oy 3y 4-1H
(1997. 8. 21)

WIAETRES) vty 3% Hnk Java LCoOF— 2 HF| A w77 v

AT en—vx —faE
roudier@etl.go.jp ichisugi@etl.go.jp
(STA 7 z u—)

B ERHE S HTERT

AIRICCEYTETRE Java 7Y Y v v ¥ EPP &, £DIHFI & LTEEL % Tiny Data-Parallel Java iC
DnT~_3. EPP tk Java eI A3 37 Yoy ¢, =¥ Fa2—¥i Java DYV —X a3~ VO
BEIC EPP plugin #8587 3 € &€ Java OER IR LF L WSHWRELFIFT 5 ¢ 2 8¢ ¥ 5. Tiny Data-
Parallel Java (X, Java O L CiBiAF— 4 ¥FI7 0y o3 v 7, BEIKT 5 b DT, EPP %485 % transla-
tor & runtime system HOHR XN 5. Translator 22HiJ73 3 32— F 3 XU runtime system GHEE% Java
FuZFathbicd, E\» portability ZHFEEX B, BAEL Y ARV » FIfl, <A F R vy ViR, 28U
@ 3 XD runtime system #EEHTH 3, '

Java Data-parallel Programming using
an Extensible Java Preprocessor

Yves ROUDIER Yuuji ICHISUGI
roudier@etl.go.jp ichisugi@etl.go.jp
~ (STA Fellow)

Electrotechnical Laboratory

We describe the extensible Java preprocessor EPP and a data-parallel extension of Java implemented
with EPP. EPP is a preprocessor for the Java language which can be extended by incorporating EPP
plugins. Tiny Data-Parallel Java is an example of EPP plugin which consists of a translator and runtime
system. High portability is guaranteed because the translated code and the runtime systems are pure Java

code. We are implementing three versions of the runtime libraries, single-threaded, multi-threaded and
distributed, running on any platform supporting Java.

1 Introduction

The Java language [GIG96] has recently become
very popular among programmers. Java has
socket and thread libraries which can be used
on various platforms. In the near future, many
JAVA VM(virtual machine) interpreters will support
shared memory type multi-processors and will then
become a better platform for parallel programming,.

On the other hand, Java lacks facilities for lan-
guage extension, which are adopted by other object-
oriented languages. For example, C++ has a
macro preprocessor, operator overloading and tem-
plate facilities. Smalltalk and CLOS have closures
and metaclass facilities. These features extending
language constructs and operators supplement the
inheritance mechanism which extends data types.
Without such extension possibilities, it is difficult to
make parallel libraries which can be employed easily
by the end-users.

In order to supplement the defect of Java,
we developed an extensible Java preprocessor kit,
EPP [Ich]. EPP can be used to introduce new lan-
guage features, possibly associated with new syntax.

In this paper, we will describe Tiny Data-Parallel
Java, an extension that is implemented as an ex-
ample application of EPP. It is based on the same
language model as Data-Parallel C [HQ91]. The
source code of a Tiny Data-Parallel Java applica-
tion is translated to standard Java code by a trans-
lator implemented using EPP. Because the runtime
system is written in standard Java, high portability
is guaranteed. We are implementing three versions
of these runtime libraries : single-threaded, multi-
threaded and distributed which run on any platform
supporting Java. Using the multi-threaded version
and a multiprocessor workstation, applications can
be executed in parallel if the VM interpreter sup-
ports parallel execution of thread libraries. The dis-
tributed version uses the HORB system [Hir97] to
implement communications between each node. Us-
ing the distributed version, applications can be exe-
cuted on heterogeneous distributed environments.

Tiny Data-Parallel Java does not have sufficient
language features to support very high performance
parallel programs; however, we think it shows rather
convincingly the effectiveness of the combination of
the high extensibility of EPP and of the high porta-
bility of Java and their interest for parallel program-
ming. Many data-parallel extensions are currently
being proposed for Java (see for example [NPA] or
[LP96]), but none of these framework has been intro-
duced by means of a general extension mechanism.

2 An extensible preprocessor
kit: EPP

2.1 Existing tools

To implement new languages or extend existing
ones, preprocessors or translators are often used
rather than native compilers. Many language exten-
sions and source level optimization tools for C/C++
are implemented as translators to C/C++. Re-
cently, several extensions for the Java language have
also been proposed which are implemented as pre-
processors. Because of the simplicity and object-
orientation of Java, it is also relatively easy to pro-
vide extension support libraries.

The merits of this style of implementation are easi-
ness and high portability. Instruction level optimiza-
tion can be delegated to the compiler of the target
language.

Although there are potentially many useful lan-
guage extension systems, the users have to select
only one extended language for their own projects.
Generally, it is impossible to merge several language
extensions or eliminate harmful features from the
extended system.

Systems with a compile-time meta-object protocol
(MOP) such as MPC++ [Ish94], OpenC++ [Chi95]
or JTRANS [KK97] have solved this problem. These
systems allow the implementation of language exten-
sions as modules that can be selected by the users.
Yet, extensibility of syntax is slightly restricted in
these systems.

2.2 Description of EPP

The extensible Java preprocessor kit, EPP, is an ap-
plication framework for preprocessor type language
extension systems. Basically, EPP is itself a source
to source preprocessor of Java. The parser of EPP
is written by recursive descent style and provides
many hooks for extensions. By using these hooks,
the extension programmer can introduce new fea-
tures, possibly associated with new syntax without
editing the source code of EPP. Because all grammar
rules are defined in a modular way, it is also possible
to remove some original grammar rules from stan-
dard Java. ’

Once the parsed program has been transformed
into a tree, the preprocessor programmers can eas-
ily manipulate it from their program. The use-
fulness of such kind of tool has already been
proven by Lisps and adapted to C++ by various
systems like Sage++ [ea94], MPC++ [Ish94] or
OpenC-++ [Chi95].

#epp load “swap"
public class test {
public static void main(Stringl] argv){
inta=1,b = 2;
swap(int, a, b);
1

Figure 1: A program using a swap plugin.

EPP enables preprocessor programmers to write
an extension as a separate module. We call the ex-
tension modules EPP plugins. If plugins are writ-
ten in a certain manner [Ich97, IHT*96], multiple
plugins can be incorporated into EPP simultane-
ously. The users of the preprocessor can select any
plugin that fits the characteristics of their projects.

High composability of EPP plugins can be real-
ized thanks to a description language, Ld-2 [Ich97].
Ld-2 is an object-oriented package implemented in
Common Lisp [Ste90]. The inheritance mechanism
of object-oriented languages makes it easy to imple-
ment extensible applications because all methods of
objects can be considered as hooks for extensions. In
addition to the traditional inheritance mechanism,
Ld-2 provides a novel feature called system mirin
which supports extensible and flexible softwares.

Although the current target of EPP is only Java,
the architecture of EPP is applicable to other pro-
gramming languages.

2.3 An Example of EPP plugin

The users of the preprocessor can specify EPP plu-
gin files at the top of each Java source code. Fig. 11is
a simple example program using an EPP plugin that
defines a swap macro. The plugin file is actually an
Ld-2 program file. The plugin file will be dynami-
cally loaded by EPP before starting the preprocess-
ing. The user can specify multiple EPP plugins at
the top of the source file.

3 Tiny Data-Parallel Java

3.1 General principle

As an example of EPP plugin, we are implementing
the Tiny Data-parallel Java plugin using the same
translation technique as Data-Parallel C [HQ91).
Some methods of Java objects are treated as data-
parallel methods. From the programmer’s point of
view, the methods are executed on a large number

of virtual processors. Currently, there are many re-
strictions on how to write the data-parallel method,
and no optimization is done. The specifications and
restrictions of data-parallel methods are briefly de-
scribed below.

e Data-parallel method.
The run method of class parallel is the data-
parallel method which is executed in parallel by
virtual processors. EPP translates this method
into a standard Java code which uses thread li-
braries and synchronization primitives. Other
methods are not changed by the translator.

e Creating virtual processors.
parallel p = new parallel(N); p.run();
generates and starts ¥ virtual processors.

e Mono- and poly-variables.

Static variables defined in the parallel class
are considered as mono-variables and in-
stance variables are considered as poly-variables.
Mono-variables are shared by all virtual proces-
sors and poly-variables are owned by each vir-
tual processor. Mono- and poly-variables can
be used in arbitrary expressions in the data-
parallel method. No local variable can be de-
clared within the data-parallel method.

e Remote access to poly-variables.

Each virtual processor can access poly-variables
on another virtual processor by using the ex-
pression x@[i], where i is the ID of a virtual
processor and x is the name of a poly-variable.
The expression x@[i] is only permitted on the
left hand side or the right hand side of assign-
ment expressions which are at the toplevel of
blocks. It is not permitted inside of any other
expression (for instance, in if(x@[i])...)

® Reduction.
Currently, only one reduction function, set_sum
is provided. set_sum(mono_var, exp) calcu-
lates the value of exp on each virtual proces-
sor, and assigns the sum of these results to the
mono-variable mono_var.

e Control structures.

if and while statements can be used and
nested arbitrarily. for, switch, break and
continue statements and exception handling
are not allowed in the data-parallel method.
The semantics of if and while statements are
the same as in Data-Parallel C; virtual proces-
sors execute each statement synchronously.

x = VPIDO);
System.out.println("VPID = " + x);

for (vpi = (0); (vpi) < (vpn); wpit+) {
Cvp.x) [vpil = (((PE.i) * (vpn)) + (wvpi));
System.out.println(("VPID = *) + ((vp_x)[vpil));

sync();

Figure 2: Source code and translated code of a Tiny
Data-Parallel Java program.

3.2 Translator

The EPP plugin of Tiny Data-Parallel Java adds
an extra pass to EPP, before the code-emitting pass.
At this pass, the source code of Tiny Data-Parallel
Java is expanded into plain Java code that contains
for statements simulating virtual processors, thread
or process creation codes and synchronization codes.

Fig. 2 shows some source code using the virtual
processor ID (VPID) and its translation into plain
Java. Virtual processors can be allocated to several
Java threads, PE._i being the ID of each thread; vpa
indicates the number of virtual processors allocated
to threads (possibly throughout several machines).
vpi is a loop counter used to simulate allocated vir-
tual processors. Each poly-variable is represented
as an array whose size is vpn. Therefore, a poly-
variable x is translated to (vp_x) [vpil. The method
invocation sync() executes a barrier synchroniza-
tion. This synchronization call is inserted in several
places such as before and after remote data access
or reduction function calls.

3.3 Single-threaded version

The first implementation of Tiny Data-Parallel Java
is a single-threaded version. In this version, virtual
processors are only emulated by for loops: data-
parallelism is only used as a logical model. The
method sync() does absolutely nothing.

3.4 Multi-threaded version

We designed a single-process, multi-threaded version
of our system that we. are integrating within EPP.
This version'is working on uniprocessors, but the
most interesting feature of this type of scheduling is

that it will enables us to fully exploit multiprocessor
machines.

In this multi-threaded version, a thread is nor-
mally created for each virtual processor required.
However, it is possible to make use of the previous
(single-threaded) implementation inside of threads,
thus keeping a reasonable number of threads.

Thread synchonization is realized at each step of
the computation. Method sync implements a syn-
chronization barrier stopping all threads arrived at
this method before others.

The synchronization scheme of that version al-
ready adopts a distributed point of view; the only
difference with a really distributed architecture is
that notifications of synchronization phases are
achieved by writing to shared variables instead of
sending real messages. Specifically, if one thread
exits a synchronization phase first and gets a long
enough time slice to enter the next synchronization
phase, it must not modify the value of a variable
needed by other threads to exit the previous syn-
chronization. To avoid such locking of threads, the
update of synchronization shared variables has to
be very carefully done, either through a three-phase
scheme or by locally keeping track of the current
synchronization phase of the thread and storing the
state for two successive synchronizations instead of
one.

The introduction of synchronization is achieved
by interleaving normal instructions with sync()
method invocations.

3.5 Distributed version

We are currently implementing a distributed version
of Tiny Data-parallel Java. For that purpose, we
make use of the HORB system [Hir97] for Java. Our
choice of HORB is due to its better performance fig-
ures compared to Sun’s RMI (Remote Method In-
vocation system). HORB transparently provides us
all the facilities needed for data transmission. How-
ever, implementing our system on top of RMI would
be very straightforward as well; it also remains pos-
sible to use a different communication strategy, for
instance an interface to PVM or MPL

Our architecture defines a virtual processor as the
combination of a HORB server and a HORB client
(see Fig. 3). Schematically, the server part performs
message reception while the client part performs the
real computation and can send messages to other
virtual processors. These two objects run simulta-
neously on different threads: the client part is always
running, and HORB skeletons (which are invisible to
the HORB user), which also run on threads, receive

A\l "
Y h
A 4
O ISkele:on 1 Fkolmn 2
(thread) (thread)

N

HORB Server

virtual
processor

shared vartables § § § §

HORB Client (thread) ‘

Figure 3: Distributed version

messages and activate the server part. Server and
client communicate through shared variables.

As previously, it remains possible to embed
threads or sequential loops inside of these more
heavy-weight processes. That design would give vir-
tual processors a much finer granularity and would
suppress waits during communications or I/O oper-
ations (interleaving of activities).

Before starting the program, a list of machines
needs to be provided in a configuration file and in
the current state of the implementation, we are only
thinking of cyclic block allocation on these machines.

3.6 Current limitations

Currently, our data-parallel system has several re-
strictions. First, the current implementation per-
forms no optimization.

Writing a data-parallel method also implies follow-
ing some guidelines. For example, remote variable
access, i.e. access to a parallel variable on another
virtual processor, is only allowed at left hand side
or right hand side of assignment. In other words,
remote variable access is not allowed in argument of
any expressions or method invocations.

We will probably not achieve a high speedup from
the very beginning, especially on really distributed
memory machines, because of the very fine-grained

parallelism of the model. Indeed, we will need pre-
cise benchmarks of our machines (costs of commu-
nication and scheduling, speed, etc.); only then will
we be able to chose the correct trade-off between the
different policies (sequential, multi-threaded, dis-
tributed) so as to efficiently map the program on
the selected architecture.)

However, this Java extension can also be useful
for other applications. For programs that need a big
memory, all one needs to do for getting more memory
with this plugin is to add a new machine. It is also
especially suited for programs that need to achieve
a constant synchronization. :

In spite of its current restrictions, this tiny data-
parallel Java has many interests:

o all Java libraries including AWT can be used
from the program.

e The implementation is as portable as Java. It
can make use of the Java thread library, thus
achieving much better speedups on multipro-
cessors (although, at the time, there are unfor-
tunately only few platforms which can execute
Java threads really concurrently).

e Other EPP plugins remain applicable.

This extension is also a good demonstration of the
suitability of EPP to language extension, in partic-
ular in the field of parallel programming.

3.7 Example: calculating

Fig. 4 shows a program which calculates the value
of 7. In that program, we launch one thousand vir-
tual processors at the same time, each calculating a
part of the surface giving us the value of 7. The only
synchronization between these threads is the global
sum at the end of the computation.

4 Conclusion and future work

We described the extensible preprocessor kit EPP,
an application framework for preprocessors, and its
use. The preprocessor programmer can implement
EPP plugins which are reusable extension modules
and which can add new grammar rules to Java.
EPP is currently written in the Ld-2 language
which provides the system mixin feature for combin-
ing plugins; Ld-2 is itself implemented in Common
Lisp. We are currently implementing an. EPP plu-
gin which adds system mixin features to Java. After
this work is completed, we plan to rewrite EPP di-
rectly in Java with this plugin. It is worth noting

#epp load "datap0"

public class calc_pi {

public static void main(String argv[]){
int num = 1000; // number of virtual processors
parallel.width = 1.0 / num;
parallel p = new parallel(num);
p.runl);
System.out.printin(parallel.result

* parallel.width);
3

class parallel {
static double result;
static double width;
double x;

void run(){
x = (VPID() + 0.5) * width;
set_sum(result, 4.0 / (1.0 + x » x));
3}

Figure 4: A program which calculates .

that features supporting plugin programming such
as pattern matching and Lisp backquote macro can
themselves be implemented as EPP plugins. We are
also studying a possible port of EPP to C++.

We also presented the programming of a simple
data-parallel framework for Java with EPP. This
programming framework demonstrates some of EPP
capabilities at integrating new features into Java.
We are still currently implementing the EPP tiny
dataparallel plugin itself, but we already experi-
mented with a hand-translated multi-thread applica-
tion. We are also planning to offer different schedul-
ing policies at the same time (for instance, multi-
threading and distributed support). There are also
other possible models of data~parallel programming
that we will be investigating in the future.

Java threads provide sufficient basic mechanisms
for multithreading, and in a portable way since any
Java Virtual Machine provides this facility. How-
ever, generally speaking, the thread model is far
too complex and error-prone for large-scale program-
ming. Adding distributed features again adds more
complexity to the application. We really believe that
transparent, high-level frameworks are necessary for
large-scale (should we say real-world ?) software de-
velopment: this is especially important if a team,
and not only a single developer, is involved.

We thus plan to develop other such high-level
frameworks in Java for data- as well as task-parallel
applications, and also for reactive programming (a

more complete presentation of a reactive framework
for Eiffel can be found in [CR96]; we now plan a dif-
ferent implementation technique in Java). We will
keep on using EPP for this purpose and try to un-
derstand its possible limitations; other experiments
are needed on that matter.

References
[Chi95] S. Chiba. A Metaobject Protocol for C++. In Pro-
ceedings of OOPSLA’95, volume 30(10) of ACM
Sigplan Notices, pages 285-299, Austin, Texas, Oc-
tober 1995. ACM Press.

D. Caromel and Y. Roudier. Reactive Program-
ming in Eiffel//. In J.-P. Briot, J.-M. Geib, and
A. Yonezawa, editors, Object-Based Parallel and
Distribuied Computation OBPDC'95, LNCS 1107,
pages 125-147, Springer-Verlag, 1996.

F. Bodin et al. Sage++: A Class Library for Build-
ing Fortran and C++ Restructuring Tools. In
Proc. of Object-Oriented Numerics Confs., Ore-
gon, April 1994.

J. Gosling, B. Joy, and Steele. G. The Java Lan-
guage Specification. Java Series. Sun Microsys-
tems, 1996.

S. Hirano. HORB: Distributed Execution of Java
Programs. In Proceedings of WWCA’07 (Interna-
tiona! Conference on Worldwide Computing and
Iis Applications), Tsukuba, Japan, March 1997,
see also http://ring.etl.go.jp/openlab/horb/.

P.J. Hatcher and M.J. Quinn. Data-Parallel Pro-
gramming on MIMD Computers. MIT Press, 1991.

Y. Ichisugi. EPP and Lods home page.
http://www.etl.go.jp/etl/bunsan/ " ichisugi.-

Y. Ichisugi. Ld-2 users manual (DRAFT). Techni-
cal report, Electrotechnical Laboratory, 1997. can
be obtained from [Ich]. In Japanese.

Y. Ichisugi, S. Hirano, H. Tanuma, K. Suzaki, and
M. Tsukamoto. Compiler Widgets — Reusable
and Extensible Parts of Language System —. In
The 11th workshop of object oriented ‘computing
WO0OC’96, Japan Society of Software Science and
Technology, March 1996. In Japanese.

Y. Ishikawa. Meta-level Architecture for Extend-
able C++4, Draft Document. Technical Report
Technical Report TR-94024, Real World Comput-
ing Partnership, 1994.

[CRos]

[ea94]

[GIG9s]

[Hiro7)

{HQ91]
{Ich]

[Ich97]

[IHT+96]

[Tsho4]

[KK97] A. Kumeta and M. Komuro. Meta-Programming
Framework for Java. In The 12th workshop of ob-
fect oriented computing WOOC'96, Japan Society

of Software Science and Technology, March 1997.

P. Launay and J.L. Pazat. Integration of con-
trol and data parallelism in an object oriented lan-
guage. In Sizth Workshop on Compilers for Par-

. allel Computers (CPC’96) Aachen, Germany, De-
cember 1996.

NPAC. HPJava reference and workshops site.
http://www.npac.syr.edu/projects/javaforcse/.

G.L. Steele. Common Lisp the Language, 2nd edi-
tion. Digital Press, 1990,

[LP96}

[NPA]

[Ste90]

