NANRT -V R _
avea—z, vy 9710
(1995. 3. 9)

BB EAFOHOBIEE AV ORELFEE
gt AR RE M=t

T RERRY: TN TR { BB TR
F 606-01 HifbriA s X EH AN T 464-01 BTN

ERERE R 2 BEEIC X DR « B D 2 D ORIRO X WHINEELITFE R RET 5. FRBEE
194 7 A CHEFCE 582 =y F ECORFEREX 5o Hc3—KEBEH 32, {EO—IKIE
LeWAED, FRFY FO—WOY v F ZIEL A LU R T 5, —KEROZ>OEBES
B — 7 AICEERT 5o K & AT, SRS OELHE 2 /NS Y 4 X0 T — T e FwTHR
TE¥ b, AFEOFELC XY, {EHE (B3 ¥y b) ORE - FPFATZROBK T A=) X A% 1 BEEHT S
ROTERTE, BEE (24 €y V) Tl KAFROEUZ G CHEAEELZE I e TED,

Efficient lnitiakl Approximation Methods for
Division and Square Root Using a Multiply-Add Unit

Masayuki ITOt, Naofumi TAKAGI} and Shuzo YAJIMA7}

iDepartment of Information Science {Department of Information Engineering
Faculty of Engineering : Faculty of Engineering
Kyoto University, Kyoto 606-01, Japan Nagoya University, Nagoya 464-01, Japan

Efficient initial approximation methods for multiplicative division and square root are proposed.
A functional unit where one multiply-accumulate operation can be executed in one cycle is assumed.
An approximation is calculated from a linear function of a modified operand. The modification is
just some bit-inversions. Two coefficients of the linear function are read through table look-up. High-
precision approximations can be produced through comparatively small look-up tables. Our initial
approximation methods make only one calculation of converging algorithms yield double precision

(53-bits) quotients and square roots. They directly produce single precision (24-bits) quotients and
square roots. k

1 Introduction

With the increasing availability of high-speed
multiplication units, convergence-type algorithms
have become advantageous to the fast calcula-
tion of division and square root. Generally, con-
verging methods adopt an initial approximation
to the desired value and improve it by a converg-
ing algorithm, e.g., Newton-Raphson’s or Gold-
schmidt’s. Efficient initial approximations re-
duce the number of iterations of converging al-
gorithms and achieve high-speed division and
square root.

We deal with division and square root op-
erations on the mantissa of floating point num-
bers. We focus on generating initial approxima-
tions. We assume a functional unit on which one
multiply-accumulate operation on three fractional
numbers (A X B)+ C can be executed in one cy-
cle. Many functions can be calculated efficiently
on such a multiply-add unit. We propose effi-
cient initial approximation methods suitable for
such a multiply-add unit.

For the generation of initial approximations,
look-up tables are commonly used. As the de-
velopment of the VLSI technology, large size of
look-up tables can be practically used, which en-
ables fast division and square root by starting
with high-precision approximations.

The simplest way is directly reading an ini-
tial approximation to the desired value through
table look-up using some most significant dig-
its of an operand as an index [1]. Beside this
direct approximation method, a linear approx-
imation method can be employed. In this case
the table keeps the two coeflicients of the linear
function. The calculation of the linear function
requires one multiply-accumulate operation, and
the result is roughly twice as many bits of ac-
curacy as that achieved by the direct approxi-
mation method. As initial approximations for
division and square root, linear approximation
paying the penalty of one cycle seems to be most
efficient among polynomial approximations.

We propose new initial approximation meth-

ods for division and square root. Each method
is a modification of the linear approximation
and requires one multiply-accumulate operation.
High-precision approximations can be produéed
through comparatively small look-up tables. Our
methods make only one calculation of converg-
ing algorithms yield double precision (53-bits)
quotients and square roots. They directly pro-
duce single precision (24-bits) quotients and square
roots. They are effective for multiplicative al-
gorithms such as Newton-Raphson’s and Gold-
schmidt’s.

This report is organized as follows. In Sec-
tion 2, we review some general initial approxi-
mation methods. In Section 3, we propose new
initial approximation methods. In Section 4, we
compare our methods to the conventional meth-
ods from the viewpoint of precision and required
size of look-up tables. A conclusion is shown in
Section 5.

2 Conventional Methods

In this section, we review some conventional ini-
tial approximation methods for division and square
root. The simplest way is directly reading an ini-
tial approximation to the desired value through
table look-up. Linear approximation by a lin-
ear function whose two coeflicients are kept in a
look-up table can also be adopted.

Polynomial approximation by a polynomial
of degree n(> 2) may be employed [2]. It necds
n multiply-accumulate operations and the look-
up table must keep (n + 1) coefficients of the
polynomial. It is inefficient as an initial approx-
imation method, because errors decrease faster
by adopting an iterative higher order converging
algorithm such as the Newton-Raphson method.
For this reason, here we only discuss direct ap-
proximation (DA in short) and linear approxi-
mation (LA in short).

A. Reciprocal

Multiplicative division begins with an initial ap-
proximation Ry to the reciprocal of a given divi-
sor Y = [L.y1¥2+ " YmYm41--°], where 1 <Y <
2. R then has the form [0.17yrg---7]. After
Ro is formed, an iterative converging algorithm
is adopted to achieve the desired precision.

In the DA method, when the table is ad-
dressed with the m most significant bits of the
divisor Y, the look-up table keeps 2™ approxi-
mations for each of 2™ subintervals of Y. The
size of the table is 2™ x ¢ bits. To give the
best value for the subinterval [p, p+2~™), where
p = [Ll.y1y2 - - - Ym), the look-up table should con-
tain the value %(% + ml"—"') The worst error
occurs on the first interval p = 1. The total er-
ror of the DA method ep4 considering the error
due to storing only ¢ bits of Ro in the table is

1 — e
ICDA|=IRO“)—,|<2 m=lp 27t (1)

We can select any combination of m and ¢. Here,
in order to make the error term caused by stor-
ing ¢ bits in the table smaller than that caused
by using m bits to address the table, we adopt
a reasonable combination ¢t = m. Then ep, be-
comes
3 -m~-1
lepal < 5 -2 (2

and the table is of size 2™ x m bits.

The LA method adopts alinear function (-C;-

Y + Cq) for an initial approximation Rg. These
two coefficients C; and Cy are read through ta-
ble look-up addressed with the m most signifi-
cant bits of ¥ and have the length of ¢ bits for
each. It corresponds to decide the most appro-
priate linear functions for each of 2™ subinter-
vals [p , p+2~™). Therefore, the table is of size
2™ Xt X 2.

Now we decide C; and Cy. Let E(Y') be the
error function:

E(Y)=~C;-Y +Co - -}17 3)

Differentiating (3) yields E/(Y) = {5 —C;. Hence,

E(Y Yz = E(%) = Co—2VTr. (4)

To minimize | E(Y)|maz, errors of both endpoints
of each subinterval, i.e., E(p) and E(p + 2~™),
should have the same value and it should also
be equal to —E(Y)may. From these conditions
we get

Ciy = o
- przTm)
F2 - 5)
+27 1 /o (p42-™) (
{ Co = F——premmy — and
1 _om—
|E(Y)]ma.1: < ;3' "2 m=3, (6)

The total error of the linear approximation
€14 considering truncation errors due to storing
only t bits of the two coefficients in the table is

1 - —te —t
|€LA|<;3--2"2’" Spp-27ttlyomttl (7)

Substituting the worst case p = 1 and setting a
reasonable combination ¢t = 2m + 3 yields

leral < 27272 8)

and the table is of size (2m + 3) x 2™ x 2.

B. Square Root Reciprocal

Among many multiplicative square root meth-
ods, the Newton-Raphson method for calculat-
ing 1/V/X is commonly used due to its quadratic
convergence [3]. It begins with an initial approx-
imation Sy to the square root reciprocal of a
given operand X = [l.z1%2+ TmTm41 -] AL
ter iterations of the converging formula to achieve
the desired precision, it is multiplied by X to ob-
tain VX.

In the case of the DA method for square root
reciprocal, we use an m-bits-in, {-bits-out look-
up table for producing Sp as the case of recipro-
cal. For square root, however, m bits index for
the table consists of the (m — 1) most significant
bits of the mantissa X, i.e., [z17223 - 2p-1],
and the last bit of the exponent part of the orig-
inal floating point number [3]. This is because
the square root of X and X/2 differ by a factor
of /2 unlike reciprocal. In other words, initial
approximation So depends on whether the ex-
ponent part of an original floating point number

is even 'or odd. Sp has the form [0.1sy52--- 3]
satisfying 1/2 < Sp < 1. To give the best value
for the subinterval [u,u + 27™*1), where u =
[l.z122 -+ Tm—1], the look-up table should con-
tain the value 1(1/v/u 4 1/vu +2-7¥7). The
worst error occurs on the first subinterval v = 1.
The total error of this DA method ép,4 consid-
ering the error due to storing only ¢ bits in the
table is

l6pal < 27™ "1 427172 (9)

Setting a reasonable combination t = m yields

(10)

3 m-
l6pal < 5-277

and the table is of size 2™ X m bits.

The LA method for square root reciprocal
adopts a linear function (—D; - X + Dg). These
two coefficients D; and Dg are read through ta-
ble look-up addressed with the (m — 1) most
significant bits of X together with the last bit
of the exponent, and have the length of ¢ bits
for each. Adopting the same scheme in the case
of reciprocal, we decide D; and Dy and get the
total error of the LA method 4, 4:

D,
Dq
3
‘6LAl < 4u2\/ﬂ

Substituting the worst case v = 1 and setting
t = 2m + 2 yields:

1
V(e (Va2 mi)
Z’IW +D;-%+3(2Dy)5 and
; (11)
27Im=2 gm0l (12)

Il

l6pal < 272"

(13)

and the table is of size 2™ x (2m + 2) x 2.

3 New Initial Approximation
Methods

In this section we propose new initial approx-
imation methods. Each method is a modifica-
tion of the linear approximation and we call it .
ML method in-short. It requires one multiply-

accumulate operation and can be executed in

one cycle on a multiply-add unit. High-precision
approximations can be produced through com-
pa.fa.tivcly small look-up tables. Our methods
make only one calculation of converging algo-
rithms yield double precision (53-bits) quotients
and square roots. They directly produce single
precision (24-bits) quotients and square roots.

A. Reciprocal

In the case of the LA method for the reciprocal
of a given divisor Y = [L.y1y2* * Ym¥ms1++} @
linear function (—Cj Y + Cp) has been adopted.
Here we adopt a modified linear function [A; -
(2p+ 2™ — Y) 4+ Ao] for the approximation to
1/Y. Recall that p = [1.y392 -+ Ym]. Since Co =~
Cy1-(2p+2™™) in the LA method, 4; - (2p +
2™ — Y) can form almost the same value as
(—=C1-Y + Co) by setting A; ~ Cy. We can use
Ag to improve the approximation.
We form (2p + 2~™ — Y') as follows. Let

q = [0-0 0 -0 Ymy1Ym+2Ym43-- ']1
P = [Lyiga---yml], and
q’ = [0.0 0 ---0 §m+1ym+’lym+3 i ']a

where 0 = —1 and 1 = 0. Then ¥ = p+q=
P’ + ¢ and |¢'| < 2™~ 1. We get the relation
2p+2 " -Y=p -¢
= [Lyyz - YmImsrImt2dmes),
where 1 = 0 and 0 = 1. Thus (2p+2™™ -Y)
can be obtained only by inverting less significant
bits than y,, in Y.
To determine A; and Ag, we calculate [1/Y —
Ci-(2p+2™™ -Y)]
-1
v Ci-(2p+2™-Y)
1 (p+27™)-9q)

p+q p-(p+27m)
1 9.1 1 q
= —-(1+4~= —f - —_—
P (p) P p-(p+2‘”‘)]
1 q q 1 q 2™
= (-4 4L)= 4. +
Gt) == %1+)7
2 —-m
q_’q'z' -3m
— p:} _|_0(2 3)

2—2111.—-2 12 _
—+ o270
P P

(14)

(14) indicates that the approximation error
can become smaller than 273™ by setting

2—2m-=2

= C;—- and
A P (15)
4 = L
We use an m-bits-in table for A;. As Ag

depends on both p and ¢, the table for Ag should
be addressed with the m, most signiﬁca.ﬁt bits
of p and the m,; most significant bits of q. Let
5p(6p] < 27™P71) and 6,(]6,] < 27™™971) be
errors coming from using only m, and m, bits
for the index the table respectively. Then,

”? ! 5 2 ”
o~ &1 = 158 = %l
< (3 .9~mp—1 4. 9.9 ™Mq 4 2—27!1.,) .9—-2m~2
(16)

Suppose the table width for Ay and Ao be t; and
to respectively. From (16) and |¢'] < 27™"1, the
total error of the modified linear approximation
ey becomes

lemrl < (3-27™p71 £ 2.27™a 4 97 2ma
2—to—l) X 2—2m—2 + 2—t1—-1 + O(Z-Sm). (17)

In order to make the total size of two look-up
tables nearly even to the case of the LA method,
weset m, = |3], my = [F], to = [F]+
1,and t; = | %2] + 4. Then,

|€MLI < 2—2.5m

(18)

and the total table size is 2™ x (3m + 5) bits.
This result shows that the ML method is
more effective than the LA methed when m > 4.
For instance, when m = 10, the ML method
produces 25 correct bits using 35K bits table,
which is three bits better approximation using
24% smaller table than that by the LA method.

B. Square Root Reciprocal

In the case of square root reciprocal, we adopt
a modified linear function [By - 3(3u+3-2"™ -

X) + Bg] for an approximation to 1/ VX, where
X = [la1z2 -+ Tm—1Zm - -+]. Recall that u =
[l..’l)lzz .. '-'Um—I]- Since Dg ~ Dy - (3u +3.27™)
in the LA method, By - (3u + % L27m %—) can
form almost the same value as (—Dy - X + Dy)
by setting B; ~ 2D;. We can use Bp to improve
the approximation.

We form (3u + -‘3 L27™ — %) as follows. Let

v = [0.00 0 TmTms1Tmt2 "),
v = [layzy- - Tpm-ql], and
v = [0.00 -0 ZTpnTmi1Tmiz),

where 0 = ~1and 1 = 0. Then X = u+v =
o' + ¢ and |v'] < 27™. We get the relation
3 3 X , v

— — _m.—-—= —_— —
gtt g2 2 =73

= [1..'171:1)2 T 1Em T T 1Tmtz ']7

where 1 = 0 and 0 = 1. Thus we need only small

additional hardware to obtain (gu-l- %-2"” - % .
To determine By and By, we calculate [1/vX —

Di-Gut -

1 3 3 X
e — 2D (g 2 g D
7x e Gutg o)
_ 1 Bu—-X)+3-27™
T outv Vo (ut 2 (Va + Vu + 2-m)
1 v 302
= (G s taegm) et
—m 1 3.92-m+1 5.92-2m+2)
3G m T mea Y e)
3v? — 3p. 27+l _ g72ml —3m43
- 8“2\/’&- +0(2)
5.92-2m 31’/2 _ampd
= Save +—-———8u2ﬁ+o(2)- (19)

(19) indicates that the approximation error
can become smaller than 27243 by setting
3u'?

By =
Bo = 8uZ /u
We use an m-bits-in table for By. The m
bits consist of the (m — 1) most significant bits
of X and the last bit of the exponent. As By de-
pends on both u and v, the table for By should

5.2=2m
2D; + vy and (20)

be addressed with the (m, — 1) most significant
bits of » and the m, most significant bits of v
together with the last bit of the exponent. Let ¢;
and {o be the table width for By and By respec-
tively. Then the total error of the ML method
for square root reciprocal &7, becomes

3 5
I‘SMLI < g . ("2' . 2—m., + 2. 2‘7"'0 + 2—‘to—l) X
2—2m +2—t1-—1 +0(2—3m+3)‘ (21)

Settingmy = |3}, my = [F],t0 = [2] ,and {; =

|_5T"‘J + 3 results in:
|Earp| < 2725m (22)

and the total table size is 2™ x (3m+3) bits. This
result is very similar to the case of reciprocal
and shows that the ML method is more effective
than the LA method when m > 4. For instance,
when m = 10, the ML method gives three bits
better approximation using 25% smaller look-up
tables than the LA method.

C. Square Root

The ML method is so efficient that the gener-
ated approximation may already achieve the de-
sired precision. In such a case, the ML method
directly for v'X should be adopted and no con-
verging algorithm is needed. It forms v/X by one
multiply-accumulate operation, if look-up tables
of enough size can be used for the desired accu-
racy.

We first' consider the LA method directly
for /X in preparation for the ML method. It
adopts a linear function (E; + X + Ep). These
two coeflicients F;, Eg and the total error of the
LA method 1,4 is

— 1
b = v
Ey = 2ut2- " 6 /uvut 2=+ and
0= A(JurVurz—mF)

(23)

lpal <272t pu.27t "t 27t (24)
The ML method for v/ X adopts a modified
linear function [F - $(u+2"™ + X) + Fp], where

Fi = 2B -2 and
X e T (e
R o= -5

We can form 1 -(u+2"™ + X) as follows:

§(u+2"’"+X) =[lz122 Tmo1ZmTmTmir -+

(26)
Using look-up tables of the same size for the ML
method for 1/v/X, the total error of the ML
method for square root £pr7, becomes

!’61”[1' < 2—2.5m+1 (27)

and the total table sizc is 2™ X (3m + 3).

4 Comparisons

In this section, we compare the ML, method to
the DA and the LA method. We adopt the
Newton-Raphson method as converging algorithms
after each initial approximation. We show how
much precision can be obtained with equal num-
bers of iterations n on a multiply-add unit (MAU
in short). We discuss how many cycles and how
large look-up tables are required when we calcu-
late single precision and double precision quo-
tients and square roots for the IEEE standard.
The Newton-Raphson method for reciprocal
adopts Rp as an initial approximation and then
refine it by the following iterative formula:

R;=(2-Ri_1-Y) Ri_y. (28)

R; converges to 1/Y quadratically [3]. After n
iterations to achicve the desired accuracy, R, is
multiplied by a dividend Z, where 1 < Z < 2
to obtain a quotient. Calculations of (28) re-
quire two cycles on the MAU at each iteration.
Thus, n iterations need 2n cycles. When we
adopt the LA or the ML method, (2n+1) cycles
are required to form R, . Table 1 shows the re-
sult. The precision is evaluated by |- log, | R, —
1/Y]}, which shows the number of correct bits
of R,,.

When we calculate double precision {53-bits)
quotients, R, must keep 54 correct bits. From
Table 1, in order to achieve the precision of 54
bits with two iterations, m must be 14 for DA,
and 6 for LA and ML. Corresponding required

table sizes are 224K, 1.9K, and 1.5K bits respec-
tively. If we reduce the number of iterations into
one for high-speed division using larger look-up
tables, m will be 27, 13, and 11 for DA, LA, and
ML respectively. In this case, the corresponding
required table sizes are 3400M, 464K, and 76K
bits. By the ML method, we can reduce the re-
quired table size into about 3/4 to 1/6 of that
by the LA method and less than 1/150 of that
by the DA method. '

For single precision (24-bits) quotients, R,
must keep 25 correct bits. From Table 1, the ML
method requires only one cycle without adopting
the converging algorithm, if a table of size 35K
bits (m = 10) is available, while the LA method
needs 216K bits (m = 12). When we use the
converging algorithm once after the DA method
with two cycles, the required table size is 104K
bits (m = 13), which is still much larger than
that by the ML method alone with one cycle.

In the case of square root, we compare the
ML method to the DA and the LA method,
all of which are followed by the multiplicative
Newton-Raphson method (NR in short). Its it-
erative formula is S; = g’f—‘- (83— X-S%,)and
S; converges to 1/v/X quadratically. Each itera-
tion can be executed in three cycles on the MAU.
In the final (n-th) iteration, we should calcu-
late S, - X, which can also be done in three cy-
cle. Thus, n iterations of the formula involve 3n
multiplications. When we adopt the LA or the
ML method, (3n + 1) cycles are required on the
MAU. Table 2 shows the result. The precision
can be evaluated by |~ log; |Sx-X—v/X|], which
shows the number of correct bits of (S, - X).

When we calculate double precision square
roots, the result must keep 53 correct bits. From
Table 2, if we set the number of iterations n = 2,
the ML method requires 1.3K bits table (m =
6), while LA needs 4.0K bits(m = 7) and DA
needs 224K bits (m = 14). If we reduce the
number of iterations into one, the ML method
requires 156K bits (m = 12), while LA needs
448K bits (m = 13) and DA neceds 3400M bits

{(m = 27). By the ML method, we can reduce
the required table sizes into about 1/3 of that by
the LA method. The DA method is far inferior
to other two methods. It needs one calculation
of the converging algorithm to achieve the same
accuracy as that given by the LA method alone,
which is still worse than that by the ML method.
It is because the first iteration of the Newton-
Raphson method consuming three cycles is no
better than one multiply-accumulate operation
of the initial approximation requiring only one
cycle.

For single precision square roots, the ML
method directly for vX achieves the desired ac-
curacy with only one cycle, if a look-up table of
size 33K bits (m = 10) is available.

5 Conclusion

We have proposed new initial approximation meth-
ods for multiplicative division and square root.
Each of our methods is a modification of the
conventional lincar approximation and requires
one multiply-accumulate operation. Since con-
verging algorithms for division and square root
use multiplication as a basic operation, the func-
tional unit containing a high-speed multiplier
can also be utilized for producing initial approx-
imation.

Our initial approximation mcthods reduce
the size of look-up tables drastically. One multiply-
accumulate operation for initial approximations
is worth the first iteration of the Newton-Raphson
method consuming a few cycles (two for division
and three for square root). Our methods can
produce even better approximations than the di-
rect approximation followed by the first iteration
of the converging algorithms.

- For the calculation of double precision quo-
tients and square roots, our method requires 3/4
to 1/6 the size of look-up tables in comparison
to the conventional linear approximation. Con-
sequently, the necessary number of iterations of
the converging algorithm becomes only one if

76K bits and 156K bits table for division and
square root are available respectively.

In the case of single precision, our approxi-
mation can directly achieve the desired precision
by one multiply-accumulate operation. Look-up
tables of practical size 35K bits and 33K bits
are required for division and square root respec-
tively.

Acknowledgements

The authors would like to thank the members of
Professor Yajima’s Laboratory at Kyoto Univer-
sity for their valuable comments on this work.

References

[1] Debjit DasSarma and David W. Matula,
Measuring the accuracy of ROM reciprocal
tables, IEEE Trans. on Computers, Vol.43,
No.8(Aug.1994),932-940

Ned Anderson, Minimum relative error ap-
proximations for 1/t, Numerische Mathe-
matic 54 (1988), 117-124

(2]

[3] Peter Soderquist and Miram Leeser, Area
and Performance Tradeofls in Floating-
Point Division and Square Root Implemen-

tations, Technical Report EE-CEG-94-5

Table 1 : The number of correct bits of reciprocals with n iterations using an m-bits-in table

Method || n=0 n=1 n=2 n=3 Table size
DA — 2m | 4m+1| 8m+42 m X 2™
LA 2m+2 | 4m+4 | 8m+8 | 16m+16 || (4m + 6) x 2™
ML 2.5m | 5m 10m 20m (3m +5) x 2™

Table 2: The number of correct bits of square roots with n iterations using an m-bits-in table

Method n=0 n=1 n=2 n=3 Table size
DA+NR — 2m 4m-1 | 8m-1 m X 2™
LA+NR — 4m+1 | 8m+3 | 16m+5 || (dm +4) x 2™
ML+NR — 5m-3 | 10m—6 | 20m—13 || (3m 4 3) x 2™
ML for VX [2.5m-1| — — — (3m+3)x 2™

