Jarysivy 1811
(1998. 3. 23)

CGM EF VR INBSP EF)V ECERBE Y — b 3479
D127 2= A

meE mest oAk #EEert o mEserl mE s

TN TRE RS IR TS0 BT R
T 820-8502 F& M IEAFF T)11 680-4

1% BEmA R R bR 1R R R
T 630-0101 £ R EAEHEILAT 8916-5

E-mail: fujiwara@cse.kyutech.ac.jp
o FEL

Mmi EEFEH SN TV AEFEIEEFVTH S CGM EF VR BSP 7V ET, BEFEHn OFERED

= b EAT)REMOWFHIT VT) XL RRET B, TR, AHETHERED O(2) E—J“Fﬁ BES YV RED
O(mm(logp, loglogn)) D3 A b Bl 28R A& 4T 9 HFI 7 v T Z FIRET 5. KT PIESEHERE A O O(Zlog p)
H*ﬁﬁ EHEETY VP ROBETY V FESBRELREFI 7TV TY AL %RET L. LERO200T VT EINT: ,

L>pHhDe >0 2370y ip LU TEWET S, BEIC, 20BDERTVITY XLOWFRELT,
2 2> pP R p IS LT, O(2 log n) Wi, EHGEE T ‘/Fﬂzrﬁ/— FNEITHIT NI XL RRET S,

F=U-F WHT VT XA, BREE, V- b, CGM €7V, BSP €5V

Parallel selection algorithms for CGM and BSP
with application to sorting

Akihiro FujiwaraT, Takashi Ishimizui, Michiko Inouei, Toshimitsu Masuzawal and Hideo Fujiwami

tDepartment of Computer Science and Electronics
Kyushu Institute of Technology
680-4 Kawazu, lizuka, Fukuoka 820-8502, JAPAN

iGraduate School of Information Science
Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara, 630-0101 Japan

E-mail: fujiwara@cse.kyutech.ac.jp
Abstract

In this paper, we present two deterministic selection algorithms with application to sorting on the CGM
(Coarse Grained Multicomputer) model and the BSP (Bulk-Synchronous Parallel) model. The first selection
algorithm runs in O(%) computation time and O(min(log p,loglogn)) communication rounds for 2 > p¢ and
€ > 0, where n is the number of input elements and p is the number of processors. The second selection
algorithm runs in O(" log p) computation time and a constant number of communication rounds for 2 > p°
and € > 0. Furthermore we apply the second algorithm to sorting. The obtained sortmg algorithm runs in
O(log n) computation time and a constant number of communication rounds for Z 5z p?.

key words Parallel algorithm, CGM, BSP, selection, sorting

—129—

1 Introduction

The selection problem is to find the kth small-
est element in a given totally ordered set of n
elements for a given parameter £ (1 < k£ < n).
(In case of & = [%], the element is called the
median.) Since the selection problem is a basic
problem and plays important roles in computer
science, many selection algorithms have been pro-
posed. For sequential computing, an optimal se-
lection algorithm, whose time complexity is O(n),
was proposed by Blum et al[4]. Many parallel algo-
- rithms were also proposed for the problem mainly
on the PRAM model or network dependent mod-
els (the mesh model, the hypercube model and so
on). Since these models are not suited for recent
parallel computers, these algorithms are not effi-
cient on the parallel computers in many cases.

For practical use, some parallel computation
models were proposed for the recent parallel com-
puters. The BSP (Bulk-Synchronous Parallel)
model, which was proposed by Valiant[10], has
received considerable attention among the mod-
els. The CGM (Coarse Grained Multicomputer)
model, which was proposed by Dehne et al.[5], is
essentially the same model as the BSP model ex-
cept for the following points. In the BSP model,
communication issues are abstracted using a two
parameters, L and g, which denote the latency of
the network and the communication throughput
ratio, respectively. On the other hand, communi-
cation costs are evaluated by the number of com-
munication rounds on the CGM model.

In this paper, we consider selection algorithms
for these models. For the BSP model, some
randomized selection algorithms were proposed.
‘Gerbessiotis et al.[6] proposed a randomized al-
gorithm which runs in O(2 + Tpps(p)) time with
high probability where T},,¢(p) is time required for
parallel prefix operation of p processors. Baumker
et al.[3] proposed another randomized algorithm.
If n = Q(plog*n) holds, the algorithm runs in

O(% + Llogp) computation time and O(%\/%— +
(L + g)logp) communication time for B < \/%

with high probability.! In addition, some deter-
ministic and randomized selection algorithms[1, 2]
were also proposed on BSP like models. These
two algorithms are experimented on real parallel
machines.

In this paper, we propose two deterministic
selection algorithms and its application to sort-
ing. According to a definition of the CGM model,
complexities of the algorithms are measured by
two complexities, computation time and number
of communication rounds*. We assume that h-
relation with b = O(%) is permitted in each com-

1 Their algorithm assumes BSP* model, which is an ex-
tended model of the BSP model.

munication round, that is, each processor can send
O(%) data and receive O(%) data in a round.

Our first selection algorithm runs in O(%)‘ com-

putation time and O(min(log p,loglogn)) commu-
nication rounds. The algorithm achieves cost op-
timality with respect to computation time. In the
algorithm, we assume -;;‘ > p® and € > 0. No-
tice that this assumption holds for almost all real
parallel computers. In the second selection algo-
rithm, we aim to make the number of communi-
cation rounds optimal. Using Goodrich’s sorting
algorithm[8], we can solve the selection problem in
O(%logp) computation time and a constant num-

ber of communication rounds in the case of n = p°
and € > 0. Our second selection algorithm runs in
the same complexity for % > p?. By combining the
Goodrich’s sorting algorithm and our algorithm,
we can solve the selection problem in the above
complexity for 1;- > pf and € > 0. Since the num-

ber of processors on parallel machines is usually
fixed, the second algorithm may be faster than
the first algorithm in some situations. Further-
more, we present a sorting algorithm by modify-
ing the second selection algorithm. The algorithm
sort n elements in O(%logn) computation time

and a constant number of communication rounds
for % > p?. Although the number of processors p

1
is restricted to no more than n3, the algorithm is
simple and is faster than other cost optimal sorting
algorithms in some situation.

This paper is organized as follows. In Sec-
tion 2, we give brief description of the models and
primitive operations. In Section 3, we present our
cost optimal selection algorithm, and in Section 4,
we present the second selection algorithm, whose
number of communication rounds is optimal, and
its application to sorting. We conclude this paper
in Section 5.

2 Preliminaries

2.1 Models

The rank of an element in a totally ordered set is
the number of elements smaller than or equal to
the element. The selection problem is a problem
to find an element whose rank is k in a given set
of n elements for a given parameter k (1 < k < n).
For simplicity, we assume that all elements are dis-
tinct. For the CGM model and the BSP model,
we assume that the input elements are evenly dis-
tributed on p processors Py, Pi,... P,_1, that is,
each processor stores [2] or |_-;f| —1input elements

at the beginning of the algorithm.

2We can characterize the algorithm on the BSP model by
these two complexities and BSP parameters. We describe
the method in Section 2.

— 130 —

Both the CGM model and the BSP model con-
sist of three parts: a set of processor modules,
communication network for module-to-module
communication and a synchronizer which synchro-
nizes all or a subset of processors in barrier style.
In this paper, we assume a computation on these
models consists of a sequence of supersteps. In
each superstep, each processor executes a local
computation round followed by a communication
round. In a local computation round, each pro-
cessor computes without any communication with
other processors. On the other hand, each proces-
sor sends and receives data only in communication
round. Therefore data received in a communica-
tion round cannot be used in the local computa-
tion round in the same superstep. After all proces-
sors complete their supersteps, the synchronizer
makes all processors start the next superstep.

Complexities of algorithms for the CGM model
are measured by two complexities computation
time and number of communication rounds. Let
S be the number of supersteps of a computation.
The number of communication rounds Teomm of
the algorithm is equal to number of supersteps of
the computation, that is, Teomm = 5. Let comp;
be the maximum computation time among all lo-
cal computation rounds in superstep i, and let
comm; be the maximum number of data sent or re-
ceived by one processor among all communication
rounds in superstep :. We define that the compu-
tation time Teomp is a sum of comp; and comm;
for all supersteps, that is,

s
Teomp = »_(comp; + comm;).?

i=1

We also assume that each processor can send
O(%) elements and receive O(%) elements in each

superstep. Although “packing requirement™ is
assumed in some papers for CGM algorithms, we
do not use the assumption in this paper because
the assumption increases power of the model.

On the BSP model, two parameters, g and L,
are used to denote communication costs. The pa-
rameter g denotes the ratio of computation and
communication throughput, and L denotes the
minimal time to perform a synchronization. The
running time of an algorithm on the BSP model is
easily measured by these two parameters and com-
plexities on the CGM model: The running time of
the algorithms is O(Teomp + (L + 9 X 2) X Teomm)
where Teomp and Teomm denote the computation

% Alghough the computation time is defined as Teomp =
Zil comp; in many papers, we assume that the cost of

one sending or receiving operation is not less than the cost
of one internal operation.

1The “packing requirement” means that all data sent
from a given processor to the same processor in a commu-
nication round is packed into one long message.

time and the number of communication rounds for
the CGM model, respectively.

2.2 Primitive operations

In the following, we describe three primitive oper-
ations used in this paper.

1. Broadcast: Broadcast is an operation to send
one element stored in a processor to all other
Processors.

2. Prefix operation: Let & be a binary associa-
tive operator. Given a sequence of elements
(a0, a1, .- .,ap-1) such that each element a;
is stored in a processor P;, the prefix opera-
tion computes the value s; = ao®a1 D -Da;
for each processor P;. (In this paper, we only
use prefix sums.)

3. Load balancing: Let A be a set of u ele-
ments which is partitioned into p subsets
Ao, A1, ..., Ap—1. We assume that each pro-
cessor P; stores subset A; and u; = |A4;|. The
load balancing is an operation to distribute
all elements in A evenly among all proces-
sors, that is, after the load balancing oper-
ation, each processor stores [%] or [¥] — 1
elements of A and every element is stored in
exactly one processor.

We can execute the load balancing operation
using the prefix sums as follows.

(1) Each processor P; computes u;.

(2) Compute prefix sums of u; (0 < i < p—1)
by all processors. Let PS; be the result for
processor P;.

(3) Let A; = {aé,a’i,,..,a;‘._l}j Each proces-
sor P; sends each element aj to a processor
Plpsi-u+i+1)/£1-1-

Since each processor sends at most O(u;) ele-
ments and receives at most O(}) elements except

for prefix sums computation in the above three
steps, we obtain following lemma.

Lemma 1 The load balancing of u elements can

be performed in O(max(ug,u1,...,up-1) + % +
T;;}"p(p)) computation time and T57™(p) com-

munication rounds on the p-processor CGM model
com,

and BSP model where T,7¢"(p) and Ty (p) are

computation time and the number of communica-

tion rounds of the prefiz sums, respectively.

—131—

3 Cost optimal selection algo-
rithm

3.1 Basic idea

Our first selection algorithm is based on a well-
known strategy, “median of medians”. The
strategy is proposed as a sequential algo-
rithm by Blum[4], and utilized in some parallel
algorithms[1, 2]. We also use the median, whose
rank is [2] among m elements, as a pivot to split
elements.

The overview of our algorithm is as follows. In
the description, we find the kth smallest element.

Selection algorithm based on strategy “me-
dian of medians”

Step 1: Set s = 1, ms; = n, ks = k, and repeat a
following phase until m, < max(, logn)
(m; denotes the number of remaining ele-

ments in phase ¢.)

(1) On each processor, find the median of
all elements on the processor.

(2) Select the median of the medians. (De-
tails of this substep is described in the
following subsection.) Let MM be the
median of the medians.

(3) Broadcast M M to all processors.

(4) On each processor P;, split elements on
the processor into two subsets L; and
U;. Subset L; contains elements which
are smaller than MM, subset U; con-
tains elements which are larger than
MM.

(5) Compute SUM; = Y0, 1L;] by all
processors. According to the following
three conditions, discard elements on
each processor P; and set k,y1 or end
algorithm as follows.

o discard elements contained in U; U
{M M} and set ko1 = ks.

(If k, < SUMp)

e output MM and end algorithm
(ks =5SUML+1)
o discard elements contained in L; U
{MM} and set ksy1 = ks —
(SUML+1). (Ifks > SUML-i—l)
(6) Execute the load balancing operation

for remaining elements on all proces-
sors. Compute the number mgiq of

the remaining elements. Finally set
s=s+ 1.
Step 2: If z logn’ sort all elements by all pro-

cessors and find the k,th smallest element.

Otherwise, gather all elements on one pro-
cessor and execute the optimal sequential se-
lection algorithm on the processor.

The key point of this strategy is to ensure
Mst1 < sms for a constant § > 1. If this condition
is satisfied, myq1 < ()°n holds for each phase s
in Step 1. Consequently the number of remain-
ing elements becomes less than max(%, @) after
O(min(log p,loglog n)) phases. We prove this in
the following subsection.

We can perform (1) and (4) of Step 1 in O(Z2)
time on each processor. Therefore we can per-
form Step 1in O(me(logp’loglogn [1";‘]) = O(% +
min(log p,loglog n)) computation time and a con-
stant number of communication rounds except for
the broadcast (which is used in (3)), the pre-
fix sums (which is used (5)) and the pivot com-
putation in (2). The computation time O(3 +

min(log p,loglog n)) is O(3) for > p® and € > 0.
We can perform Step 2 in O(-:;) computa-

tion time and a constant number of communi-
cation rounds from the following reasons. If
Iog — elements remain, we use Goodrich’s sorting
algorithm[8]. The algorithm sort m elements in
O(ﬂ—l%'ﬂ’l) computation time and a constant num-
ber of communication rounds for % > p¢ and
€ > 0. Therefore we can sort remaining elements

ln O(ognh;glogn) —

O(%) computation time and
a constant number of communication rounds. If

—Z— elements remain, we can find the result in the

same complexity obviously by the optimal sequen-
tial algorithm[4].

Consequently, we can perform the selec-
tion algorithm in O(%) computation time and
O(min(log p,loglogn)) communication rounds if
three operations, which are the broadcast, the pre-
fix sums and the pivot computation in (2), can be
performed in O([%+]) computation time and O(1)
communication rounds, in each phase s. In the fol-
lowing, we first describe details of the broadcast
and the prefix sums, and finally describe details of
the pivot computation.

3.2 Broadcast and prefix sums

In this subsection, we show the broadcast and the
prefix sums can be executed in O(57;) computa-

tion time. Since plogn < = holds for every phase
s, we can perform these operatlons in O(%+) com-

putation time for each phase.

We use a d-ary tree proposed by Gerbessiotis
and Valiant[7]. The d-ary tree is an undirected
tree which satisfies the following conditions.

e Each non-leaf node has d children exactly.

—132—

o All leaves are at level I'IO £] where p is the
number of processors.

Using the d-ary tree, we can perform the

broadcast and the prefix sums in O(d x Eg%)

computation time and 0(logd) communication
rounds[9]. To perform these operation with the
complexity described above, we set d = [ﬁ},
and prove 52 logd = 0(1).

logp < log p
lOg[ETG%E] ~ log e plogn

log ¥
lo ?——"
& flogn
(from;>p —>p<an)

_ (1) logn
- 1+€ lognﬁ'h€

logn

logn

clogn — loglogn
= 0O(1)
Therefore we can perform the broadcast and
the prefix sums of each phase in O(5757) compu-
tation time and O(1) communication rounds.

3.3 The median of medians computa-
tion

We compute the median of medians (M M) using
the d-ary tree (d = [;f=]) from leaves to the
root. In the following, we describe the computa-
tion of M M. Before this computation, each pro-

cessor stores one median, and we set d = [,

Algorithm for computation of MM

Set ¢ = 1,{, = p and repeat the following
phase until [, = 1.
(The l; denotes the number of remaining medians
in a phase g.)
After all phases complete, set MM to the re-
mained median.

Step 1: Gather the medians on _%J Processors so

that the number of elements on the proces-
sors differs at most 1. To complete this step,
we execute the following two operations.

(1) Each processor P; sends its median to
processor P; such that j = lﬁJ
(2) Processor PL%-JH’ which stores the d—1

medians or less, sends gathered medi-
ans to POVPl""’PLL‘lJ evenly.
d

Step 2: On each processor which stores the gath-
ered medians, find the median of medians on
the processor by the optimal sequential se-
lection algorithm, and discard all medians on
the processor except for the obtained median
of the medians. Compute the number I; of
the remaining medians by all processors and
set g = g + 1 on each processor.

We can prove that the above computation has
O(51557) computation time and O(1) communica-
tion rounds in a similar manner to the proof of the
broadcast and the prefix sums.

The remaining work is to prove that m,y; <
vlgms is ensured for a constant é > 1 in every phase
s of the algorithm by the obtained M M. (Re-
member m; denotes the number of remaining el-
ements at the beginning of phase s in the selec-
tion algorithm.) In our selection algorithm, we
split m, elements into two subsets, Ulfgol L; and
Up__o1 U;, and set mgy; to one of Y020 |L;| and
S P-4 |Usl, in each phase s. In the following, we
probe that Zr‘ﬂ |Zi| < (1= 5%+t)ms holds in case

of my = 070 |L;|, where r is a constant which
denotes the number of communication rounds of
the computation of the median of medians.

(Proof)

Let I, denote the number of remaining me-
dians at the beginning of the final phase of the
computation. Since I; < lj41 X d and I = p,
I, x d"~1 > p holds. (Note that we use d-ary tree
such that d = [5—1].)

Let EU, be the number of the remaining me-
dians which is not less than M M at the beginning
of a phase g of the pivot computation. From the
definition of the median, EU, = [%] holds. Since

EU, = EUgs1 % [5],

r—1
e = 2] =[5

lr d r—1
> 5x(3)

1 r—1
= 2—7' X (l X d)
> 1><p
= 9

Therefore, there exits at least z%p processors
stores medians contained U;U{M M} at the begin-
ning of the computation of M M. On each proces-
sors which has the median contained U; U{M M},
the number of elements which are not less than

MM is [—g—] Consequently,

p—1
Ooluih+1 > EUyx
1=0

_—
wlﬁE
—_—

—133—

. 1
Since map = LA |Ld = (SR 1) + 1
from the partition in the algorithm, msy; <
(1 - 5;1;1—) ms holds for each s. m]
We can also prove mgy; < %ms in the case of

m, = Y070 |U] in the same manner. In conse-
quence, we obtain the following theorem.

Theorem 1 We can solve the
selection problem in O(%) computation time and

O(min(log p,loglog n)) communication rounds us-
ing p processors on the CGM model and the BSP
model for % > p¢ and € > 0.

4 Algorithim with constant
communication rounds

4.1 Selection algorithm

We show a second selection algorithm which runs
in O(%logp) computation time and a constant

number of communication rounds for % > pt

However we can solve the selection problem in the
same complexity for % > p° and € > 0 by combin-
ing with the Goodrich’s sorting algorithm[8].

The basic idea of our second algorithm is as fol-
lows. In the algorithm, we reduce the number of

input elements from n to 2 with a constant num-

ber of communication rounds. To achieve the re-
duction, we use p? pivots. (We use only one pivot
in each phase of the previous algorithm.) We select
p pivots from each processor, and merge the pivots
into one sorted sequence. By computing the ranks
of the pivots for all input elements, we can find a
pair of neighboring pivots such that the kth ele-
ment is between them. Once the neighboring piv-
ots discovered, we discard input elements which
are not between them. Since the remaining ele-
ments becomes at most [;"y] on each processor, we
can gather all remaining elements in one processor
and execute the optimal sequential selection algo-
rithm in O(p X [;%b = O(%) computation time
and a constant number of communication rounds.

In the following, we describe an overview of
the algorithm. In the description, we find the kth
element.

Selection algorithm with constant commu-
nication rounds '

Step 1: On each processor P;, compute a sorted
sequence PV; = (pvg,pvi,...,pvy_1) such
that pvj is the element whose rank is [7 X ;‘—2]
in a set of elements on P;.

Step 2: Compute a sorted sequence PV =
(pvo, pv1,...,pv,2_1) whose elements are
PVoU PV U...UPV,_q. (We compute PV
so that every processor stores a copy of PV.)

Step 3: For each pivot in PV, compute the rank
of the pivot among all input elements. (We
assume that the results are stored in a se-

quence R = (ro,71,...,7p2.1), and we com-
pute R so that every processor stores a copy
of R.)

Step 4: On each processor P;, execute the fol-
lowing steps. First find a pair of neighbor-
ing pivots such that the kth element is be-
tween them, that is, find a pair of pivots
(pvj—1,pv;) such that rj_y < k < r;. After
finding the pair, compute the rank of pv;_4
in elements on the processor, and set L; to
the rank minus 1. (L; denotes the number
of elements which are smaller than pv;_; on
the processor P;.) Discard elements which
are not between the pair of pivots.

Step 5: Gather all remaining elements and
Lo, L1,...Lp—1 on one processor, and find

an element whose rank is k — Zf’;l L; by the
optimal sequential selection algorithm.

Details of the algorithm are as follows. We can
perform Step 1 in O(%logp) time by computing
the selection recursively: First we find two pivots
whose ranks are [|£] x 5"7] and ([|5] +1) x 1.
According to the two pivots, we split the elements
into three subsets: First subset is a set of elements
which is smaller than the lower pivot, second sub-
set is a set of elements which is larger than the
upper pivot, and third subset is a set of remaining
elements. We compute the two pivots recursively
for the first subset and the second subset.

In Step 2, first each processor P; broadcasts all
elements in PV;. We can perform the broadcast
in O(p x p) = O(p?) = O(%) time and one com-
munication round because each processor sends
pX p=p* < 2 pivots and receives the same num-

ber of pivots. After the broadcast, each proces-
sor store sequences PVy, PVy,..., PV,_1. On each
processor, we can compute the sorted sequence
PV by merging the sequences using an optimal
sequential sorting algorithm. Since the number of
sorted sequence and the size of each sequence are
both p, we can sort in O(p?logp) = O(%logp)
time on each processor.

In Step 3, first we compute ranks of the pivots
in PV for elements on each processor. To com-
pute the ranks, we execute the following steps on
processor P;. First we decide a pair of neighboring
pivots for each elements on the processor such that
the element is between them, by binary search.
We can find the pair of pivots in O(logp) time

—134—

for each element since the size of PV is p?. Af-
ter finding the pairs for all elements on the pro-
cessor, we compute, for each pair of neighboring
pivots, the number of elements between the two
pivots. Let E; = (ep,€1,---,€,2_;) be a sequence
such that eg is the number of elements on proces-
sor P; between pv;_; and pv;, except for ey, which
denotes the number of elements smaller than pvg.
By computing the prefix sums of E;, we can com-
pute R; = (rﬁ,r{,...,r;ﬁ_l), which are ranks of
the pivots for elements on P;. We set rj- =37-0¢
for each j on each processor F;.

Next we compute ranks R = (70,71,...,7p2_1)
such that 7o = S2arh, 11 = YhoTi, -ov
Ty = S T;Z-l' To compute these sums
evenly on each processor, each processor P;
sends ranks r;-xp,r;vxpﬂ_,...,r}xp+p_1 to proces-
sor P;. From the received ranks, P; can com-
pute Tjxp, Tjxptis---» Tixptp-1- After computing
a subset of R on each processor, all subsets are
broadcasted so that each processor can compute R
by merging the received subsets. We can perform
all of the above computations of R in O(% logp)

computation time and a constant number of com-
munications rounds because each processor sends
and receives p? < —;} elements and computes locally
in O(p® + Zlogp) = O(%log p) computation time.

We can perform Step 4 in O(%) computation
time because [R| = p* < Z. Since the remaining
elements on each processor is at most [Z5] after
Step 4, we can perform Step 5 in O(p + p% X p)=
O(%) time and a constant number of communica-
tion rounds.

Consequently, we can solve the selection prob-
lem in O(%logp) computation time and a con-
stant number of communication rounds for Z > p?.

Since Goodrich’s sorting algorithm[8] can sort m
elements in O(7tlogm) computation time and a
constant number of communication round for 2 >
p° and € > 0, the computation time of Goodrich’s
algorithm is O(% log p) in the case of 7+ = p* and
a > 0. Therefore we obtain the following theo-

rem by combining our selection algorithm and the
Goodrich’s sorting algorithm.

Theorem 2 We can solve the selection problem
in O(%logp) computation time and a constant
number of communication rounds using p proces-
sors on the CGM model and the BSP model for
? >pf and € > 0.

4.2 Application to sorting

In the following, we present a sorting algorithm,
which is an extension of the second selection al-
gorithm. We assume that inputs and outputs of

the sorting are evenly distributed among a set of p
processors Py, Py,... Pp—1, that is, each processor
has [2] or [5] — 1 elements at the beginning and
at the end of the algorithm.

An overview of the sorting algorithm is as fol-
lows.

Sorting algorithm based on the selection

Step A: Find
p — 1 elements T = (4g,%1,...,tp—2) Whose

ranks are ([2],2x 2],...,[(p— 1) x 1),
respectively. To find these elements, the ex-
tension of the second selection algorithm is
used.

(We compute T = (fo,t1,...,1p~2) s0 that
every processor stores a copy of T'.)

Step B: Each processor sends elements on the
processor so that processor Py receives el-
ements smaller than ?p, processor FP,_; re-
ceives elements larger than ¢,_;, and the
other processors P; (1 < ¢ < p — 2) receive
elements between t;_1 and t;.

Step C: Sort elements on each processor.

To execute Step A, we use the second se-
lection algorithm with modifying of Step 4 and
Step 5 as follows. In the description, we use
T = (to,t1,.--,tp—2), which is used in the
above sorting algorithm, and two sets, PV =
(pvo, pv1s .. -,PV2_1) and R = (Pos 71y > Tp2o1)s
which are obtained in Step 2 and Step 3 of the
second selection algorithm.

Extension of the second selection algorithm
for sorting

Step 4: On each processor P;, execute the follow-
ings.

(i) For each j (0 < j < p — 2), find
a pair of neighboring pivots in PV,
(pvx]_l,pvxi), such that t; is between
them, that is, compute z; which satis-
fies 75,1 < [j ¥ %] < oy

(ii) Make p — 1 subsets of elements TEj,
TEL, ... TEZ;_Q so that each TE; con-
tains all elements on the processor P;
between pv;;_, and pvg;.

(iii) Compute
ranks of pvg,—1,PUzy—1,- - PUgp_p—1 i
elements on each processor, and set I7
to the rank of pv,;—1 minus 1. (l; de-
notes the number of elements which are
smaller than pv,, 1 on each processor

P

—135—

Step 5: Each processor P; sends (TE§,l),
(TELL), .. (TE, 5,1,_5), to processors
Py, P, ..., Py_g, respectively. After receiv-
ing all data, each processor P; (0 < ¢ <
p — 2) finds an element t; whose rank is
[(i4+1) x 2] = 201 in U2Zg TE? on the
processor. Finally all t; (0 < i < p—2) are
broadcasted so that every processor stores a
copy of T'.

In Step 4 and Step 5, the broadcast, the pre-
fix sums, sequential sorting are used, and at most
p? < % elements are sent and received. Therefore

we can perform these steps in O(%log ¥ + P =
O(% logn) computation time and a constant num-
ber of communication rounds.

We can perform Step B of the sorting algo-
rithm by sorting elements on each processor, com-

puting ranks of the elements among R, and send-
ing and receiving at most [-’;] elements. There-
fore we can perform Step B in O(%log n) compu-
tation time and a constant number of communica-
tion rounds. Step C can be performed in the same
complexity obviously.

In consequence, we obtain the following theo-
rem.

Theorem 3 We can sort
n elements in O(% logn) computation time and a
constant number of communication rounds using p
processors on the CGM model and the BSP model
for 2> p?.

5 Conclusions

In this paper, we proposed two selection al-
gorithms and its application to sorting for the
CGM model and the BSP model. The first
selection algorithm runs in O(Z) computation

time and O(min(logp,loglogn)) communication
rounds, and the second selection algorithm runs
in O(%log p) computation time and a constant
number of communication rounds. Furthermore,
we presented a sorting algorithm which runs in
O(%logn) computation time and constant com-

munication rounds for & > P2
In the near future, we implement these algo-

rithms on a cluster of PCs, and verify the advan-
tage of our algorithms.

References

(1] L. Al-furaik, S. Aluru, S. Goil, and S. Ranka.
Practical algorithms for selection on coarse-
grained parallel computers. In Proc. 10th
International Parallel Processing Symposium,

pages 309-313, 1996.

[2] D. A. Bader and J. J&J4. Practical parallel
algorithms for dynamic data redistribution,
median finding and selection. In Proc. 10th
International Parallel Processing Symposium,
pages 292-301, 1996.

[3] A. Baumker, W. Dittrich, F. Meyer auf der
Heide, and I. Rieping. Realistic parallel algo-
rithms: Priority queue operations and selec-
tion for the BSP model. In Proc. Second In-
ternational Euro-Par Conference, pages 369~
376, 1996.

[4] M. Blum, R.W. Floyd, V.R. Pratt, R.L.
Rivest, and R.E. Tarjan. Time bounds for
selection. Journal of Commputer and System
Sciences, 7(4):448-461, 1972.

[5] F. Dehne, A. Fabri, and A. Rau-Chaplin.
Scalable parallel computational geometry for
coarse grained multicomputers. In Proc.
ACM Symposium on Computational Geome-
try, pages 298-307, 1993.

[6] A.V. Gerbessiotis and C.J. Siniolakis. Selec-
tion on the Bulk-Synchronous Parallel model
with applications to priority queues. In Proc.
1996 International Conference on Parallel
and Distributed Processing Techniques and
Applications, April 1996.

[7] A.V. Gerbessiotis and L.G. Valiant. Di-
rect bluk-synchoronous paralle algorithms. In
Proc. 3rd Scandinavian Workshop on Algo-
rithm Theory, pages 1-18, 1992.

[8] M. T. Goodrich. Communication-efficient
parallel sorting. In Proc. 28th annual ACM
Symposium on Theory of Computing, 1993.

[9] B. H. H. Juurlink and H. A. G. Wijshoff. A
quantitative comparison of parallel compu-
tation models. In Proc. 8th Symposium on
Parallel Algorithms and Architechtures, pages
13-23, 1996.

[10] L. G. Valiant. A bridging model for parallel
computation. Communication of the ACM,
33(8):103-111, 1990.

— 136 —

