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Abstract 5 term rewriting system (TRS) is said to be strongly depth-preserving if for any rewrite

rule and any variable appearing in the both sides, the minimal depth of the variable occur-
rences in the left-hand-side is greater than or equal to the maximal depth of the variable
occurrences in the right-hand-side. This paper gives a sufficient condition for Church-Rosser
of strongly depth-preserving TRS’s and describes how to check this condition. By assigning
a positive integer (called weight) to each function symbol, the notion of strongly depth-
preserving is naturally extended to that of strongly weight-preserving and a similar sufficient
condition for Church-Rosser of strongly weight-preserving TRS’s is obtained.
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1 Introduction

A term rewriting system (TRS) is a set of directed
equations (called rewrite rules). A TRS is Church-
Rosser (CR) if any two interconvertible terms reduce
to some common term by applications of the rewrite
rules. This CR property is important in various ap-
plications of TRS’s and has received much attention

so far 1)~3).5)~8)

. Although the CR property is un-
decidable for general TRS’s, many sufficient condi-
tions for ensuring this property have been obtained
1),2),5)~8)

However, for nonlinear and nonterminating TRS’s,
a small number of results on the CR property have
been obtained. Our previous papers 5).6) may be pi-
oneering ones which have first given nontrivial con-
ditions for the CR property by using the notion-
s of non-E-overlapping (stronger than nonoverlap-
ping) and E-critical pairs extending that of critical
pairs. In 5),6), some sufficient conditions for the
CR. property have been given which can be applied
to subclasses of right-linear TRS’s. In the case of
non-right-linear TRS’s, it has been shown that there
exist non-E-overlapping and depth-preserving TRS’s
which do not satisfy the CR property, but all the
non-E-overlapping and strongly depth-preserving*
TRS’s satisfy the CR property®~1). Here, a TRS
is depth-preserving if for each rule o — § and any
variable z appearing in both « and 4, the maximal
depth of the x occurrences in « is greater than or
equal to that of the z occurrences in 3 3. A TRS is
strongly depth-preserving* if it is depth-preserving
and for each @ — B and for any variable x appear-
ing in a, all the depths of the = occurrences in o are
the same!V).

In this paper, we first slightly extends the defini-
tion of strongly depth-preserving* TRS’s, i.e., a TRS
is strongly depth-preserving if for each rule &« — 8
and any variable z appearing in both o and j3, the
minimal depth of the & occurrences in « is greater
than or equal to the maximal depth of the  occur-
rences in 3. It is obvious that a TRS is strongly
depth-preserving if it is strongly depth-preserving™.
We extend the result in 11) by showing that in the
class of strongly depth-preserving TRS’s introduced
here, non-E-overlapping also ensures the CR proper-
ty.

Next we show that even if strongly depth-preserving
TRS’s are E-overlapping, a condition called root-E-
closed (in Section 3) ensures their CR property (The-
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orem 1). And we give some decidable sufficient con-
ditions which ensure this root-E-closed condition.

By assigning a positive integer (called weight) to
each function symbol, the notion of depth is natu-
rally extended to that of weight: the weight of the
z occurrence is the sum of weights of function sym-
bols appearing in the path from the root to the z-
occurrence. Using the notion of this weight, we can
define strongly weight-preserving TRS’s in a simi-
lar way to that of strongly depth-preserving TRS’s
and obtain the corresponding root-E-closed condi-
tion which is a sufficient condition for the CR prop-
erty of the strongly weight-preserving TRS’s (Theo-
rem 2). For example, this result ensures that TRS
R={ f(z) > g(h(z),z), g(z,2) = a, b= h(b)}"
is CR. (It was described in 12) without proof that
the TRS R is CR.)

This paper is organized as follows. Section 2 is de-
voted to definitions. In Section 3, we give the root-E-
closed condition. Some assertions to prove Theorem
1 are given in Section 4. In Section 5, we give a
sufficient condition for the CR property of strongly
weight-preserving TRS’s. In Section 6, some decid-
able sufficient conditions ensuring the root-E-closed

condition are given.

2 Definitions

The following definitions and notations are similar
to those in Refs. 2}, 5) and 9) ~ 11). Let X be a set
of variables, F be a finite set of function symbols and
T be the set of terms constructed from X and F.

For a term M, we use O(M) to denote the set
of occurrences (positions) of M, and M/u to denote
the subterm of M at occurrence u, and M{u « N]
to denote the term obtained from M by replacing
the subterm M/u by term N. The set of occur-
rences O(M) of M is partially ordered by the pre-
fix ordering: v < v iff Jwuw = v. In this case,
we denote w by v/u. If u < v and u # v, then
u < v. If u£v and vZ£u, then u and v are said to
be disjoint and denoted ulv. Let V(M) be the set of
variables in M, O, (M) be the set of occurrences of
variable z € V(M), and Ox (M) = Uzev(a)O0= (M)
i.c., the set of variable occurrences in M. Let O(M)
= O(M) — Ox(M): the set of non-variable occur-
rences. We also use Nfu ¢ M/u | u € U] to de-
note the term obtained from N by replacing N/u;
by M/u; where U = {uy, -, up} and uy, -, up are

pairwise disjoint.



The depth of occurrence u € O(M) is defined by
lul, i.e., the length of u, Let H(M) = Maz{|u||u€
O(M)}: the height of M. For example, H(f(g(z))) =
2,H(a) = 0.

A rewrite rule is a directed equation o — 8 such
that c € T — X,8 € T and V(a) 2 V(B). A term-
rewriting system (TRS) is a set of rewrite rules.

A term M reduces to a term N if M/u = o(a)
and N = M[u + o(B)] for some « =+ § € R and
o : X — T. We denote this reduction by M 35 N.
In this notation u may be omitted (ie., M — N)
and —* is the reflexive-transitive closure of —. Let
M&Nbe M5 No N5 M.

A parallel reduction M <+ N is defined as follows:
M« N iff 3U C O(M) such that Vu,v € U u #
v = uly, Yu € U M/u & Nfuand N = Mu «
N/u | v € U]. In this case, let R(M+>N) =
U. (Note. U = ¢ is allowed.) Let +4+5* be the
reflexive-transitive closure of ++». If v < v for all
v € R(M++->N), then we denote this reduction by
M (—>{i> N. If M+ N is reduced by the only not
€, then we denote this reduction by M ef:;j)u N. Let
H>—)u* ‘be the reflexive-transitive closure of :{i) and
let ;I—z—;}*y be the reflexive-transitive closure of 26_—;2;/ .

We assume that v : My «> My > - «5 M,
in the following definitions.

Let R(v) = Uogi<n R(M;++M;11) and MR(y)
be the set of minimal occurrences in R(7) under the
prefix ordering. For u € O(My), if there exists no
v € R(v) such that v < u, then 7 is said to be u-
invariant. Let My = o(a) or M, = o(a) for some
a— pf &€ Rand o : X - T. Then, v is said to
be a-keeping if v is w-invariant for all v € O(«).
That is, v is a-keeping iff all reductions of v oc-
cur in the variable parts of a. Reduction sequence
C My «— M, f—?i;i:
Ma_1 = M,. We denote by ~[i, j] the subsequence
Mi+4>Mi144= - 4> M; of v where ¢ > 0 and
Jj <n. Let u € MR(y). Then, the cut sequence of ~
at uis y/u = (Mo/u>Mi/u +> - M, /u).
We denote by y[€’/€] the sequence obtained from re-

v is said to be a peak if ¥

duction sequence v by replacing subsequence or cut
sequence (or cut subsequence) £ of y by sequence £’.
The composition of vy and § : Ny <4=>N; > ---
++> Ny where Ny = M, is denoted by (v;4).

Let 7% be the reverse sequence of v, e, vB M,
> - 4= My > Mo. The number of parallel re-
duction steps of v is |y|, = n. (Note. If§ : M«4=M,
then }8], = 1.) Let net(y) be the sequence obtained

from v by removing all M;«4->M,; satisfying that
M; = Miy1, 0 < i < n. We use |y|np to denote
|net(y)|p. Let H(y) = Maz{H(M;) |0 <i<n}.

Example. Let § : f(c,c) «+> f(g(c),9(c)) «+> a
+> a, then [6], = 3, net(8) : f(c, c) «+> f(g(c), g(c))
> a, |8y = 2 and H(8) = H(f(g(c),9(c))) = 2.

We use the definitions of left(vy, h), right(y, h),
Idis(y,h) and width(y,h) in 11): left(y,h) is the
first position whose term height is A from the left
end of v and each term height in the left side from
this position is less than h where if there exist no such
position, then left(y, h) is undefined; right(y, k) is
defined in a similar way left(v,h) by replacing the
term left with right, i.e., |y|, — left(y®, h); Idis(y, k)
is |yl — left(y,h); width(y,h) is defined if either
left(y, k) or right(y,h) is defined and right(y,h')
— left(v, h") where b’ (resp. ") is the first position
whose the term height is equal or greater than h
from the right (resp. left) end of yv. And we use the
definitions of Kyais(v), Krighe(y) and Kyian(y) in
11) such that Ky (v) is the set of pairs (k,Y (7, h))
where Y € {ldis, width, right} A Y (v, h) is defined.
These formal definitions are given in 11).
Example. Let § : f(¢) <+ f(g(g(c))) <+ f(g(c))
= f(Fl9(9(0)) <> F(f(c)) > gle).  Then,
we have left(d,1) = 0, left(4,3) = 1, left(8,4) = 3,
right(6,1) = 5, right(6,2) = 4, right(6,4) = 3,
ldis(8,1) = 5, 1dis(8,3) = 4,1dis(6,4) = 2, width(5,1) =
5, width(d,2) = 3, width(4,3) = 2, width(d,4) =
0. And we have K;4;,(6) = {(1,5), (3,4), (4,2) },
I{width(a) = {(175)7 (273)7 (3?2) (4 0) } and I{nght( )
= {(1,5), (2,4), (4,3) }.

We define an ordering <,C N xN (where N =
{0,1,2,---}) as follows: (a,b) <, (d,¥) & (a <
d A< V)V a=d Ab<¥). Let < be <, | =.
We use <; to denote the multiset ordering of this
ordering <. Let €, be <, {J=. We use {---},, to
denote a multiset, e.g., {1,1,2},,. We use <, to de-
note the multiset ordering of a lexicographic ordering
< (ie, (a,b) < (@ V) a<adV(a=ad Ab< V).
Let £, be < |J =. Note that if (a,b) <, (a’,¥'),
then (a,b) < (a/,b’), but the converse does not nec-
essarily hold. And if A <, B, then A <, B. The
orderings of >; and > are well-founded, so that >,
and >, are well-founded?.

Definition of ( § < v )

We define a relation < over parallel reduction se-
quences as follows. Let v : M«ts* N and § :
M«=" N. Then, § < v if |§], = ['ﬂpa [6lp <
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[VInps Kidis (8) €5 Kigis (7) and Krighe (6) €, Kpigne (7)-
(Note that if § < «, then H(d) < H{v) holds by
Ki4is(8)€, Ki4is (), and < is reflexive and transi-
tive.)

A pair of rewrite rules o; — §; and a3 — By Is
overlapping iff there exist u € O(a;) and mappings
a,0' such that o(ay/u) = o'(az), where u = € im-
plies that (a1 — B1) # (a2 — F2). In this case,
the pair is overlapping at u, and root-overlapping if

u=¢c.

Definition of { E-overlapping TRS,
root-E-overlapping TRS )

A reduction sequence is E-overlapping if the re-

duction sequence is o(a)[u < o’ (82)]  o(a;)[u +
>u

d(az)] «* o(a1) - o(B1) for some oy — By, a3 =
B2 € R, u € O(eq) and mappings 0,6’ : X — T
where u = ¢ implies that (a; = B1) # (2 —
B2). TRS R is E-overlapping iff there exists an E-
overlapping reduction sequence. If u = ¢, then the
o'{a2) =
o'(B2) is root-E-overlapping. In this case, the pair

£—1INU
reduction sequence o(8;) + o(a1) +*

(@1 — Bi,a2 — f2) has a root-E-overlapping se-
quence. TRS R is root-E-overlapping if all the E-
overlapping sequences are root-E-overlapping.

An E-overlapping reduction sequence v : o(a){u «
()] + ola)u « ()] <—i§* ala) = o(B) is
standard iff for the subsequence ¥’ : ¢'(af) «+=*
a(a/u), R(y") N (O(e') N O(a/u)) = ¢, i.c., any re-
duction in v’ occurs in the variable parts in o'(a’)

or o(a/u).

Definition of { strongly depth-preserving
TRS )

TRS R is strongly depth-preserving if Vo — 3 €
RYz € V(@)OV(8) Maz{lo] | v € 0u(8)) <
Min{|u| | u € Oz(a)}.

Note. This definition slightly extend the previous
oned~1) (ie., TRS R was said to be strongly depth-
preserving if Maz{|v| | v € O(8)} < Maz{|u| | u €
O;(c)} and Ya = B € R Vz € V(a) Yu,v € Oz(a)
ful = fol.

Example. Let Ry = {f(z,z) — a, ¢ = g(¢),
9(a) = F(z,2)} and Ry = {£(9(2). 9(s(2))) — hlg(2),
g(¢)), ¢ = g(c)} where z is a variable. Both R; and
Ry are strongly depth-preserving. (But Ry was not

strongly depth-preserving in the previous definition!!).)
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3 Root-E-Closed Condition

In this paper, we give a sufficient condition for
the CR property of root-E-overlapping and strongly
depth-preserving TRS’s. We first give the definition
of root-E-closed TRS’s.

Definition of ( root-E-closed TRS )

A TRS Ris root-E-closedif R is root-E-overlapping
and satisfies the following condition (x):

(x) For all standard root-E-overlapping reduction
sequences ¥ : o(8) + o(a) (S—T—T: o'(a) = o'(B)
for some rule @« — 3, o' = B’ € R and mappings
0,0, there exists § : o(3) «+>* o’ (F’) such that the
following conditions (i)-(ii) hold:

B =27

(i1) At least one of the following conditions
(1)-(3) holds.

(1) I‘§|np < h'nl’

(2)  Kiais(8) <o Kiagis(7)

(3) 1f8[0,1] : 0(8) €~ M * for some M then
8[1,181p] : M+=* o' (#) is e-invariant.

Note that if § < v and H(d) < H(y), then (2)
holds since Kjais(6) €5 Kigis (7)-

TRS Rs = {f(9(z),z) = h(z,z),
f(z,z) = a, ¢ = g(e), h(z,z) — a} is strongly

Example 1.

depth-preserving. There exists a root-E-overlapping
sequence 7 : h(g"(c), *(0)) = £(g"*!(¢), 4"(¢))
o Fg ), g7 ) 5 a.

Then, there exists a sequence § : h(g"(c), g"(c))
— a+actra. By H(8) < H(y) and [6], = |vlp,
§ < v holds. Since |[8lnp = 1 < |y|np = 3 holds,
(1) of the root-E-closed condition (ii) holds ((2) and
(3) hold, too). Hence, Rj satisfies (i) and (ii) of the
root-E-closed condition.

Example 2. TRS Ry = {f(z,z) — h(z,z), f(9(x),z)
= a, ¢ = g(c), h(g(z),z) — a}. There exists a
root-E-overlapping sequence 7 : h(g"(c), g"(c)) «—
Flg (), () > Fg™(6), 9°(0) < a.

Then, there exists a sequence § : h(g™(c), 9™(c))
> h(g™(c), g™(c)) = h(g"*'(c), g"(c)) = a. Then,
R, satisfies (i) and (3) of the root-E-closed condition

(it).

4 Assertions

We use the following five assertions S(n), P(k),
P'(k), Q(k) and Q'(k) (where n > 0, k > 0) to prove
that root-E-closed and strongly depth-preserving TRS
R is CR. Assertion Q(k) ensures that TRS R is CR.



Assertion S(n)

Let v : M« N where |y|, = n.

Then 36 : M«++* N such that the following con-
ditions (i)—(ii) hold:

(1) There are no peaks in §

(i) 6=

Assertion P(k)

Let v : M PTG o(a) — o(B) for some rule a —
B8 € R and mapping o where H(y) < k.
Then, 36 : N+=* o(8) for some N such that the
following conditions (i) and (ii) hold:
(i) M-o*N
(it) Either H(8) < H(y) or d is
e-invariant and H(6) = H(y).

Assertion P'(k)

Let vy : Mo+ M+4>My - - - 4> M, where H(y) <
k, the number of e-reductions in -y is /(> 0) and each
e-reduction is M; <= Mj; for some i (0 < i < n).
Let My, — M 41, -, My, = M4, be the e-
reductions of v, 0 < 4] < i3--- < 4 < n. Then,
there exist ¢; (1 < j <) and § : Ne4=* M4, for
some N such that the following conditions (i) and
(i1) hold:

(i) My—->*N

(i)  Either H(d) < H(¥[0,7; + 1]) holds or

ij = i, H(8) = HO[O,i; + 1)
and 4 is e-invariant.

Assertion Q(k)'V

Let v : M«+4=* N where H(y) < k. Then, 3§ : M
«=* L «+* N for some L such that H(8) < k,
M —* Land N -* L.

Assertion Q' (k)'D

Let v; : M «=* M;, where H(y;) <k, 1 <i <
nandn > 2. Then, 36 : M <+~ N for some N
such that H(J) < kand Vi (1 <i<n) M; =™ N.

S(n) says that for given sequence ¥, there exists §
such that § has no peaks and § < v. On the other
hand, the previous definitions of S(n) and S'(n)'!)
said that it is possible to remove the outermost peak,
so that by repeating this process, we can obtain se-
quence § having no peaks. The current S(n) de-
scribes and extends this resulte. P(k) and P’(k) are
slightly simpler than those of 11) in the sense that
the condition that M —* N had to satisfy in the

previous definitions is removed.

To prove these assertions, we use the following
properties of ldis, right, width.

Property 3!

Let v : Mo—=M; - ——=M,. Let u € MR(y)
and 5 = 4[f,j]/u where 0 < 7 < j < n. Let
§ : Lie>Ljyy - >L; where L; = M;/u,L; =
Mifu, 1l = Bl and H() < H(3). Let o/
v[6/9]-

1. If K,d,;.,(é) <:<8 Kigis (:y), then Kig, (‘y’) <:<S Kigis (7)

2. If Kright(6) €, Krigne(3), then Krigne(y) €,
I{Tight (’7)

3. 1 Ki4is(8) €, Kigis(3) and Kyigae (6) €5 Krigne(7),
then Kuyiarn(Y') €5 Kuwian(y).

Property 4!V

Let 4 be a parallel reduction sequence. Then,
Kigis (net(v)) €, Kigis(v) and Kyigpe(net(y)) €,
I(right(7)~

Property 5!1)

Let v : Mo+ M - - - <> M, and 7 = [0, ] where
0<i<n. Letd: Loed—>Ly -+ ++3L; where 0 < 7,
L; = M; and H(6) < H(¥). Let v = ~[6/7].
Then, Kigis(Y') <w Kidis(7) and Kuign(Y) <w
Kuiarn(7)-

Property 6

Let v : Mo+t>M;---++>M,,. Let u € MR(y)
and ¥ = [z, j]/u where 0 < 7 < j < n. Let
d 0 Li«+>Lip1 ---«+>L; where L = M;/u,L; =
M;/u. Let v' = v[d/7].

If § <7, then v/ <.

The proofs of assertions and properties are omit-
ted.

By Q(k) holds for all k¥ > 0, we have the following
Theorem 1.

Theorem 1. All the root-E-closed and strongly
depth-preserving TRS’s are CR.

Theorem 1 obviously implies that non-E-overlapping
and strongly depth-preserving TRS’s are CR. The
proof of the non-E-overlapping case derived from this
proof of Theorem 1 is more improved than the old

one in 11).
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5 Weight-Preserving TRS

By assigning a positive integer (we call weight) to
each function symbol, we naturally extend the notion
of depth to that of weight, and we show that the
similar result to Theorem 1 is obtained for strongly
weight-preserving TRS’s.

Definition of ( strongly weight-preserving
TRS R)

For a weight-assigning function w, let Wy, (u, M)
be the total of weights of function symbols occur-
ring from the root to occurrence u of term M. For-
mally, Wy, (e,z) = 0, Wy(e,fMy---M,) = w(f),
W (iu, f My -+ My) = w(f) + W (u, M;) where z €
X, fe Fand M; € T (1 < i < n). A TRS
R is strongly w-weight-preserving if Vo — 3 € R
Va € V(@) \V(8) Mar{Wa(v.8) | v € 0:(8)} <
Min{Wy(u,a) | u € Oz(a)}.

A TRS R is strongly weight-preserving if 3w : F
— {1,2,3,---} R is strongly w-weight-preserving.
Example 3. Rs = {f(z,z) = a, ¢ = h(c,g1(g2(¢))),
h(gs(x), 91(g2())) = f(2, h(z, g(2)))}. Rs is strong-
ly w-weight-preserving for weight-assigning function
w such that w(gs) = 2 and the weights of the oth-
er symbols are 1. But Rs is not strongly depth-
preserving. For the weight-assigning function w, W,
(1, f(ga(2), ) = 1+2 = 3 and Wy, (2, f(g3(2), z)) =
1.

The problem of deciding for a given TRS whether
it is strongly weight-preserving or not can reduce to
that of solving integer programming.

Example 4. For a TRS Rs, we have an integer
programming problem such that

ko>l
forall k € K = {f, g1, 92,
93, h}
h+gs > f+h+yg
h+tgi+g > [+h+ty

These inequalities hold for weight-assigning func-
tion w such that w(gs) = 2 and w(k) = 1 for al-
1k &€ K — {g3}. Thus, Rs is strongly w-weight-
preserving.

If TRS R is strongly depth-preserving, then R is
strongly weight-preserving, since R is strongly w;-
weight-preserving for the weight-assigning function
wy such that wi(f) =1 forall f € F.

For any strongly weight-preserving TRS R, we con-
struct a strongly depth-preserving TRS R which can
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simulate reductions of R. For this purpose, we define
a set of new function symbols F and a translation
¥ F — F* as follows:

F={fi,f2,- fx | f € F,w(f) =k}

where arity(f;) = 1, 1 < i < k and arity(fi) =
arity(f)

G(F)=fi-fooo - fifor f € F of w(f) =k

Here, (fi-fo-+ - fi)My -+ Mn = fi(f2 - (faM1--- Mn)
o) for My, My, €T.
Translation v is extended to the translation: 7" —

T* as follows:

Plz) = « forzeX
WMy My) V() (My) - - (Mn)

for fe F, My,---, M, € T. Here, T is the set of
terms constructed from X and F.
Using this translation ¢, we define a new TRS R
by
R={y(a) > ¥(B) | a > p € R}

It is straightforward that R is root-E-closed and
strongly w-weight-preserving iff R is root-E-closed
and strongly depth-preserving.

And R is CR iff R is CR. Hence, we have the
following result by Theorem 1.

Theorem 2. All the root-E-closed and strongly
weight-preserving TRS’s are CR.

Since non-E-overlapping TRS’s are obviously root-
E-closed TRS’s, we have the following corollary.

Corollary 1. All the non-E-overlapping and
strongly weight-preserving TRS’s are CR.

Example 5. Since Rs is non-E-overlapping and
strongly weight-preserving, Corollary 1 ensures that
Rs is CR. TRS R = { f(z) = g(h(2),z), g(x,z) —
a, b — h(b)}'?) in Section 1 is non-E-overlapping and
strongly weight-preserving for a weight-assigning func-
tion w such that w(f) = 2 and the weight of the
other symbols are 1, so that this R is CR.

6 Sufficient Conditions

In this section, we first show some sufficient con-

ditions for satisfying root-E-closed condition and we



next show the following Lemma 2 which says a rela-
tion between root-E-overlapping and strongly root-
overlapping conditions !.

Henceforth we assume that v is a standard root-

E-overlapping sequence such that vy : ¢(3) « o(a)
e~inv

- o'(¢)) > o/ (F) for some a = B, a’ = F €
R, mappings 0,0’ : X — T and v = net(y). Let v :
My > My - > My,

Definition of { § is covered in y by k-shift )

A reduction sequence & : No(= Mo) <Ny -+
Ny, (= M,,) is said to be covered in vy by k(> 0)-
shift if Vi(0 < i < myp) 31 H(N;) < H(Mj,) (0 < j;
<i4k) and Fjp H(N;) < H(M;,) (i+k < j2 <na).

Note that |6}, < |v|, by this definition. Note that
for the pairs (v,d) given in Examples 1 and 2, § is
covered in v by 0-shift.

Lemma 1. Let § be covered in v by k-shift for
some k > 0. Then, there exists §’ such that net(8') =
d and & <.

The proof of Lemma 1 is omitted.

Condition 1.
quence v satisfies Condition I if there exists § : o(5)
=+ P * Q' > o/ (B') for some P, Q' such
that H(P'++* Q') < min(maz(H(c(a)), H(c(8))),
maz( H( (@), H(o'(8)))) and 18], < 7).

Theorem 3. If every standard root-E-overlapping

Standard root-E-overlapping se-

reduction sequence 7 satisfies Condition I, then TRS
‘R is root-E-closed.
Lemma 2. If TRS R is strongly root-overlapping
and satisfies the (%) condition in the definition of
root-E-closed TRS, then R is root-E-overlapping or
non-E-overlapping.
The proofs of theorems and lemma are omitted.
Using Condition I and Lemma 2, we can give a
sufficient condition for CR, whose minor alteration
can be used as a procedure to decide CR.
Condition I'.

which is strongly overlapping at €, there exists £ > 0

For any pair (&« — 8,0/ — 3')

satisfying the following two conditions (1) and (2).

IFor a term «, let @ be a linearization of a, i.e., a linear
term obtained from a by renaming any variablesin V(a), e.g.,
if o= f(z,z), then & = f(z,y) where f € Fandz,y € X. A
pair of rewrite rules oy — 01 and a2 — (2 is strongly overlap-
ping (at v) if the pair of &1 — 81 and &z — (2 is overlapping
(at u). If u = €, then the pair is strongly root-overlapping.
TRS R is strongly root-overlapping if all strongly overlapping
pairs of rewrite rules are strongly root-overlapping.

(1) for any standard root-E-overlapping

sequence 7 : 0(3) + o(a) :—-}—z;}*ﬂ o' (o)
= d'(8), Ivlp > k holds.
(2) there exists § : P +>* Q' 4
* for some P/, Q' * such that H(P'+* Q')
< min(maz(H (), H(B)), maz(H (a),
H(#"))) and ||, < k.
Theorem 4. If TRS R satisfies Condition I’, then

TRS R is root-E-closed.
A procedure to check Condition I’ is given as fol-
lows. *

Procedure I’
For each pair p = (a = 8, o/ = ') of
rules which is strongly overlapping
do begin
if p is overlapping
then begin
if (2) of Condition I' does not hold for k = 2,
then return 'False’
end
else begin
let k = 3;
while (1) of Condition I’ holds
do begin if (2) of Condition I’ holds
then break,
i.e, exit from this loop
elselet k=k+1
end;
if (1) of Condition I’ does not hold,
then return 'False’
end
end;
return "True’

In Procedure I, for each pair p of rules which is
strongly overlapping, we first check whether the pair
p is overlapping at u. If it is true, then (1) of Condi-
tion I’ holds only for k = 2, so we check whether (2)
of Condition I’ holds for k = 2. If (2) holds, then we
continue to check for the next strongly overlapping
pair. Otherwise, Condition I’ doesn’t hold, so that
"False’ is returned.

If the pair p is not overlapping, then (1) of Con-
dition T’ holds for k = 3. So, we check whether (2)
of Condition I’ holds for & = 3. If it is true, then
we continue to check for the next strongly overlap-
ping pair. Otherwise, we let & = k + 1 and check
whether root-E-overlapping holds for £ = 4, i.e,
whether there exists no standard root-E-overlapping
sequence « of (1) with |y|, = 3. If (1) does not hold,
then Condition I’ does not hold, so that ‘False’ is
returned. Otherwise, we check whether (2) holds for
k = 4. We continue the same process as the above
until {1) does not hold, or both (1) and (2) hold for
some k > 4.

Example 6. To show CR of Rz in Example 1, we
can apply Procedure I’ to Rs3. Since strongly over-
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lapping pair (f(g(z),z) — h(z,z), f(z,z) — a) is
not overlapping, let k = 3. (1) of Condition I’ obvi-
ously holds for k£ = 3. So, consider (2) of Condition
I’. There exists h{z,z) = a «> a «+> a, so that
(2) of Condition I’ holds for k = 3. Thus, Procedure
I’ returns “True”, i.e., Rz is CR.

However, note that Procedure I’ is not a decision
procedure, since it may not terminate when (1) hold-
s, but (2) does not hold for any k¥ > 0. And note that
for a given k we do not give how to check whether
(1) of Condition I’ holds in this paper. However, we
strongly suggest that this problem is decidable.
Condition II.
quence 7 satisfies Condition II if there exists a reduc-
tion sequence B4+ M «+> 3 or f+>M o
3’ where «4- is a one-step parallel reduction of the

Standard root-E-overlapping se-

original TRS R and <4> g’ is a parallel reduction
of the TRS R’ where TRS R’ = {a/u = d'/u|u €
Min{Ox (a)UOx(a')}}. Here, any variable appear-
ing in rewrite rules in TRS R’ is regarded as a con-
stant and no substitution for the variable is allowed
in rewriting <4 p'.

Theorem 5. If every standard root-E-overlapping
reduction sequence v satisfies Condition I, then TRS
R is root-E-closed.

The proof of Theorem 5 is omitted.
A decision procedure to check Condition II is given
as follows. *

" Procedure II
For each pair p = (o« = 3, o’ — ') of rules
which is strongly overlapping

do begin

if there exist no M such that B« p M+’
or B+ M+ g 3’

then return 'False’
end

return 'True’

In Procedure 1I, for each pair p of rules which is
strongly overlapping, we check whether there exist
no M such that 8+ p M =3 or S+ Mp G,
If it is true, then Condition II does not hold, so that
"False’ is returned. Otherwise, continue to check for
the next strongly overlapping pair.

Example 7. To show CR of R4 in Example 2, we
can apply Procedure I to R4. For strongly overlap-
ping pair (f(g(z),z) = h(z,z), f(=,
exists a reduction sequence h(z,z)«+>r h(g(z), )
<+ a. Thus, Procedure II returns “True”, i.e., Ry
1s CR.

z) — a), there
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