NANWNT F—2 R
I Ea—-F4 T
(1996. 8. 29)

Implementing MPI in a High-Performance,
Multithreaded Language MPG+

Francis B. O’CARROLL,! ATSUSHI HoRi,'" HIROSHI TEZUKA, '
YUTAKA ISHIKAWA' and SATOSHI MATSUOKA!

‘We have ported the MPICH implementation of MPI to the high-performance, multithreaded
programming language MPC++. We discuss our modifications to the design of MPICH to
support multiple threads. MPICH now runs experimentally on top of MPGH on a Sun
workstation cluster connected by Myrinet and achieves higher performance than standard
MPICH on Myrinet TCP/IP on the same hardware.

1. Introduction

MPIY-?) is a standard message passing library
which, among many design goals, was designed
to be very portable and have a thread safe ap-
plication programmer interface. Portability in
a normal single threaded environment has been
demonstrated by the several implementations
of MPT available for a wide variety of hardware.
However, the implications of a thread safe and
reliable implementation of MPI are only now
being explored. The MPI-2% document notes
a few minor places in the original standard’s
API that are not thread safe and proposes sim-
ple fixes. The type of threading environment
envisioned for MPI and the semantics of MPI
in such an environment are explored informally
in® and more formally in®®). Thread safe, re-
liable, multithreaded implementations of MPI
for particular environments are only just now
being developed®. Furthermore, the wide va-
riety of experimental and production threaded
environments now available poses a challenge
to creating a portable design that can also be
portable across different multithreaded environ-
ments.

As a first step to a portable multithreaded im-
plementation of MPI we have implemented MPI
in the the multithreaded language MPGH by
porting the MPICH version of MPI, and taken
advantage of MPGH-’s non-preemptive thread
model to design a multithreaded MPI more

t System Twenty One, Inc
tt Tsukuba Research Center, Real World Computing
Partnership
t1t Department of Information Engineering, University
of Tokyo

—141-

easily than would be possible in other multi-
threaded environments.

2. Overview of MPICH

We chose the MPICH implementation of MPI
because it has a clean, layered design for porta-
bility to different systems and there was some
documentation®:®)-") on its software architec-
ture and how to port it. In addition it has some
pseudocode support for threads in the source
code.

User Program

MPI Bindings (API)

Device Independent Internals

Abstract Device Interface (ADI)

{7 Channel Interface
]

' MPID_ControlMsgAvail

E MPID_RecvAnyControl
! MPID_SendControl
1 MPID_SendChannel

Fig. 1 MPICH software architecture

The software structure of MPICH is illus-
trated in Fig. 1. The user program calls MPI
through an application programmer interface,
or MPI bindings, which are the C or FORTRAN
function entry points (all functions at this level
are of the form MPI_x). The API calls a de-
vice independent layer of internals which imple-
ment concepts such as MPI’s datatypes, groups,
topologies and device independent parts of the

62 —24

communicator concept. This layer communi-
cates with the hardware through an Abstract
Device Interface (ADI) which is feature rich
abstraction (over 30 functions) of communi-
cation device operations modes and protocols.
The ADI is implemented with device dependent
code. If the underlying hardware provides some
of the advanced (high performance) features of
the ADI they may be implemented directly;
other features of the ADI must be software em-
ulated if the hardware does not support them.
These ADI entry points are prefixed MPID_.
Each type of hardware needs its own im-
plementation of the ADI, and the highest
performance implementations of MPICH on
each platform have highly tuned the inter-
nals of the ADI. However, MPICH also pro-
vides a highly simplified general purpose im-
plementation of the ADI called the channel
device. The channel device is almost all
software emulation and the hardware depen-
dent code has been distilled into the follow-
ing five functions: MPID_ControlMsgAvail is
a non-blocking check for any waiting control
message. MPID_RecvAnyControl is a block-
ing receipt of any incoming control message.
MPID_SendControl is a non-blocking send of a
short control message. The blocking operations
MPID_SendChannel and MPID_RecvChannel are
for large messages and won’t be further consid-

ered here.
Thread 1
MPI_Recv

Thread 2
MPI_Rec
Blocked N\ //

lur{éxpected queue l
H

ﬁected queue l
[

Channel Interfacel (Polling)
y. 4

External /

Messages

Fig. 2 Operation of MPICH with threads, as
envisioned by original pseudocode

ADI

critical
region

The operation of the channel device is shown
in Fig. 2. The channel device uses polling.
From the point of view of a receiving node, mes-

sages arrive from other nodes without warning
and we have to deliver them to the the match-
ing (source processor number, message tag, and
communicator context) calls to an MPI_Recv
type function (blocking or non-blocking mode,
buffered, synchronized, ready, or part of a col-
lective operation). Messages are regarded as
ezpected or unezpected. An expected messages
is one for which some type of receive has already
started executing (on some thread), and an un-
expected message is one for which no matching
receive has been executed yet on any thread.

The MPICH ADI®) receives all messages
without regard for whether the application is
ready for them or not. The ADI is invoked
by some form or receive function and then re-
ceives any outstanding messages, and either
matches them with the expected message han-
dles, or else puts the messages on the unex-
pected queue. But, for a blocking receive, it
will only exit the ADI when the corresponding
message arrives.

Since the MPICH ADI is originally written
for a single threaded process it uses polling to
receive messages. To receive a message, the
user calls some form of MPI_Recv. The request
is passed down to the device dependent layer
which first checks the unexpected queue to see if
a matching message has already been received.
If so, the message is dequeued and passed back
to the user. If not, a message handle record-
ing the request is created and stored on the ex-
pected queue. Then the ADI is called which
polls for any available messages. As each mes-
sage is received, it is placed on the expected or
unexpected queues as appropriate. Only when
a message matching the original MPI Recv is
received does the polling stop and the original
request is satisfied.

The previous description applies to single-
threaded operation. For multiple threads, op-
erations on the queues must be implemented
in a critical region. The original MPICH code
has some pseudocode to create a critical region
around the queue operations. In Fig. 2, thread
1 has locked the queues and is polling for mes-
sage 1. Thread 2 is blocked trying to access the
queues. If thread 1 receives message 2 before
message 1, message 2 will be queued on the un-
expected queue and thread 2 cannot receive it
until message 1 has been received.

—142—

3. Interaction of Threads and Commu-
nication

MPICH’s pseudocode does not indicate what
type of threading model it was written for. The
term blocking for the channel interface functions
in the context of other threads, and the opera-
tion of the thread scheduler, must be defined.

Considering threading models and their in-
teraction with interprocessor communication,
threads can be implemented at the kernel level
or the user level. Similarly interprocessor com-
munications can be implemented at kernel level
or user level.

Case 1: If the kernel handles both threads and
communications, then a thread blocked waiting
for communication will only block one thread,
but switching to another thread will be expen-
sive. And example of this style is the LWP
(light weight process) of SunOS.

Case 2: If threads are implemented at user
level but communication is handled by the ker-
nel, then any communication attempt will block
all threads. An example of this is POSIX
pthreads running in a Unix environment.

Case 3: If both threads and communications
are coordinated and done at user level (I/0 will
have to be handled by other means), then wait-
ing for a communication event will only block a
single thread and a thread context switch will
occur very cheaply.

Since case 3 applies to our implementation of
MPGH- on a workstation cluster, we expect that
a multithreaded MPI will achieve high perfor-
mance.

4. First Implementation

As a first implementation of the channel in-
terface of the MPICH ADI, we need to provide
a way to transport messages, a way to synchro-
nize sending and receiving threads.

MPGH provides an extended syntax* for syn-
chronous and asynchronous local and remote
function invocation (creation of threads), and
entry and token types for message passing.

The remote function call was used to trans-
port control messages as function arguments.

* Version 2 of MPCGH- eliminates language extensions.
The same capabilities are provided by the Multi
Thread Template Library (MTTL), hence accessi-
ble to any C++ program through standard syntax.

—143—

We define a class MPID_Sync which can be
used for the key operation of synchronizing mes-
sage exchange between independent threads.

Thread 1
MPI_Recv

Blocked b /L

Thread 2
MPI_Recv

ADI
’ . unexpected queue
critical [|/ j
region [5 expected queve |
{
Thread MPID_ControlMsgAvail
. . MPID_RecvAnyControl
Synchronization
Object Sye
v MPID_SendContrxol

remote thread
invocation

Fig. 3 Operation of MPICH with in MPCH-

class MPID_Sync{
private:

int available;

entry (MPID_PKT_T) ee;

public:
MPID_Sync(){available = 0;}

MPID_PKT_T read() {
MPID_PKT_T vv;
ee(vv):

available = 0;
return vv;

}

void write(MPID_PKT_T vv){
available = 1;
ee <- [vv];

}

int avail() {
yield();

return available;
}

}

MPID_Sync defines three member functions,
read(), write() and avail{(). They corre-
spond to the core of MPID_RecvAnyControl,
MPID_SendControl and MPID_ControlMsgA vail.

Suppose that a PEO wishes to send a mes-

sage (of type MPID_PKT_T) to PE1. Assume
that PEO knows the location of an MPID_Sync
object on PE1l. Then PEQ creates a mes-
sage packet of type MPID PKT.T and then
passes the packet as a function parameter
by remotely invoking the write function on
PE1’s MPID_Sync object. It is invoked asyn-
chronously to satisfy the non-blocking require-
ments of MPID_SendControl.

Reception of the message works as follows.
When PE1 invokes MPID_Sync::read(), it will
either return immediately if the message is
available, or it will block until the message is re-
ceived. To avoid blocking the receiving thread,
if PE1 wants to do a nonblocking check of mes-
sage availability on a particular MPID_Sync ob-
ject, it calls the object’s avail() member func-
tion.

When avail() is called, there are three possi-
bilities. Either the write() has already been exe-
cuted, so MPID _Sync::available will be nonzero,
or it is possible that there is a remotely invoked
thread waiting to execute the write(). However,
unless the thread calling avail() yields, such a
waiting thread will never have a chance to be
executed. Also, even if there are no such wait-
ing threads, there may be other MPI threads
which need a chance to run. Hence, avail() first
vields, to give messages a chance to arrive. We
rely on the scheduler being fair and eventually
passing control back to this thread. The code
for avail could also be

if (lavailable)

yield();

return available;

Such code would only yield control to another
thread if absolutely necessary.)

A runtime library remote memory copy (get)
was used for bulk data transfer of large mes-
sages to implement MPID_RecvChannel and
MPID_SendChannel.

5. Performance

We have compared our implementation of
the above design with standard MPICH. The
code above has been used to implement MPI
in MPGH running on a workstation cluster
at RWCP. The workstations are Sun SS20
model 71 equipped with LANai 2.3 interfaces
to Myrinet switches, and also 100 Mbps Eth-
ernet, for comparison. Theoretical maximum

throughput of Myrinet is 640 Mbps.

In this environment, the MPGH-language im-
plementation uses the PM® communications li-
brary. PM does not use the Myrinet API (nor
TCP/IP) and achieves higher bandwidth and
lower latency than the Myrient API.

Standard MPICH runs on workstation clus-
ters using Unix sockets, hence it uses TCP/IP
for communication. Myrinet supplies a
TCP/IP driver for the LANai hardware.
We measureed the performance of standard
MPICH using Myrinet’s TCP/IP driver. Ta-
ble 1 shows maximum bandwidth was about
8.7 million bytes per second. Using MPGH and
PM we achieve about 24 million bytes per sec-
ond. MPC++ makes much better use of the
Myrinet bandwidth. Interestingly, MPICH on
TCP/IP over Myrinet is only about 35% faster
than over 100 Mbps Ethernet.

Thread 1
PI_Recv(3)
MPI_Recv(1) Blvcketl¥

ADI r Unexpected J

[Expected I

)

Polling for message matching (3)

Fig. 4 Deadlock in ADI

6. Deficiencies of First Design

We have already mentioned that MPI block-
ing calls may block each other even if on dif-
ferent threads since only one thread is in the
ADI at any one time, and it polls until it finds

Table 1 Bandwidth (10% bytes per second)

Message Size | MPCH TCP/IP TCP/IP
(bytes) { Myrinet Myrinet 100 Mbps
1 0.005 0.001 0.001

4 0.022 0.005 0.006

16 0.090 0.022 0.025

64 0.353 0.090 0.100

256 0.772 0.353 0.383
1024 2.578 1.198 1.430
4096 6.043 3.025 3.127
16384 15.069 5.454 5.246
65536 22.149 8.148 6.695
262144 24.032 8.688 6.432

—144—

Thread 2

@p@@@@w

Thread | Remote Thread
MPI_Recv(l) Invokation from
MPI_Send(2) another E
ADI \ \
Unexpected Queue
Dispatched by

MPID_Check_incoming

Expected Queue

FE55D, QO

Blocked Receives
Woken Directly by
Remote Thread

Fig. 5 Better Multithreaded Design

the message matching the original receive which
invoked this thread, regardless of any threads
waiting to enter the ADI.

Figure 4 illustrates a possible dead-
lock. Suppose that another PE is execut-
ing the sequence MPI_Send(1); MPI_Recv(2);
MPI_Send(3); Thread 1 is busy polling for a
message matching a tag value of 3. It has al-
ready received a message with a tag value of 1
from another PE, and placed that on the un-
expected list. Thread 2 is waiting for thread
1 to exit the critical section so it can search
the queues and retrieve the message with tag
1. The other PE will never send tag 3 to wake
up thread 1 because it is waiting on a message
from the blocked thread 2.

7. More efficient Multithreaded De-
sign

Figure 5 shows a better design that avoids
deadlock. The same example would work as
follows. Now, each node on the queue is
a synchronization object. Thread 1 executes
MPI_Recv(3), locks the queues, does not find
a tag of 3, so creates a synchronization object
on the expected queue. It then unlocks the
queues and calls read() on the new object. Since
write() has not been called on the new object,
thread 1 blocks, allowing another thread to exe-

—145—

cute (in the original code, it would keep polling
for messages in the ADI). Now thread 2 tries to
MPI_Recv(1) and also blocks on a new, differ-
ent object. It was able to enter the ADI because
the queues are only locked for a short duration.
Polling has been removed.

Instead of polling, a remote thread from the
sending PE will synchronize with and wake up
the corresponding receiver. Now the remote PE
no longer knows the location of a single syn-
chronization object, so it cannot call write() di-
rectly. We implement (and modify) a routine
from the ADI called MPID_Check_incoming to
act as a dispatcher.

The remote PE asynchronously remotely in-
vokes MPID_Check incoming, passing the mes-
sage as an argument. MPID_Check incoming
locks the queues, searches for the synchroniza-
tion object of a matching receiver. If found
it detaches the object from the queue, unlocks
the queue and then calls write() on the object.
This will unblock the receiving thread (which is
blocked on read())and schedule it for execution.

If there is no match on the expected queue, it
creates a new object on the unexpected queue
and calls write(). When a later receive searches
the unexpected queue and finds a match, it will
call read() which will not block as the message
is already delivered.

This design not only removes deadlock from
the previous design, but also may result in lower
latency at the MPI user level.

8. Summary and Future Work

We have analyzed the architecture of the
MPICH implementation of MPI with respect
to a threaded environment and modified the
design to support multiple threads in MPGH
running on a workstation cluster. The first
design has been implemented and its perfor-
mance exceeds the standard MPICH on the
same hardware. MPGH-’s non-preemptive, user
level threads and thread-coordinated user level
communication library simplified the task of
porting and debugging. The next version of
MPICH in MPCH will be pure C++ and use
version 2 of MPGH- and its Multi Thread Tem-
plate Library, and will implement the improved
design.

References

1) Message-Passing Interface Forum: MPI: A
message passing interface standard, version 1.1
(June 1995).

2) Snir, M., Otto, S. W., Huss-Lederman, S.,
Walker, D. W. and Dongarra, J.: MPI: The
Complete Reference, MIT Press, Cambridge,
Massachusetts (1996).

3) Message-Passing Interface Forum: MPI-2: Ex-
tensions to the Message-Passing Interface
(Draft Proposal) (April 1996).

4) Gropp, W., Lusk, E. and Skjellum, A.: Using
MPI, MIT Press, Cambridge, Massachusetts
(1994).

5) Skjellum, A., Protopov, B. and Hebert, S.: A
Thread Taxonomy for MPI, Second MPI De-
veloper’s Conference Proceedings, Notre Dame,
Indiana, IEEE Computer Society Press, pp.50-
57 (1996).

6) Gropp, W. and Lusk, E.: MPICH Working
Note: Creating a new MPICH device using
the Channel interface, Technical report, Math-
ematics and Computer Science Division, Ar-
gonne National Laboratory (1995).

7) Gropp, W. and Lusk, E.: MPICH ADI Imple-
mentation Reference Manual, Technical report,
Mathematics and Computer Science Division,
Argonne National Laboratory (1995).

8) Tezuka, H., Hori, A. and Ishikawa, Y.: Design
and Implementation of PM: A Communication
Libaray for Workstation Cluster, JSPP’96, pp.
41-48 (1996). (In Japanese).

—146—

