiring special support from
an underlying operating system and architecture.

Acknowledgements

This research is supported in part by the
Japanese Ministry of Education, Science and Cul-
ture under Grant 08680346, the Telecommunica-
tions Advancement Foundation, and PDC. The
authors would like to thank the Fujitsu Labora-
tory and University of Tokyo for allowing us to
use AP1000 machine and other members of the
A-NET project for their helpful comments.

References

{1] H.Ishihata, T.Horie, S.Inano, T.Shimizu and
S.Kato: An architecture of highly paral-
lel computer AP1000, In IEEE Pacific Rim
Conf. on Communications, Computers and
Signal processing pp.13-16,May (1991).

—156—

—

[2] K.Taura, S.Matsuoka and A.Yonezawa: An

Efficient Implementation Scheme of Concur-
rent Object-Oriented Languages on Stock
Multicomputers, 4h ACM PPOPP, pp218-
228, (1993).

T.Baba and T.Yoshinaga: A-NETL:A
Language for Massively Parallel Object-
Oriented Computing,Proc. 1995 Program-
ming Models for Massively Parallel Comput-
ers(PMMP’95), pp.98-105(1995).

T.Baba, N.Saitoh, T.Furuta, H.Taguchi and
T.Yoshinaga: A Declarative Synchronization
Mechanism for Parallel Object-Oriented
Computation, IEICE Trans. INF. & SYST.,
Vol.E78-D,No.8,pp.969-981(1995).

T.Furuta. N.Saitoh, A . Tsukikawa,
T.Yoshinaga and T.Baba: The Implemen-
tation of A-NETL on Workstation Clusters,
1996” Akita Summer United Workshops on
Parallel, Distributed, and Cooperative Pro-
cessing,to appear(1996).

T.Horie, H.Ishihata, T.Shimizu, S.Kato,
S.Inano and M. Ikesaka: AP1000 archi-
tect and performance of LU decomposition,
Proceddings of the 1991 International Con-
ference on Parallel Processing, pp. I-634-
635,Aug.1991.

T.Yoshinaga and T.Baba: A Parallel
Object-Oriented Language A-NETL and its
Programming Environment, Proc. COMP-
SAC’91 ,pp.459-464(1991).

