AR =R B

(1995. 1.

Java [RAB B & D= D
LT —F 7 a—ATIZ oW T

HAET
HRKE - KBS RER
SRR

Java " A I —F OLZLMEERET D Java (REBBRO /XA + 2 —FBRIER
i3, BETERVWIE—FEZXIPLDE—N"ANa—FOREMERIET 57
WD Java DEF 2) F 4 —EFADBRBRERZL TS, LML, Javaif Fa—
R Db ORERITVL OLOERORZMEZEL TS, TO—2FHKED
BNNCETHIHLOTH S,

Stata & Abadi DHE, BIW, Qian PHEZR—XRIZL T, XHFETIE,
Java {RABR DO R & D7D DRUARZ FTZITRBT 5, e DBUKRIT 1ast(z)
WSO EEA TS, ZOMEBFESMHIX, FREOFECFED r BEOEH
DELRECICR S, £, BV 7 F L AORI return(n) EWHETHY, h
X n BEMOFCFRIZIEDZ L 2BKT 3, Zhb0HITE D, M BoLE
ANWTREEMBATEIENTES, EbIC, 7l FA LT, BEFON
BE O LBARBITETRIZENTED,

On a New Method for Dataflow Analysis of
Java Virtual Machine Subroutines

Masami Hagiya
Department of Information Science,
Graduate School of Science,
University of Tokyo
hagiyaQis.s.u-tokyo.ac.jp

The bytecode verifier of Java Virtual Machine, which checks type safety of
Java bytecode, is a basis of the security model of Java for guaranteeing safety
of mobile code sent from an untrusted remote host. However, the type system

for Java bytecode has some technical problems, one of which is in the handling

of subroutines.

Based on the work by Stata and Abadi and that by Qian, this paper presents
yet another type system for subroutines of Java Virtual Machine. Our type
system includes types of the form last(z). A value whose type is last(z) is
the same as that of the z-th variable of the caller of the subroutine. In addition,
we represent the type of a return address by the form return(n), which means
returning to the n-th upward caller. Thanks to these types, we can analyze
instructions purely in terms of types. Moreover, for some programs our method
turns out to be more powerful than existing ones.

1 Imntroduction

One of the contributions of Java is in its bytecode ver-
ifier, which checks type safety of bytecode for JVM
(Java Virtual Machine) prior to execution. Thanks
to the bytecode verifier, bytecode sent from an un-
trusted remote host can be executed without the dan-
ger of causing type errors and destroying the entire
security model of JVM, even when source code is not
available. Verifying type safety of bytecode (or na-
tive code) seems to be a new research area that is
not only technically interesting but also practically
important due to availability of remote binary code
in web browsers or other applications.

Bytecode verification of JVM has some technical
challenges. One is that of handling object initializa-
tion, where objects created but not initialized yet may
open security holes. Another is that of handling poly-
morphism of subroutines. This paper is on the latter
issue.

Stata and Abadi defined a type system for a small
subset of JVM and proved its correctness with re-

‘spect to the operational semantics of the subset [4].
Qian also defined a similar type system [3]. Both the
systems make use of the information on which vari-
ables are accessed or modified in a subroutine. Those
variables that are not accessed or modified are simply
ignored during analysis of the subroutine.

This paper takes a different approach. We intro-
duce types of the form last(z). A value whose type is
last(z) is the same as that of the z-th variable of the
caller of the subroutine. In addition, we represent the
type of a return address by the form return(n), which
means returning to the n-th upward caller. Thanks
to these types, we can analyze instructions purely in
terms of types.

For some programs (unfortunately not those pro-
duced by the Java compiler) our method is more
powerful than the existing ones. We hope that our
method can be modified and applied to analysis of
other kinds of bytecode or native code [1, 2].

In this short paper, we present our type system
and discuss its correctness. We also briefly describe
implementation.

2 Virtual Machine

2.1 Values

A value is a return address or an integer or an objeet
pointer. We can easily add other kinds of value, such
as that of floating point number. In the following
formal treatment of the operational semantics of the

virtual machine, a return address has the constructor
retaddr, an integer the constructor intval, and an
object pointer the constructor objval. They all take
an integer as an argument.

2.2 Instructions

A bytecode program is a list of instructions. An in-
struction takes one of the following formats.

jsr(L) (L: subroutine address)
ret(z) (z: variable index)
load(z) . (z: variable index)
store(z) (z: variable index)
const0

constNULL

inc(z) (z: variable index)

'1f0(L) (L: branch address)

ifNULL(L) (L: branch address)

halt
Each mnemonic is considered as a constructor of in-
structions. Some of the mnemonics takes a nonnega-
tive integer z or L as an operand.

2.3 Operational Semantics

The virtual machine consists of
o the program, which is a list of instructions and
denoted by P,

o the program counter, which is an index to P,

o the local variables, where the list of values of the

local variables is denoted by f, and

o the operand stack, denoted by s.

Let us use the notation {[i] for extracting the i-th
element of list /, where the first element of ! has the
index 0. The i-th instruction of the program P is
denoted by P[i]. The value of the z-th local variable
is denoted by f[z]. The p-th element of the operand
stack s is denoted by s{p], where s[0] denotes the top
element of s.

As in the work by Stata and Abadi, the opera-
tional semantics of the virtual machine is defined as a
transition relation between triples of the form (i, f, s),
where ¢ is the program counter, i.e., the index to the
program P, f the value list of the local variables,
and s the operand stack. While the length of s may
change during execution of the virtual machine, the
length of f, i.e., the number of local variables is un-
changed. The program P, of course, never changes
during execution.

The transition relation is defined as follows.

¢ If P[i] = jsx(L), then

(i, f,8) = (L, f,retaddr(i+ 1):s).
The return address retaddr(:+1) is pushed onto
the operand stack. The operator :: is the cons

operator for lists.
e If P[i] = ret(z) and f[z] = retaddr(j+1), then
G, f,8) = (G+1.f9).
o If P[i] = load(z), then
(i, f,8) = (i+1,f, flz]:s).
o If P[i] = store(z), then
(i, fyvus) = (i +1, flz—v],8).
The notation f{z — v] means a list whose ele-
ment is the same as that of f except for the z-th
element, which is set to v.
e If P[i] = const0, then
(i,f,s) — (i+1,intval(0),s).
o If P[i] = constNULL, then
(ir f’ S) - (1' + 11 Oijal(o)v S)-
o If P[i] = inc(z) and f[z] = intval(k), then
(i, f,8) = (i+1,f[z > intval(k +1)],s).
o If P[i] = if0(L), then
(i, f, intval(0)::s) ~ (L, f,s).
If P[i] = if0(L) and k # 0, then
(i, f, intval(k):s) — (i+1,f,s).
e If P[i] = ifNULL(L), then ‘
(i, f,objval(0):s) — (L, f,s).
If P[i] = ifNULL(L) and k # 0, then
{i, f,objval(k):zs) — (i+1,f,s).
The transition relation — is considered as the least
relation satisfying the above conditions.

The relation is defined so that when a type error
occurs, no transition is defined. This means that to
show type safety is to show that a transition sequence
stops only at the halt instruction.

For proving the correctness of our bytecode anal-
ysis, we also need another version of the operational
semantics that maintains invocation histories of sub-
routines. This semantics corresponds to the struc-
tured dynamic semantics of Stata and Abadi. The
transition relation is now defined for quadruples of
the form (1, f, s, h), where the last component h is an
invocation history of subroutines. It is a list of ad-
dresses of callers of subroutines. This component is
only changed by the jsr and ret instructions.

o If P[i] = jsr(L), then

@, f,s,h) = (L, f,retaddr(i + 1)::s,i::h).
Note that the address i of the caller of the sub-
routine is pushed onto the invocation history.

e If P[i] = ret(z), flr] = retaddr(j + 1) and
h = h'@[j]@R", where j does not appear in h',
then

(i f,8,h) = {j+1,fsh").
The operator @ is the append operator for lists.
For other instructions, the invocation histories before
and after transition are the same.

As for the two transition relations, we immediately

have the following proposition.

Proposition 1: If (i, f,s,h) — (¢, f',s',h’), then
(i, f,8) = (', f',8).

3 Analysis

3.1 Types

Types in our analysis are among the following syn-

tactic entities:
T,L (top and bottom)

INT,0BJ,--- (basic types)
return(n) (n: caller level)
last(z) (z: variable index)

A type is T, 1, a basic type, a return type, or a
last type. In this paper, we assume as basic types
INT, the type of integers, and OBJ, the type of object
pointers. It is easy to add other basic types, such as
that of floating point numbers.

return types and last types are only meaningful
inside a subroutine. A return type is the type of
a return address. For positive integer n, return(n)
denotes the type of the address for returning to the
n-th upward caller. For example, return(1) denotes
the type of the address for returning to the direct
caller of the subroutine, and return(2) the type of
the address for returning to the caller of the caller.

A last type means that a value is passed from the
caller of the subroutine. For nonnegative integer z,
last(z) denotes the type of a value that was stored
in the z-th local variable of the caller. A value can
have this type only when it is exactly the same as the
value of the z-th local variable when the subroutine
was called.

3.2 Order among Types

We define the order among types as follows.
T>INT> L
T>0BI>1
T > return(n) > L
T>last(z) > L
Since we do not distinguish object pointers by their
classes in this paper, the order is flat, with T and L
as the top and bottom elements.

This order is extended to lists of types. For type
lists £, and £y, £; > %, holds if and only if £, and &
are of the same length and #1[5] > #(i] holds for any
i ranging over the indices for the lists.

3.3 Target of Analysis

The target of our bytecode analysis is to obtain the
following pieces of information for the i-th instruction

of the given program P.
F, S H;

F; is a type list. Fi[z] describes the type of f[z],
i.e., the value of the z-th local variable of the vir-
tual machine. S; is a also type list. Each element of
S; describes the type of the corresponding element of
the operand stack of the virtual machine. Both F;
and S; describe the types of the components of the
virtual machine just before the i-th instruction is ex-
ecuted. H; is a set of invocation histories for the i-th
instruction.

F, S and H should follow a rule that is defined for
each kind of P[{]. The rule says that certain condi-
tions must be satisfied before and after the execution
of Pli].

Rule for jsr) If h € H; and P[i] = jsr(L), then
the following conditions must be satisfied.
e 0<L<|P|
o For each variable index y, either
Firly] 2 return(n +1)
(if FJy] = retura(n)), and
Fply] 2 Fily]
(if F;[y] is neither return nor last)
or
Fily] > last(y)
(even if Fi[y] is last).
e |SL| = |Si| + 1, where /| denotes the length of
list 1.
o S1[0] > return(l).
e For each index p, where 0 < p < |5,
Si[p] is not last,
Sulp+1] > Sifp]
(if S;[p] is not return), and
Splp+ 1] > return(n +1)
(if S;[p] = return(n)).
¢ i does not appear in h. (Recursion is not al-
lowed.)
e izhe Hy. .
Note that when F;[y] is not last, Fi[y] cannot be de-
termined uniquely. We must use some kind of back-
tracking for implementing our analysis.

Rule for ret) If h € H; and P[i] = ret(z), then
the following conditions must be satisfied.
F;[z] = return(n).
h = h'@[j]@h", where |h| =n — 1.
0<j+1<|{P|
For each variable index y, '
Fji1ly] 2 follow last(n, h, Fi[y]).

o Sjt1 > follow.last(n,h,S;).

e h'eH, 41
follow_last is a function for extracting the type of
a variable in a caller of a subroutine according to an
invocation history. For nonnegative integer n, invo-

cation history h and type ¢, follow.last(n,h,t) is
defined as follows. .
follow last(0,h,t) =t
followlast(n + 1,i::h, return(m)) =
if m > n+1 then return(m —n —1)
else T
follow.last(n + 1,i::h, last(z)) =
follow last(n, h, F;[z])
follow.last(n + 1,i::h,t) =t (otherwise)
followlast is extended to type lists, i.e.,

follow_last(n,h,?) is also defined when £ is a type
list.

Rule for load) If h € H; and P[i] = load(z), then
the following conditions must be satisfied.

e 0<i+1<|P|

e F,py > Fi.

e Si41 > Fi[z]::S;.

e he H,‘.H_.

Rule for store) If h € H; and P[i] = store(z),
then the following conditions must be satisfied.

e 0<i+1<]|P|

o S; = t:i.

o Fiyy 2 Filz— i)

e Siy1 > 1.

e he Hi+1'

Rule for const0) If h € H; and P[i] = const,
then the following conditions must be satisfied.

e 0<i+1<|P|

e F,p1 2 F.

e S;+1 > INT:S;.

e he H,’+1.
The rule for constNULL is similar.

Rule for inc) If h € H; and P[i] = inc(z), then
the following conditions must be satisfied.
0<i+1<|P|

F;[z] = INT.

Fn > F.

Siy1 2 Si.

he Hi+1.

Rule for if0) If h € H; and P[i] = if0(L), then
the following conditions must be satisfied.

e 0<L<|Pl.0Li+1<|P|

e S; = INT:L.

e FL > F;. F;(, > F;.

o Sy >t Sy >t

e he HL. he Hi+1~
The rule for ifNULL is similar.

Rule for halt)
There is no rule for halt.

3.4 Correctness of Analysis

In order to state the correctness of our analysis, we
first introduce the following relation.
(v,h) : t

v is a value and h is an invocation history. ¢ is a type.
By (v, h) : t, we mean that the value v belongs to the
type t provided that v appears with the invocation
history h. Following is the definition of this relation.

o (v,h):T.

e (intval(k), h) : INT

e (objval(k),h) : OBJ.

o If hjn — 1] = j, then (retaddr(j + 1),h) :

return(n).

o If (v, h) : F;[z], then (v,i:h) : last(z)
This definition is also inductive, i.e., (v, h) : ¢ holds if
and only if it can be derived only by the above rules.

We have two lemmata.
Lemma 1: If (v,h): ¢ and ¢’ > ¢, then (v,h) : ¢'.

Lemma 2: Let »' be a prefix of h of length n and b/
be its corresponding suffix, i.e., h = K’@h" and |h'| =
n. If (v, h) : t, then (v, ") : follow.last(n, h,t).

We say that the quadruple (i, f, s, h) is sound with
respect to (F, S, H) and write (3, f, s, h) : (F, S, H), if
the following conditions are satisfied.

e 0<i<(P

e For each variable index y, {f[y], h) F,[y].

e For each index p for s, {s[p),h): S

® he H;.

o h does not have duplication, i.e., no element of

h occurs more than once in h.

We have the following correctness theorem. It says
that if F, § and H follow the rule for each instruc-
tion of P, then the soundness is preserved under the
transition of quadruples. This means that if the ini-

tial quadruple is sound, then quadruples that appear

during execution of the virtual machine are always
sound.

Theorem (correctness of analysis): Assume that
F, S and H follow the rule for each instruction of P.
If (i, f,s,h) : (F,S,H) and (i, f,s,h) = (¢, f',s', h'),
then (¢, f',s', ') : (F, S, H).

The theorem is proved by the case analysis on the
kind of P[i]. In this short paper, we only examine
the case when P[i] = ret(n).

Assume that (i, f, s, h) : (F, S, H) and {i, f,s,h) =
@', f',s' k). Since F, S and H follow the rule for
ret, the following facts hold.

(i) Fi[z] = return(n).
(ii) h = h,@[j]@hs, where |h;] =n — 1.
(iii) 0<j+1<|P}.

(iv) For each variable index y,
Fji1ly] > followlast(n, h, F[y}).

(v) Sj41 = follow last(n,h,S;).
(Vl) hs € H]+1
By (i) and the soundness of (i, f,s k), (f[z] h) :
return(n). Therefore, by (ii), f[z] = retaddr(j + 1)
and 7’ = j + 1. Moreover, since h does not have du-
plication, h; does not contain j. This implies that
h' = hy. We also have that f' = f and s’ = s.

Let us check the conditions for the soundness of
@', Wy = (G + 1, f, 5, ha).
. e By (iii), 0 <4’ < |P|:

e By (iv), Fy[y] > follow last(n,h, Fi[y]). By
the soundness of (i, f, s, h}, {fly],) : Fi[y]. By
Lemma 2, (f[y],h') : follow last(n,h, Fify]).
Therefore, by Lemma 1, (f[y], ') : Fi[y].

¢ Similarly, by (v), we have that (s{p], k') : Si[p].

e By (vi) and since h' = hg, b/ € Hy

e Finally, since h does not have duplication, A’
does not have duplication, either.

Proposition 2: If (i, f,s,h) (F,S,H) and
(2, f,8) = (¢, f',s'), then there exists some A’ such
that (i, f,s,h) = (¢, f', s, h').

The only case that must be examined is that of ret.
Note that h' is uniquely determined.

The above proposition guarantees that if F, S and
H follow the rule for each instruction and the ini-
tial quadruple (i, f,s, h) is sound, then the transi-
tion sequence starting from the triple (i, f, s) can al-
ways be lifted to a sequence starting from (i, f, s, h).
This.means that the semantics for triples and that for
quadruples coincide when F, S and H follow the rule
for each instruction.

The following final theorem guarantees type safety.

Theorem (type safety): If F, S'and H follow the
rule for each instruction and the initial quadruple
(i, f, s, h) is sound, then a transition sequence stops
only at the halt instruction.

3.5 Example

Let us abbreviate 1ast(z) and return(n) by 1(z) and
r(n), respectively.

i instruction F; S H;
0 const0 1, 1,1] 0
1 store(l) 1, 1,1] [T @
2 jsr(7) L, INT, L] IR]
3 constNULL [T, INT,INT) 0
4 store(l) T, INT, INT| 03] @
5 jer(7) T,0BJ, INT] 1] [}
6 halt T,0BJ,0BJ] il (]
7. store(0) . [1(0),1(1),1(2)] [z(1)] - {[2), (5]}
8 load(1) x(1),1(1),1(2)] {[2 [s1}
9 store(?) [r(1),2(1),2(2)] [(U] {21}
10 ret(0) r(1),1(1),11)] 0 - {[2.[5))

4 Implementation

A dataflow analysis is usually implemented by an it-
erative algorithm. For each instruction, we check if
the rule for the instruction is satisfied by F', S and H.
If not, we update F, S and H accordingly, and check
the next instruction that is affected by the update.

There are two problems for implementing our anal-
ysis by such an iterative algorithm. Firstly, the rule
for jsr does not uniquely determine Fi [y] when Fjy]
is not last. We have two choices: one is to set
Fyly] = 1ast(y), and the other is to set Fi{y] = F;[y]
(or Frly] = return(n + 1) if F;[y] = return(n)).
In our current implementation, we first set Fi[y] =
last(y) and proceed the analysis. If the analysis
fails at some point because Fy[y] = last(y), we take
the alternative and redo the analysis from L. (We
need not completely abandon the work after we set
FL[y] = last(y).)

The second problem is that by a naive iterative
algorithm, a subroutine is analyzed each time it is
called. In the worst case this may require an expo-
nential number of steps with respect to the length of
the program. This problem can be avoided by rep-
resenting invocation histories by a node in the call
graph of the program, which is a graph whose nodes
are ‘addresses of subroutines and whose (directed)
edges are labeled with addresses of jsr instructions.
Since JVM does not allow recursion, it is a connected
acyclic graph with a unique root node representing
the initial address.

A path from the root to a node in the graph corre-
sponds to an invocation history by concatenating the
labels of edges in the path. Each node in the graph
then represents the set of all the invocation histories
from the root to the node. Now, instead of keeping
a set of invocation histories (i.e., H;), we can keep a
set of nodes in the graph.

From a program in the following (left), the call
graph in the right is constructed. The node L3 rep-
resents the set [[c,b,a},[c,¥,a'],[,b,a],[c,V',a"]] of
invocation histories.

5 Discussion

Since we introduced types of the form last(z), we can
assign types to polymorphic subroutines that move
a value from a variable to another. By not simply
ignoring unaccessed variables, our analysis is towards
real polymorphism of subroutines in binary code.

A dataflow analysis, in general, assigns an abstract
value z; to the i-th instruction so that a certain predi-
cate P(z;, o) always holds for any state o that reaches

a: jsr(Ly)
a': JS!‘(L’!) L
Ly: ... ¢ b ’ a
b: jsr(Ls) N
P Ay
o jsr(Lg) Y \ .
!
Ly: ...
c: jsr(Ls) o
o Jsr(La)
L

the i-th instruction. To this end, for any transition
o — o', where o’ is at i’, one must show that P(z;, o)
implies P(zy,0').

Since o corresponds to (i, f, s, h) in our analysis,
z seems to correspond to (Fj;,S;, H;). However, the
predicate (3, f,s,h) : (F,S, H), which should corre-
spond to P(z;,0), does not only refer to (F;, S;, H;).
When F[y] is Last, it also refers to Fyjo). This means
that in terms of last types, our analysis relates val-
ues assigned to different instructions. This makes the
analysis powerful while keeping the overall data struc-
ture for the analysis compact.

The representation’ of invocation histories by a
node in the call graph is also for making the data
structure small and efficient.

References

[1] George C. Necula: Proof-Carrying Code, the Pro-
ceedings of the 24th Annual SIGPLAN-SIGACT
Symposium on Principles of Programming Lan-
guages, 1997.

[2] George C. Necula, Peter Lee: The Design and Im-

plementation of a Certifying Compiler, submitted

to PLDI’98.

Zhenyu Qian: A Formal Specification of Java™

Virtual Machine Instructions,

http://www.informatik.uni-bremen.de/~“qian

/abs-fsjvm.html, 1997.

[4] Raymie Stata and Martin Abadi: A Type Sys-
tem for Java Bytecode Subroutines, to appear in
the Proceedings of the 25th Annual SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages, 1998.

3

-

