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This paper gives a componentwise existence and nonexistence theorem for a solution of nonlinear

equations.

The theorem is applied to algebraic polynomials,and existence and nonexistence circular

regions for the zeros of the polynomial are obtained. The results improve those of Alefeld [1],

Smith{7] and Yamamoto[9-11,13] for distinct approximations. Finally, the results are illustrated

with several examples.



1. Introduction

There are mahyr existence  theorems for sclutions of
nonlinear equations which are applicable to componentwice
error estimates of an approximate solution obtained by
some method(cf.Ortega and Rheinboldt[5],Schroder[6],
Urabe([8],etc.). Among others, in [9—13], Yamamoto obtained
some related results and recently Alefeld[1] generalized a
result of[13].

In this paper, in §3 after preliminary section( § 2), we
shall give an "existence and nonexistence theorem for a
solution of the equation under Kantorovich type
assumptions which are weaker than those pf [1] and [9-11,
13].The results seems to be new and sharper. ‘

Next, in ¢4, we shall apply our results to algehraic
polynomials tc obtain a Gerschgorin-type existence theorem
of solutions under computationally verifiable conditions.
The assumptioﬁs are stronger +than Smith’s theorem[7].
However, our result guarantees existence of a solution in
each of n circular disks Di’ i=1,2,...,n, while Smith’s

theorem only asserts that any connected component of the
union of n circular regions ri, consisting just m disks,

contains exactly m zeros.

Finally, in §5, our results will be illustrated with
numerical examples.
2. Preliminaries

Throughout this paper, according to Schroder[5], Urabe
[8] and Yamamoto[9,13], we use the following notation and

definitions.
Let
S ’ -~ 11 XN
x=(x;),y=(y;)eR", A=<aij>,B=(bij)eRnxn. H=(h; ;) )eRr™

where.Hz(h. ) is.a third order tensor(a bilinear

ijk
operator). We define

»Ixl= (Ix; 1), p(x,y)=vlx-¥],
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\’[A]'-'(Iai‘j”r P(A,B)=v[A-B], v[H}]=(|hijk”'

We write '
X 2y or Yy S X, if xizyi, i:l,z,,.‘,n
A 2B or B s A, if aijz bij’ i,j=1,2,...4n

H 2 0 OI‘ 0 s H, if hi‘jkzo .” i’j’kzl,z,c‘t’nl

For a nonnegative vector v20, we put
U(x%),v)=(xer"| p(x(9),x)5v }.
In [11], Yamamoto gave the following relations for a
matrix K=(mij) and a third)order'tensor H=(hijk):

Kuslull gy, Hu®sllull hy
and
Kusllullx,,  Hu®sllufl;h,,
where
‘ n n n
Hun—m?quiI, xl—(jglkij) ) hl—(jgl kglhijk)
n
”9”1' i§1|ui|, nm—(m?x kij)’ h”—(??ﬁ hijk)°

Alefeld generalized those and obtained the following
Lemma 2.1 Let u:(ui)eRn, uzO,.K:(xij)eRnxn, K20,

H=(h; 5, )€R™V ™™ and  Hz0. Then it hold for p>1, q>1, q
+p"1=1, that
' 2
2.1
Ku g HUprq, Hu®g Hquhq, ( )
where
1
n —
Hull = £ fu, |P)P
P iz 4
1
n =
_(( v .4 4 n
xq—((jglxij) )E R ’
and
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hy=(( z zl 209 €

The inequalities (2.1) hold for p=w and q=1, or p=1 and

q=w, where x_=( max k. .)eR™ and h =( max hijk)ERn

15jsn ij 15j,ksn
Remark 2.1 From Lemma 2.1,we have
Kll.,= max [Kx||_slhe, |
P7xll =1 PT AP
p
and
[H]], = max [Hxy||. slih |l
Pl Elivii=l P AP
Furthermore, we have
4 n ‘ n
”K”1" mi_‘x i§1|kij|5”1ﬂ°”1r |H”1- I‘T;?}}i iglihi‘j}f's ”hmul’
K| £l s I=lheyll . IIHIL ﬁ 3 | by
K|l = max k. .|=llx |H|| & max h Is |
* i j=1 1 1w i j=1 k= Jk 17

3. An Existence and nonexistence Theorem for Solution

We consider the nonlinear equation
f(x)=0,  xCD eR™  (3.1)
where f 1is Frechet differentiable. We assume that A is a

nonsingular matrix which approximates f’(x(o)), H20 is a
third order teasor, and for any x,y €D

p(a™ler (x),a7 87 (v))sHP(x,¥), x,¥ €D.
We put
R=w[A71 (£ (x(0))-n)1,  e=vrale(x(0))7.
m=|[Kll,, ¢=lHl,, n=ll=ll
Theorem 3.1 Under the above notation and definitions,we

have the following:
(i) If

m<l, d=(1-m)2-2¢nz20, ‘ (3.2)
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and S(x(o),t*)z(xeRnlHx(o)—prst*}CD,hhere t*=2n/(1—m+JE).

Then there exists a solution x* of (3.1) in U(x(o),u),
where
u-s+t*x + l—t*zh
- q 2 q’
which is unique in

Sojux®wy o, i d=0
{int u(x'%),qynp, if d>0
where
\:'8+t**)c + ‘1— t**zh
- q 2 qQ’

and t*¥*=(1-m+/d) /<. o
(ii) There is no solution in int U(x(o),v), if x(o)#x*,

where

2¢
I+m+y l+m+2va

o= |lgll,, m=[|K|l, and ¢=|[H]||.

(1,1,...1)%

v =

Remark 3.1 The results of [1] and [9,13] have been derived
under stronger conditions

2
heglly<t  and  (1-lhgliy) 2-2Ingl llsli 20, (3.3)

than (3.2). Therefore it follows from Remark 2.1 that our
existence domain improves the ones obtained in [1],[9,13].
Remark 3.2 The nonexistence domain of Theorem 3.1

impfoves Alefeld’s one., In fact, he assumed that &= m;n gy
: i

>0 and gave nonexistence vdomain U(x(o),B) of solution,

where

B: 26 : 2 (1,1,00-1)1:
LHheq ll g+ V(L+lcyll,) 2+21h 1l 6

Clealy we have BgV.



4. An Existence and Nonexistence Theorem for Zeros of
Polynomials ' ' I '
In this section, we consider the nth-degree polynomial

.

n
P(z)=zn+a1zn—1+ voota = “1 (z—zi) (4.1)
i= .

with complex coefficients ay . To find all - zeros ,Z;

(i=1,2,...n) of the polynomial, Durand [2] and Kerner[4]
considered a simultaneous iteration process

(k-1)

P(xi )

(k) (k-1)_ ‘ L
i Xy T (xgk-1)_xgk-1))

Ji 1

X

§0)’Xé0)"..,X£O)'€Cn and xio)#xgo)

where x (imj) .
. ¢
This process " is called Durand-Kerner’s "method: or D-K
"method, although Weierstrass also considered this.
In [4], Kerner showed that the D-K method is equivalnt

to Newton’s method applied to the equation

F(x)=(F1(x), £4(x)y.een, £ (x))%20,  xec™  (4.3)
- i} = (-1 i .
where fi(x)-bi(x) aj bl(x) ( 1)j1<¥.<j. le xJi,
1 .
i=1,2,...,n.

In [9],Yamamot6 gave n circular regions,each of which
contains at least one zero of the polynomial. In this

section, as an application of Theorem 3.1, we shall give
new existence circular regions under a Kantorovich-type
condition and nonexistence circular regions with

nocondition.The radius of the former regions are in
general smaller than those of Smith and Yamamoto. '

We put
(1) (0) -
£, = |x; -X . | n= Y =,
i i i ! j=1 1
— 1 (0)__(0) -1 _
By = lxi TmxgT T B2 pax B
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and

a=ng.
Let H= (hle) be defined as follows 7
B(1+ 281 n-2Z, if jwk,izj or jmk, izk
hyje ={8%(1+ 2822y Jrkey ik, ik
0 if j=k.
Furthermore, we put '
he { 2a2 (1+2a/(n- 2))P" 3+2a(1+2a/(n 2)72,  na3
2a, n=2
and - '

23(1+ 2870~ 2+zns (1+ )n 3 . nz3

«=|[H||{= max Z h
1 Jrk i ijk” 2 B8 , - n=2.

Theorem 4.1 (1)If hsl1/2, then we have the féllow}ng:
(1) In each closed disk .
o2

. _,(0) - _1
r; : |z z3 I ¢:=8. + 5 t (hoo)i

there exists at least one zero z(o) of P(z).

(2) Any connected component of the union of the disk

~ ~ 2
, . _0) o T 1 %%
T 122 O e = = g0 4 (), -
where t¥¥- 1% i—Zh ‘and h -(maxh k)GR consisting of

. . i, J

Jjust m dlsks contalns exactly m zeros of P(z). ,
Furthermore,lf h<1/2, then all the =zeros of P(z) are
simple. i - ' ' '

(ii) In each open disk

) _ ) 2q
T < T+/1+2(n-1)ve
there is no zeros of P(z), where «=max &; .
: At ol s

5.Nuperical Bxamplex
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In this section, we shall illustrate our results with
some examples. '
Examplex 1([11][1]). We first consider the algebraic
eigenvalue problem ‘
- Ty=ay (5:1)

1 1 '~ 0.5
T=| 1 1 0.25

0.5 0.25 2 ‘
and X and y are eigenvalue and eigenvector of T,

where

LKespectively. We assume that y:(yi)eRn satisfies~HyHg=

X {yil =1. Let x=(yyy..+,¥,5A). Then (5.1) can be written
1=
in the form

(o) = (T-AI)y —(
fix)= ( (1-lixliz) /2 ) =0
- Furthermore, we have

f’(X)z(T—éI -y ) ,

-y 0
0,..,0 -1 0,..,0 0] -1
f”(mz(o 0 .. 0 ey
21,0,..,0 0,..,-1"0 o/ .

We choose an initial approximation vx(0)=(—0.7,0.7,
0.15,0.0) and put A:f’(x(o)). Then we have

K=0, H=w[f’ (= 0))7 e (x(0))7, e=pprr (x{0))~1e(x(0))y,
Furthermore, we choose p=1,q=w.Then we obtain |[[H||,|l=]l,=

0.4074514<1/2. We can thus conclude that there exists a

solution x* in U(X(O),u), where ,
u=( 0.0475545, 0.0293976, 0.1691796, 0.0271919)

which is unique in U(x(o);u), where

G:( 0.0934822, 0.0491608, 0.2014925, 0.0676589
It is interseting to remark that thansHm=O.7518750 and

”thIHsH1=Oa5163171, so that the conditions of Corollary




3.2 in [1] and Theorem 1 in [13] are not satisifed.
Hence, existence . of a solution can not be guaranteed by
results of [1]1[13].

Example 2([9]1) .Consider the polynomial

P(2)=25-1024+4353-10422+1505-100= (5-2) (22-22+5) (22-62+10)
We choose approximate roots of P(z)
21=(3.00010,1.00010),z2=(3.00000,—0;99990),z3=(0.99990,

2.00000),z4=(0.99990,—2.000Q0),z5;(2.00010,0.00000)

Smith’s radii of circular regions containing all the zeros
of P(z) are

r, r, r, T, rg
0.0018920 0.0013537 0.0013401 0.0013398 0.0011174
Since h=0.0019982<1/2, we can use Theorem 4.1 to give
improvea radii :

d, d, d, - d, CE dg
0.0003791 0.0002714  0.0002687 0.0002687 0.0002242
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