NANRTF = DA o
arva—s4>y 8273
(2000. 8. 5)

Ihformation-propagate problem in neuron-computér

Hanxi ZHU, Tomoo AOYAMA*, Umpei NAGASHIMA **
- *The Faculty of Engineering, Miyazaki University
Gakuen Kibanadai-nishi 1-1, Miyazaki 889-2192, Japan
E-mail: aoyama_t@cc.miyazaki-u.ac.jp
**Computatlonal Science, National Institute for Advanced Interdisciplinary Research
1-1-4 Higashi, Tsukuba, Ibaraki 305-8562, Japan
E-mail: umpei @nair.go.jp

We studied a neuron-computer that was constructed of plural kinds of neural
networks. The architecture is designed to avoid von Neumann’s bottleneck and to evaluate
directly fuzzy logical formula that can’t represent by logical AND, OR, NOT operators. The
computer has two kinds of memories; one is the association memory that requires learning,
and another is the stack memory. We publish the stack’s construction techniques on use of
multi-layer neural networks with feedback loops. The techniques concern with
signal-propagations in the networks. In order to suppress accumulation of the error on the
signals, we proposed a neural network including step functions; and we .examined the
properties of a 2W-multi-valued memory.

—a-0rarv¥a— ¥ OEREIELE

R B, FER, RIBE R~

YHIS A TERERET TR
B EE R TIRBN e BESEEN AL & SIS 5E A

BRABEBD=2—-FNVAy NI~ 0o ENs=2—0ray¥a— % 3Rl
TERe ST —FFT7FvE /AR VDR INEAY 7 BT H72DICEREINT DT,
MEENASERAETFICL > TRERELR 77 VA HBER L EEFM T2, —a—uyay
Cao— 73" BEOEEZFHo, —2id%¥ %%%#%E R IR Y v 2 XAE)ThH D,
RAGEER =2 —FVAy NT—2 LIRBL—TE o7, ZORY v 7 OWBKEEER
To TOEMIIF Y T — 7 AEOEFIEBICET 2, EEHOBERBLINET 270
BEEBTEL=2—I VA P =2 21REL, 2EBELHMEAETY 2TELT,

—203—

1. Introduction

Many researchers have studied architectures for non-Neumann's computers because of
escaping its bottleneck. To avoid the bottleneck, someone began to develop neuron-based
computers. The computers have neurons and their connections that are constructed of the
learning. They have information processing facilities, and at the same time, they are like as
simplified brains to make inference.

We consider the neuron-computer to be constructed of plural kinds of neural networks
[1-5]. The logical construct is similar to a computer. The neural networks correspond to
resources in the computer, however, since neural networks have a learning facility, we don't
design the networks, but make them in the learning on use of truth tables.

There are logic formulas that can't be represented in the binary-logic operations. They
are as for multi-value or fuzzy logics, and are represented by the truth tables. If the
neuron-computer is adopted, they can be executed in their networks. Therefore, the
neuron-computer simulates more functions than that of computers based on the binary-logic.

2. Normal form of the logical function
2.1 Neural networks for disjunctive normal form

We discuss functions constructed of multi-layer neural networks. One network can
express any truth table on binary logic. Therefore, plural networks can represent any computer
resources. Any binary-logic formula has disjunctive and conjunctive normal forms. The
disjunctive normal form is a logical-OR of minimum product terms. The conjunctive normal
form is a logical-AND of maximum sum terms.

We show a neural network expression for the disjunctive normal form in figure 1. The

OR/AND parts are replaced by neural networks. Therefore, this is a network constructed of
the neural networks.

—
1 X or
o
—C
L1 q or
AND |—
L2— g
| or
o
L J
d ok

Figure 1. Disjunctive normal form expressed by a network
If we found a method to determine the connections between the neural networks by
learning data only, any binary-logic unit can be developed by the learning method. A key
point of the determination is the differential for input/output values of a neural network. That
is already published [6]. For three- layer network, the expression is that.
00/0X =Vf'Wg'
O is output of neural network. X is input data for neural network. V is matrix of the
connections between neurons on the 1st and 2nd layers. “f’” is the differential of simulation

function for neurons on 2nd layer. W is matrix between 2nd and 3rd layer. “g” is the function
on 3rd layer.

—204—

2.2 Neural network representations of computer memories

Neural networks have storage function originally. The function requires a learning that is
rather long time processing. Such storage isn’t suitable for stacking. Stack memories are
indispensable in information processing because of work-storages. Information must not be
stored in the memories by a learning state; where the memorizing must be a flash. Even if the
Processor is a neuron-computer, the storages are necessary. We must develop the storages in
neural networks.

A stack memory would be constructed by a feedback loop in networks. We developed
D-flip-flop, FIFO, and vector register by using multi-layer neural networks with a feedback
loop. The methods have published already, where we showed a truth table for a vector register
[2,3]. We can use the table as leaning data for BP algorithm. The vector register in super
computers can be constructed by neural network only. v

The idea is correct in logical world, certainly. However, we must pay very careful
attention to propagation of information. In large logic unit, information of neurons propagates
through many connection paths among neurons. If the information were transferred as
analogue value, propagation of exact information is very difficult. We found the difficulty in
feedback loops of the stack memory. We observed that the information was diminishing
quickly in the stack. We are sure that information maintenance logic is necessary in neuron
systems. In this system, since the information corresponds with the amplitude of output on
neurons; the maintenance logic must keep the amplitude.

3. Simulations of stacking memories
3.1 Binary memory

When a resource is constructed by a truth table, the important point is to minimize size of
the table. A practical method is introducing of a restriction; that is, all variables have one
value at that instant. Invalid or uncertain signal is regarded as a value. The restriction
suppresses the increasing of combinations for variables having plural values. On the other
hand, the number of the logic value is added by one. That is, nth logic is represented by
(n+1)th logic [S]. The restriction is not so heavy load on the neuro-computing. We show a
truth table for a memory in table 1. :

Table 1. Truth table for a memory (binary, 2W)

WE | ADR | Din | MO(in) | M1(in) | Out | MO(out) | M1(out)

1 0 {0,1} 1 {0,1} [{O0,1} [|* Din Ml(in)
1 {0,1} 1{0,1} |{0,1} t* MO@n) | Din

0 0 * {0,1} | {0,1} |MO(@in) | MO(in) | Ml(in)
1 * {0,1} | {0,1} | Ml(in) | MO(in) | MI(in)

In the table 1, “*” is invalid value, however, it must be defined in calculation of neural
network. We rewrote the table as following.

—205—

Table 2. Learning data for a neural network

Input data teaching data
WE | ADR | Din MO(in) | M1(in) | Out MO(out) | M1(out)
1 0.5 {0.5,1} | {0.5,1} | {0.5,1} | O Din MI(in)
1 {0.5,1} 1 {0.5,1} | {0.5,1} | O MO(in) | Din
05105 10 {0.5,1} | {0.5,1} | MO(in) | MO(in) | M1(in)
1 0 {0.5,1} | {0.5,1} | M1(in) | MO(in) | M1(in)

We made a neural network memorize table 2, where the numbers of neurons in the
network were 6, 8, and 3. The number of iterations is 10,001, and the maximum error is 0.023
at the end of iterations. After the learning, the network functions as a two-words-memory.
The simulation is listed in figure 2.

1.2

1

08

Q6
04

- 0 W P~ ® o WD~ D
—

Ll S o

Figure 2. A simulated result of 2W-memory

Cells in the memory are initialized by 0.5, and at first, a value “1” is written in MO, that
is a cell’s name. M1-cell is not written. After the setting, the MO is read by 20 times.

Upper line is the values for MO, middle line is outputs, and lower line is values of
M1-cell. The outputs are converged on near 0.8, that is recognized as “1” in case of the binary.
(“1” is between 0.75 and 1.0, and “0” is 0.75 to 0.25, and invalid is 0.25 to 0.0.) Since the
allowance amplitude is 0.25 on binary logic, memorized information is kept. However, it
must be emphasized that even if memorized value is ““1”, an output from the memory is 0.8.
The value in M1-cell, that is not operated, becomes invalid soon. We believe that the memory
is unstable.

3.2 Multi-value memory
On the neuron-computer, multi-value logics can be introduced easily. Therefore, in order
to improve mounting density on circuits, we try to adopt multi-value logic actively. We
believe that the multi-value must be the four. Because, the following relation is defined for
not-operator “~”": {~0,~a,~b,~1}=({ 1,b,a,0}. The four-value logic is similar to the binary than
the three. We examined a memory of the four-value logic. The amplitude is five kinds those
are {0,1/4,2/4,3/4,1}, where “0” is the invalid.

At first, values “3/4” and *“2/4” are written in MO and M1-cells, and a fetch-sequence is
repeated by four times. The sequence is to read MO-cell by 10 times and to do M1 by same
times. The test is for stability check of memorized information, and the result is listed in
figure 3.

-206—

1
08
08
04
0z

. :

0w o oo o~ 0 om Mo 0w ® M o m o~
- - - 8 N N O mT oA D WL DB BN~

Figure 3. Simulation result for 4-value logic memory: Fetch tests for 1/3 and 2/3 values

In the figure 3, the values in the neural network are 1, 0.75, 0.5, 0.25, and 0. The logic
value 2/3 is 0.75, and 1/3 is 0.5. At initial states, 2/3 and 1/3 are memorized certainly,
however with the progress of the time, the value of 2/3 is increased and exceeds the limit of
0.875(=0.75+0.25/2=1-0.25/2). 1t is similar in case of 1/3. Since the allowance is narrow on
four-value logic, memorized information is not kept. The memory cannot be used.

4. Neuron layer with step-function

Since processing in the neural networks is analogous, accumulation of the error is
inevitable. Therefore, compensation units are necessary in neural networks; it must operate
while the error is small. We considered AD/DA converter units at first. However, since the
units enlarge the logic size of neuron-computer.

The neuron functions on second or third layer are sigmoid functions usually, but the
functions on first layer are null (or through) function; and information on the layer is not
processed. We wish to introduce step functions in the layer, that are defined as,

f(x)=j*d,

B+j*d<x<B+(j+1)*d,

Where,
j={0,1,2,....n-2}, d=1/(n-1), and B=d/2.
We examined the four-value memory introduced the step functions at MO and Ml-cell’s
neurons on the first layer The examination is listed in figure 4.
09 : "
08
0.7
0.6
05
04
03
02
0.1
a

r-LﬂU)f‘O r~ — (57 B el B o M~ o~ o] M~
- NN N @ M = = 'H'I.t'.i'lﬂ WOow W~ o~

Figure 4. Simulation result for 4-value logic memory introduced the step ﬁmctzons
Fetch tests for 1/3 and 2/3 values

The effect of introducing the step-functions is remarkable. The information for 2/3 and 1/3
values is kept completely. We are sure that multi-value memories get practical usage.

—207—

5. Conclusion

Stacks are indispensable in information processing. Even if the processor is a
neuron-computer, they are necessary. We developed a stack memory that was constructed by
neural networks for neuron-computers. The stack memory is constructed by introducing a
feedback loop.

We developed two-words four-valued memory by using a multi-layer neural network
and back propagation algorithm. Since the neural network converts any vector into another; if
a truth table is defined, and even if the table is multi-valued one; any computer resource is
constructed. The idea is correct in logical world; however, it doesn’t assure propagation of
information. In large logic unit, information of neurons propagates through many connection
paths among neurons. If the information is transferred as an analogue value, exact
propagation is difficult. We showed the difficulty on the stack memory, and did that
information maintenance logic was necessary in neuron systems. We introduced new
three-layer neural network where neuron functions on first layer were represented by step
functions.

We examined the four-value memory introduced the step functions, and the
proposed technique gives reasonable results.

Acknowledgement
The research was financially supported by the Sasagawa Scientific Research Grant from the
Japan Science Society.

References

[1]. Tomoo AOYAMA, “Large scale multi layer neural networks”, 99-HPC-76(IPSJ SIG
Notes,1999.5.14).

[2] Hanxi ZHU, Kenji KOBATA, Housei UEDA, and Tomoo AOYAMA, “Functional
memories constructed of neural network”, 99-ARC-134(IPSJ SIG Notes,1999.8.3).

[3] Hanxi ZHU, Tomoo AOYAMA, and Tkuo YOSHIHARA, “Functional Memories
constructed of neural networks”, Proceedings of 14th KACC, E-210-213, (1999.10.14).

[4] Tomoo AOYAMA, Hanxi ZHU, Tomoki TESHIMA, and Ikuc YOSHIHARA,
“Simulations of construction learning as for neuron-computer resources”, Proc. of 5th. Int.
Symp. on AROB, pp.825-828,(2000.1.26).

[5] Hanxi ZHU and Tomoo Aoyama, “Memory functions in loops including multi-layer
neural-network:FIFO and Vector register”, Proc. of 4th HPC-ASIA 2000 (Beijing;
2000.5.14--17).

[6] Tomoo AOYAMA, Hanxi ZHU, and Ikuo YOSHIHARA, “Forecasting of the chaos by

iterations including multi-layer neural-network”, Proc. of IICNN’2000 (Como, Italy;
2000.7.24--27).

—208—

