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Abstract: Thomsen’s Calculus of Higher-Order Communicating Systems (CHOCS) is extended to a
language £ that supports the transmission of channels and data values of a predefined ground type as
well as the transmission of processes in the sense of CHOCS. A denotational model D for L is constructed
by using the methodology of metric semantics, and it is shown that D is fully abstract with respect to

the higher-order bisimilarity.

1 Introduction

We construct a denotational model D for an exten-
sion of the Calculus of Higher-Order Communicat-
ing Systems (CHOCS) of Thomsen [14], and show
that D is fully abstract with respect to the higher-
‘order bisimilarity ~, which is the operational cri-
terion employed in [14] for identifying higher-order
communicating processes.

The need for higher-order process calculi has re-
markably increased recently: for example, new type
of languages for network programming such as Java
and Telescript involve code passing, and thus re-
quire higher-order process calculi as their theoreti-
cal basis.

For understanding semantics of a programming
language or calculus, it is important to develop
its denotational semantics in addition to its op-
erational and axiomatic semantics, because these
three semantics give complementary views of the
language supporting one another (cf. [15, the Pref-
ace]). The operational and axiomatic semantics
of CHOCS has been well developed by Thomsen
in [12, 13, 14], leaving its denotational semantics
less developed: Thomsen proposed a denotational
model for his higher-order calculus. The model,
however, has two limitations (see the remark made
just below Theorem 4.4.7 of [13]): (i) this model is
shown to be fully abstract with respect to the fini-
tary approximation ~, of the higher-order bisimi-
larity ~, but is not shown to be fully abstract with
respect to ~ itself; (ii) even the above full abstrac-
tion result is guaranteed only when the set of chan-
nels is finite.

The result of this paper overcomes these limita-
tions, except that we need to impose the guarded-

ness condition on the syntax of CHOCS.! By over-
coming restriction (ii) above, we can easily extend
CHOCS and its denotational model so that pro-
cesses can pass communication channels to other
processes as in [2], without imposing any restric-
tion on the cardinality of the set of channels. In
this paper, we extend CHOCS to our language £
that supports the transmission of channels and data
values of a predefined ground type (such as integers
and strings) as well as the transmission of processes
in the sense of CHOCS (we identify channels and
data values, thus implementing a simple variant of
parametric channels [2]). To construct our deno-
tational model, we employ the metric methodology
due to de Bakker and his colleagues [5, 4, 3, 8, 6].

Hennessy has proposed a denotational model for
higher-order processes and proved the model is fully
abstract with respect to two observational criteria
[7]. One of his observational criteria is based on
the ability of processes to perform an action in all
contexts, and the other is based on a certain kind
of may testing. The two criteria are equivalent and
they are substantially coarser than the higher-order
bisimilarity, the observational criterion treated in
the present paper. )

The rest of this paper is organized as follows.

In Sec.2, we define our higher-order process lan-

guage L, which extends CHOCS so as to support
the transmission of channels and data values of a
predefined ground type as well as the transmission
of processes. In Sec.3, we give the operational se-
mantics of £ in terms of a labeled transition sys-
tem, and introduce the concept of the higher-order

1The guardedness condition, which is presented in
Sec. 2, corresponds to the usual Greibach condition in
formal language theory.



bisimilarity. Next, in Sec.4, we define the deno-
tational model D using the methodology of metric
semantics. Finally, in Sec.5, we establish the full
abstraction of D with respect to the higher-order
bisimilarity. Full proofs are given in the full paper
[9]; this extended abstract gives only brief sketches
of them.

As a preliminary to what follows, we introduce
several symbols used in this paper: we denote by w
the set of natural numbers 0,1, --. The syntactical
identity is denoted by =. The powerset of a set X
is denoted by p(X). We write “let (z €) X---" to
introduce a set X with variable x ranging over X.

2 Language for Higher-Order Pro-
cesses

Our higher-order process language £ is based on
Thomsen’s calculus of higher order communicat-
ing systems (CHOCS) and extends it so as to sup-
port the transmission of channels and data values
of a predefined ground type (such as integers and
strings) as well as the transmission of processes in
the sense of CHOCS. Below, we formally define £
using the S-expression notation of Lisp for the con-
venience in focusing on abstract structures of pro-
grams.

Definition 1 Let (v €) V be the set of values that
are passed between processes and also used as (iden-
tifiers of) communication channels; let (z €) Vyal
be the set of value variables. We assume that a
set (E €) £ of value ezpressions is given. We do
not need to specify the syntax of £ here, but it is
assumed that elements of £ are constructed from
value variables and some operators on values and
that V C £. Let (e €) £ be the set of value ex-
pressions that contain no value variables.

Let (X €) Vproc be the set of process variables
and let (§ €) V = Va1 U Vproc. We define the
set (S €) L of process ezpressions by the following
grammar:?

Su=X|6[(1EEy SZ)I(!ESI S2) |

(?EzS)|(?TEXS)|
(1 $1 5210 E 9| (u X 5).
The construct (? E z ---) binds the variable  in
--,and the ones (? E X ---)and (z X ---) bind the
variable X in - - -, as A X in the A-calculus. Thus, we
can define free variables and bound variables of a
process expression as in the A-calculus. For S € L,
let fu(.S) be the set of free variables in S.

We define £ (€ £) to be the set of those ele-
ments of £ which satisfy the following guardedness
condition:

ey

2We omit the choice operator and the renaming op-
erator of CHOCS only for simplicity; they can be easily
incorporated in our £ and be given denotational inter-
pretations along the lines of this paper.

If (0 X S') is a subexpression of S, then
all free occurrences of X in S’ are in

a subexpression of §’ having the form (2
(tE--)or(?E ---).

For X C Vproc, We set
¥ ={5eL]p(S)c ) 3)

Thus, £? is the set of closed process expressions;
elements of £? are called programs and we use s as
a variable ranging over £%. J

3 Operational Semantics

In this section, we define a labeled transition sys-
tem between elements of £°. In terms of the transi-
tion system, we define the higher-order bisimilarity
~ (the operational criterion employed in [14] for
identifying higher-order communicating processes).
Weintroduce another relation ~ and establishes the
equality between ~ and ~. The second relation ~
will be conveniently used in connecting ~ and the
denotational model defined in Sec. 4.

The labeled transition system is deﬁned by sev-
eral rules for transitions:

Definition 2 As a preliminary to the definition of
the transition system, we need a few auxiliary defi-
nitions. First, let VI={v!| ve V}, V?={v?|v e
V}, and (v €) V = VI U V2. We define the set
(a €) A of ground labels by A = (V x V) U {1'}
By using A, the set (I’ €) G of transition labels is
defined by G = A U (V x £?). Elements of V x £°
are called first-order labels, We use u as a variable
ranging over VU L. For T € G\ {7}, we define T

as follows:
T (v?,u) =
(v,u) =

An evaluation function [] : €% — V is assumed
to be given. For § € L, a variable £ € V and a
closed expression t € £2 U L%, we denote by S5[t/¢]
the result of substituting ¢ for all free occurrences
of £in S.

The labeled transition system (—I; IT eG)is
defined as the family of the smallest relations satis-
fying the following rules OUT; through REC.

OUT;: (lee; ) Ll feaD), s

(v!, ),
(v?,u).

OUT,: (le sy s) RICEUIN s
IN;: ForeveryveV,(?2ez §) ), S[v/z].
IN; : For every s € L°,
([d”v')
(?e X §)—— S[s/X].
r
8 — 8]

(1 51 82) 5 (Il 8} 82)

PAR,



L
§3 — 8y

(s s2) D (ll 51 8p)

PAR;

T T
S]_—PSI, 82—>.92

(Il 81 s2) 5 (Il 51 s5)°
RES: If neither

[T = ([e],u) ] mor 3u[T = ([e]?,v) ],
PRI
(@e 5) S (8e s’).
Sl(s X 8)/X] = 5"
(0 X 5) S

PAR3 :

then

REC:

Definition 3 For a binary relation R on £?, let
R'={(1‘1,I‘2)6Gx GI I''=T;€eA

Vﬂv,sl,sg[ Iy = (’U!,Sl) Al = (v!,sz)
Asi R sy

V3u, 51,8 T1 = (v7,51) ATy = (v, )
As1 R sy ]}

A higher-order bisimulation is a binary relation
R on £® such that whenever s; R sg then the fol-
lowing two propositions (4) and (5) hold:

r
VI, Vsi{ s1 —'—» sy =

4
31"2,3.92[ 82—*52 A I‘lR'l"z A 3'1 Rs’2 H - ( )
Vl"z,Vs’z[szl’»s’z =

Iry,3s)[s1 5 s, ATy R°T2 A8, Rsb ]

Let ~ be the union of all higher-order bisimula-
tions. It is easy to check that ~ itself is a higher-
order bisimulation [10, Sect.4.6]. Thus, ~ is the
largest higher-order bisimulation. We call ~ the
higher-order bisimilarity.

)

For the use in the next section, we inductively
define another binary relation ~, which turns out
to be equal to ~ but is more convenient.

Definition 4 For a binary relation R on £?, let
R° = {(Fl,rz) € G x GI
I''=T, EAU(V?X[:O)
VE‘U, 81,82[ Fl = (’U!,s‘l) A I‘z
Asy R 82 ]}.
Note the difference between R® and R°: we have
(v?,5) R° Ty = Ty = (v7,5),

which does not hold when R° is replaced by R*.
We define a strict higher-order bisimulation as

in Definition 3 except that we use R° instead of R®.
We inductively define (2,)ne. as follows:

(i) o0 = L% x L°.
(ii) For each n € w, we define &, in terms of

~, as follows: s, 2,41 s iff the following two
propositions (6) and (7) hold:

= (v!, s2)

T
VI, si[ 51 = st =
T
EII‘z,s’,[ 83 RN .9/2 A
Fl "_": rz A s'1 a9 8’2 H.

YTy, s 52 -2 s =
™

ary, si[ slﬂrsl
/\Fl =n 1"2 A Si >n S’z ]]

We define ~ = n[ nl §

new

It is easy to check that the sequence (~,)ne, is
shrinking in that Vn € w| ~, D ~,4; |. From this,
we immediately obtain

Vnew[~p d~ny, ] (8)
It is also easy to check that ~, is an equivalence
relation for every n € w, and therefore so is ~.

It turns out that ~ coincides with ~:
Lemma 1 Vsy,53 € L% s1~ 52 & 5183 ]. 1

Proof. We can prove that ~ C ~ by using the
fact that o~ is a strict higher-order bisimulation and
therefore is a higher-order bisimulation. The re-
verse relation that ~ C =~ can be established by
proving that Vn € w[ ~ C =, ] by induction on
n. B

4 Denotational Model

We use various complete metric spaces (cms’s) for
constructing our denotational model D. For a com-
plete metric space M, every contraction F on M
has a unique fixed-point by Banach’s fixed-point
theorem. We denote by fiz(F) the unique fixed-
point of F. In this section, we define many se-
mantic objects—such as semantic interpretations
of language constructs and denotational meaning
functions—as unique fixed-points of contractions on
cms’s of various kinds.

As a preliminary to the definition of the denota-
tional semantic domain, we introduce basic notions
and operations on cms’s (we give their definitions
only to be self-contained with fixed notation; refer
to [3] for more explanation of these and other stan-
dard notions concerning metric topology).

Definition 5 Let A be a set, and let (M,d),
(My,dy), (M3,d;) be cms’s.

(1) The set A is equipped with a metric dg,
called the discrete metric defined as follows: for
a1, a3 € A, let da(ay,az) = 0if a; = ay; other-
wise let d4(ay,a2) = 1. It is easy to check that
(A,d4)is a cms.

(2) For a real number k > 0, we define a cms
id«((M, d)) as follows: the carrier of id (M, d))

is M, and the distance between z1,z2 € M in
id,.((M,d)) is defined to be & - d(z, 3).



(8) The disjoint sum (My,d; )&(M;, d;) of (My,dy)
and (Mz,d;) is defined as follows: the carrier of
(Ml, dl) ) (Mz, dz) is ({0} X Ml) U ({1} X Mz),
and for (i,2),(7,2') € ({0} x M1) U ({1} x M)
we define the distance d ((i, z), (j, z')) by

0 ifi # 7,
di((1,2), (7, 7)) =< di(z,2") fi=j=0,
da(z,2)) fi=j=1.

(4) The product (My,d1) x (Ma,dg) of (Mi,d;)
and (Ma,ds) is defined as follows: the carrier
of (My,d;) x (M3,d;) is the Cartesian product
Ml X MZ' For (zlvyl)a (wz,yz) € M; x M21
the distance d.((z1,¥1), (2, ¥2)) is defined to be
max{dy (z1,23), d2(y1,¥2) }-

Let x have higher precedence than .

(5) The function space (A — M) is equipped with
a metric di defined as follows: for fi,f; € (4 —
M), di(f1, f2) = sup{d(f1(a), f2(a))| a € A}.
Suppose (4, d,) is also a metric space and let o
be a nonnegative real. A function f: A — M is
called a-Lipschitz iff Vz,y € A[ d(f(z), f(y)) <
a-da(z,y) ]. Weset (A —=*P)={fe(d—
P)| f is a-Lipschitz}.

(6) The Hausdorff distance d on p(M) is defined
as follows: for X,Y € p(M),
du(X1, X3) = max{sup ¢y infyey|d(z,y)],

sup,ex infzey[d(z,y)] }.
Let pc(M) be the set of closed subsets of M.
Then, (p(M),dn) is a cms (this fact is known
as Hahn’s theorem; see [5] and its errata in [4]
for a proof of this fact). |

In the rest of this paper, we abuse notation by de-

noting any metric function simply by d. It will be

easily inferred from the context which metric is re-

ferred to by d.

4.1 Denotational Semantic Domain

In terms of above defined operations on cms’s, we
define our denotational semantic domain by:
Definition 6 The following equation has a unique
solution in the category cms’s with their metric
functions bounded by 1: B

P=pg(A x id;(P) WV x idi(P xP)), (9
where = denotes that there exists an isometry from
the left-hand side onto the right-hand side. (For the
existence and uniqueness of the solution, refer to (5]
(or [3, Chap. 10]) and [1], respectively.) We denote
by (P,d) the unique solution of (9), and use (P,d)
as our denotational semantic domain. J
Remark 1 Elements of P can be viewed as la-
beled trees with an additional structure pairing
some nodes. We call such trees higher-order com-
munication trees. Fig. 1 illustrates such a tree ¢t. J§

Let (M,d) be an arbitrary metric space. For
X € p(M), we denote by X the topological clo-
sure of X,

t
[ ]
m

T @
L J @ ] ®
pairing
—ie]
t ANER t] ty

Figure 1: Higher-order communication tree.

4.2 Intermediate Model O
In this subsection, we define an intermediate model
O : L® — P so that the following holds for every
se L%
Ols} =
{(@,0lsDeae A As=s}uU
{(1,(OBL, O] 7 € ¥ A s 22 57}t
Formally, we define O as the unique fixed-point
of an higher-order mapping H defined as follows.

(10)

Definition 7 We define a higher-ordér mapping
H: (L2 = P) — (L% — P) as follows: for every
Fe(L? - P)and se L?,

H(F)[s] =

{(a, F[s'Dla € A A s> s'}U

{(n (FSLFISD) v € ¥ A 522 o). g

Since P is a cms, the space (£? — P) is a cms
as well, It is easy to check that

VR, € (L°—>P)
d(H(FR),H(F)) < §-d(FA, F) ],

where d is the metric on (£? — P). Thus, H is a
contraction from (L? — P) to itself, and therefore
it has a unique fixed-point by Banach’s fixed-point
theorem. We define O to be fiz(H). Then, O satis-
fies (10) by its definition.

As the next lemma states, the identifying power
of O is the same as that of ~.

(11)

Lemma 2

Vs1,82( 51 53 & Ofs1] = Ofs2] |. 0 (12)
Proof. We can prove, by induction, that

Vn € w,Vsy, sg] (13)

s1 2, 52 & d(Ofs1], Ofs2]) € (%)" 1
From this, (12) immediately follows. i

3We mean by a (semantic) model a meaning func-
tion which maps elements of a language to elements of
a semantic domain. (Note that some authors use dif-
ferent terminology and refers to semantic domains as
models.) Here we mean by an intermediate model an
operationally defined semantic model having P——the de-
notational semantic domain—as its codomain.



4.3 Interpretations of Operators

In this subsection, we give denotational interpreta-
tions for the operators of £; these interpretations
are referred to as semantic operations. To define
these, we slightly restrict the domain P to obtain a
subdomain P on which the semantic operations are
defined.

Definition 8 (1) Let P =
P =P, For P/ C P, let
G(Pl) -—
{r € pa(A x zd;(P’) WV xid (P x P))|
VyeVlje By P [('r,(p,p)) €p =
Vi € P,3p" € Pl (e, (7.9")) €A
aw', ") < d(5,7) I}
(2) We inductively define (P,,| n € w) as follows:
(i) Po = P; (ii) Pny1 = G(P,). Finally, we set
P = nnEuJ[ "] I
It is easy to check that (P| n € w) is shrinking and
that for every n, P, is closed in P. By using these,
we can show that
(i) GP)=P, (Gi)PCP. (14)
The interpretation 5 of the constant § is defined
by & = 0. The interpretation of the output operator

!, which has the most simple interpretations of all
operators, is given by:

{O[s]| s € £°} and

Definition 9 The operator ! is polymorphic; to in-
terpret this operator, we define two semantic oper-
~
and !, foreach v € V.
(1) The first interpretation I, € (V x P —% P)is
defined as follows: for each v' € V and p € P,
!U(vlvp) = {((v!,’ul),p)}. (15)

(2) The second interpretation 7; €(P®xP -t P
is defined as follows: for each p,p’ € P,

-~
!U(PJ’I) = {(+!, (P’7p))}' | (16)
Next, the interpretation of the input operator ?
is given by:
Definition 10  The operator ? is polymorphic;
to interpret this operator, we define two semantic
= =
operations ?, and ?, for each v € V.
(1) The first interpretation ?, € (V — P) —_-»i‘ P)
is defined as follows: for each f € (V — P),

%W(f) = {(,), () v’EV}I (17)

(2) The second interpretation 7, € (@ -1 P) -t
P) is defined as follows: for each 7 € (P -1 P),

7,(m) = {(% (2, 7(p))| p € B).W (18)
The interpretations of the remaining two oper-
ators || and O are defined as fixed-points of certain
higher-order mappings.
First, the interpretation || of || is defined so that
the followmg holds for every p;,p, € P.

ations !,

|(p1,p2) = H_(.Ph?z) u E(Pz,Pl)
Ulp1,p2) U (P2, 1),

where we define the auxiliary operators H_ and [ as
follows: For each p;,p; € P,

(19)

{1(171_1_172) = (20)
{(a,(p1,72))] a € A A (a,p}) € pr}"
U{(7: (81, |(®2, 2D (1, (Br,71)) € P},

Also for each py,p; € P,

[(p1,p2) = (21)

{(7 (P2, p9))| Fv, 0" € V[
((v),9),p1) € ;1 A ((¥7,7),p3) € p2 [}
U{(7 l|(p1,p2))| Iv € V,3p € P
(!, @B,p1)) €pr A (v2,(B,p3)) € p2 }°.

“To be formal, we define the interpretation || € (P x

P —! P), to be the fixed-point of a certain higher-
order mapping as we defined O in Sec.3 (see [9]
for the formal definition). The reason for using P
instead of P is to ensure the nonexpansiveness of ||.

To interpret the construct (8 - - ), we define the
operation 8, € (P —! P) for each v € V; we omit
the definition here.

4.4 Denotational Model D

By means of the above defined interpretations of
the operators, we define the denotational model D
by:

Definition 11 Let (p e) R={p e (V - V U
P)| ¥z € Vial] p(2) € V}; elements of R are called
semantic environments. We define D: £L — (R —
P) by structural induction on S € £ using the fol-
lowing clauses (0)—(8). In the clauses, let p range
over R.

(0) D[z](p) =
(2
(3

p(z). (1) D[sJ(p) = é.

DI( E B $2)(0) = Tpmo (1B:1(0), DIS:21(6))-
DI E 51 $2)](p)

= gy() (DIS1) (), DIS2] (p))-

(4) DI? E z 8)](p)
="1ey (A v € V. D[SY(p[v/2])).
(8) DI E X ))(r)

=7 E A P E P. D[S](plp/X]))-

(6) DI(l 51 52)1(e) = |(PIS11(p), DLS2](0))-

(7) DI(@ B 5))(p) = Gy (PISHo):

(8) Dl(p X ))(p) = fiz( p € P. D[S](plp/X])),
when the function (A p € P. D[S](p[p/X])) is a
contraction; otherwise, we set Df(p X S)](p) =

0. As a matter of fact, the contractivity of

(A p € P. D[S](plp/X])) is guaranteed by the
guardedness condition (2). |



5 Full Abstraction

To connect our two models O and D, we first show
that the intermediate model O is a homomorphism
in the following sense.

Lemma 3 (1) O[5} = 6.

(2) Ol e &1 8)] = Ig([ea], Oflsal)-

(3) OI(t e 81 85)] = Tg(Olaal, Ofsal)-

(4) O[(? e z )] = g (A v € V. O[S[v/z]]).

(5) OL(? e X S)I = (A p € B. O[S[s/ XI)™)
where s, € L% is chosen so that Ofs;] = p
for each p € P. we can show that (A p €
B. O[S[sp/ X)) € (B —! P) by an analysis
of the transition system.

(8) Ol 51 52)] = I(O[=1], Olsa]).
(7) O[(8 v 8)] = 8,(O[s]). 1

Proof. Here we consider part (6); the other parts
can be established similarly. We put

% = sup{ d(O(|| 51 52)}, (O], OLs: D))

§1,82 € L }

Then, by using (10), (19), (20) and (21), we can
show that 0 < k < % - k. Thus, we have k =0. |}

Let(ne)H={npe V- uULYVze
Vial| 7(z) € €% ]}. We call elements of H syntactic
environments. For § € £ and n € H, let S[y] be
the result of replacing each free occurrences of each
yin fo (S) by n(y). For a type-preserving partial
function 7 from V to £% U L°, we define S[n] in a
similar fashion. Clearly, we have S[y] € £%. For
n€H,let Oon=(AX € Vpoe- V()Y U (A z €
Vyal- [n(z)]]). Clearly, we have O e 75 € R.

By means of syntactical environments, we can
connect O and D as follows.

Lemma 4 For every S € L, one has
vn € H[ O[Sln]] = DISI(© e7) 1.8 (22)
Proof. This lemma can be proved by induction on
the structural of § € £ utilizing Lemma 3. i
From Lemma 4, the next Corollary immediately
follows. '
Corollary 1 Vs € L°[ O[s] =D[s] ]. &
From Lemma 1, Lemma 2 and Corollary 1, we
immediately obtain the next theorem.
Theorem 1 For every sy,3; € L%, one has

81 ~ S & Du:.ﬁ] = DIISQ]!. [ ] (23)

6 Concluding Remarks

We conclude this paper with several remarks about
future work.

First, it remains for future research to construct
models for more expressive languages. Sangiorgi’s
higher-order m-calculus [11] is a target for extending
our model.

Another topic for future research is to construct
a denotational model that is fully abstract with
respect to the weak bisimilarity instead of strong
bisimilarity treated in this paper.
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