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Abstract Communication set generation signifi-
cantly influences the performance of parallel pro-
grams. However, seldom work gives attention to the
communication generation problem for irreqular ap-
plications. In this paper, we propose some commu-
nication optimization techniques for the situation of
irregular array references in nest loops. In our meth-
ods, the local array disitribution schemes are deter-
mined such that the total amount of communication
messages is minimum. Then, we explain how to sup-
port communication set generation at compile-time by
introducing some symbolic analysis techniques. In our
symbolic analysis system, a set of symbolic solutions
of a symbolic expression system is solved by limiting
some restrictions. Finally, we show experimental re-
sults on a parallel computer CM-5 that validate our
approach.

Keywords: Parallelizing compilers, Irregular array
references, Communication optimization, Symbolic
analysis, Distributed memory multicomputers.

1 Introduction

Parallelizing compilers that generate code for
each processor have to compute the sequence of
local memory address accessed by each proces-
sor and the sequence of sends and receives for a
given processor to access non-local data. The dis-
tribution of computation in most compilers fol-
lows the owner-computes rule. That is, a proces-
sor performs only those computations (or assign-
ments) for which it owns the left hand side vari-
able. Access to non-local right hand side variables
is achieved by inserting sends and receives.
Communication overhead influences the per-
formance of parallel programs significantly. Ac-
cording to Hockney’s representation, communica-
tion overhead can be measured by a linear func-
tion of the message length m — Teomm = Ts+mTy,
where T is the start-up time and 7} is the per-
byte messaging time. Therefore, to achieve good

performance, we must optimize communication in
following three aspects:

¢ to exploit local computation as much as pos-
sible

e to vectorize and aggregate communication to
reduce the number of communication

e to reduce the message length in a communi-
cation step

In order to compile a loop into parallel code
efficiently, one must generate the communication
set for each processor at compile-time. If the
loop bounds are constants and array subscripts
are represented as linear (affine) functions of loop
index variables, the problem is similar to com-
pile a typical HPF -style [12] assignment state-
ment A(ly : hy : s1) = B(l2 : hy : s2), where s;
and sy are the access stride of A and B respec-
tively. Given an array statement with HPF-style
data mappings, there has been much research to
generate to code including the communication for
each processor [1, 2, 5, 13]. Also, the methods to
decide data distribution schemes for regular loop
nests are discussed by many researchers [1, 6].

However, if the array subscript expressions are
not of the linear form — called nonlinear which
appears in some irregular applications — the
above mentioned techniques cannot be applied in
this situation. Consider a loop nest with non-
linear array referencing which is very similar to
a code excerpt where induction variables are re-
placed, as found in the Perfect benchmarks [11],
shown in Figure 1. In the loop two array refer-
ence functions are f = iy * (i1 — 1)/2 + i3 and
g =2 % (ia — 1) /2 + 4y, respectively. The general
affine communication set generation techniques
can not be applied these kinds of irregular ap-
plications, because there is no affine relationship
between the array global addresses of LHS and
RHS. Communication generation for this kind of
issues has not received much attention.
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Example 1
L1 : DO il = ].,N
L2: DO iz = ].,’il
IA:il *(7/1 —1)/2+7;2
IB :iQ*(iQ—l)/2+i1
S:  A(IA) = F(B(IB))
ENDDO

ENDDO
Figure 1: Sample loop nest with irregular array
references

we propose some communication optimization
techniques for the situation of irregular array ref-
erences in nest loops. In our methods, the local
array disitribution schemes are determined such
that the total amount of communication messages
is minimum.Then, we explain how to support
communication set generation at compile-time by
introducing some symbolic analysis techniques.
In our symbolic analysis system, a set of sym-
bolic solutions of a symbolic expression system is
solved by limiting some restrictions. Experiments
will be shown that demonstrate the effectiveness
of our approach to the parallelizing compilers.

The rest of this paper is organized as follows:
Section 2 motivates the need of communication
optimization for irregular array references, and
introduces some background knowledge used in
the following sections. Section 3 describes how to
determine array distribution schemes for irregu-
lar loops. Section 4 proposes a symbolic analysis
method for communication set generation. The
experimental evaluations will be shown in Section
5. Section 6 describes some related work in this
area. Finally, Section 7 presents the conclusions.

2 Problem description and
Preliminaries

Given a perfectly nested loop £ as shown in the
following.

L :DO ¢ = Xi1,Y,7;
L,: DOi, = X,,Y,,Z,
S A(f(ilai%"'?iﬂ)) =
f(B(g(/leZQavZﬂ)))

ENDDO
For the sake of simplicity, we will assume that
the referenced array A and B have only one di-

mension. The array access functions (f and g),
the loop’s lower and upper bounds (X;,Y;), and
stride (Z;) may be arbitrary symbolic expressions
made up of loop-invariant variables and loop in-
dices of enclosing loops. We will also assume that
all loop strides are positive. It is not difficult to
extend our method to handle imperfectly nested
loops, negative strides, multidimensional arrays,
and loop-variant variables. Furthermore, let the
arrays A and B be distributed in a block-cyclic
fashion with block sizes of 3; and (2 respectively
across P processors. This is also known as the
cyclic(f1) and cyclic(Bs) distributions.

We assume that the array access functions
f and g are non-linear functions. Non-linear
subscript functions are commonly caused by in-
duction variable substitution, linearizing arrays,
parameterizing parallel programs with symbolic
number of processors and problem sizes, and so
forth.

Compilers currently parallelize irregular refer-
ences using inspector and executor approach. The
inspector partitions loop iterations, allocates lo-
cal memory for each unique nonlocal array ele-
ment accessed by a loop, and build a commu-
nication schedule to prefetch required nonlocal
data. In the executor phase, the actual commu-
nication and computation are carried out. This
approach was adopted by the CHAOS run-time
library [8]. Inspector-executor incurs significant
overhead caused by the inspector and mapping
nonlocal indices into local buffers. The inspector
must be re-executed each time the access pattern
changes.

We want, first, to decide the distribution
schemes 3; and (2 such that the total communi-
cation steps and the amount of message sizes are
minimum, because the communication patterns
are different for the same loop nest and arrays
A and B, according to different data distribution
schemes. Then, we will compute the necessary
communication sets in each processor due to exe-
cution of the above loop. That is, we must be able
to obtain an array subscript set for a processor
pair (p,q), named Send(g,p): which represents
elements of array B sent from ¢ to p. We only
generate send communication set in this paper
because the receive set generation is very similar
to the algorithm for send pattern generation.

In our previous work [3, 4], array elements dis-
tributed on a specific processor can be represented
as a 4-tuple § = (0, b, s,m), where o is the starting
subscript of the global array elements distributed
on that processor, b the length of the block; s the
stride between two consecutive blocks; and m is
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the number of blocks distributed onto the proces-
sor. For instance, if an array with the size 180 is
distributed across 4 processors with distribution
scheme cyclic(3), the data owned by processor Py
can be expressed as dp = (0,3,12,15). A ¢ corre-
sponds to a set of the global array subscript de-
fined as S5 = {ilo+sxk <=i<o+b+sxk,0<
k < m}. Intuitively, § can represent the set of
elements of A owned by a processor under any
regular distribution. Furthermore, if §(A, p) rep-
resents 4-tuple of A distributed onto processor p,
then Index(A, p) can be defined as
Index(A,p) = {(i1,...,in)]

f(ih N ,in) (S Sg(AJ,)}.
Thus,

Send(q,p) = {g(i1,.--,in)|(i1,. .. ,in) €
Index(A,p) A g(i1,...,in) € S5(B,q)-}
These fomulas will be used in our symbolic com-

munication generation algorithm.

For Example1,let N =15, P =4,3; = 3,032 =
2. According to Algorithm 1, we can compute
all Send(q,p),0 < p,q < 3. For instance, the
elements must send from P; to P; is Send(3,1) =
{6,7,15,22, 31, 38}.

Although we can get the send communica-
tion set through the above algorithm, the rig-
orous problems are that it can only be invoked
at run-time execution when the bounds of nested
loops including non-constant; and the computa-
tion complexity of the algorithm is O(y™) (assum-
ing that the average iteration of each loop is y).
This is very high cost for the parallel program
execution.

3 Decision of Array Distribu-
tion Schemes for Irregular
Loops

As mentioned in the intruduction section, a good
data distribution stratagy can reduce the number
of communication and message length. Assuming
that, in an iteration (i, ...,4,), if A[f(i1,...,0n)]
and B[g(i1, . ..,in)] are distributed onto the same
processor, the statement S in the loop L is ex-
ecuted with local array access. For the regu-
lar loops, based on analysis of affine subscripts,
some data distribution techniques are proposed to
maximize the local accesses and minimize the re-
mote accesses (inter-node communication), such
as contraint-based method [1], linear algebraic
frameworks [?, 6].

With respect to an irregular reference loop, if
it is interlined between two regular loops, the ar-
rays in the irregular loop must be distributed the

same as the previous scheme in order to avoid re-
distribution overhead, because the reduced cost
of communication may be larger than the redis-
tribution cost. However, ifthe irregular loop is
absolute or the first loop nest, we must determine
the distribution schemes for arrays in the loop to
optimize communications.

Given the global address of an array element,
we can easily determine the processor that owns
this elements and the local address of the element
on that processor using the expressions

Eq;rroc(pai) p= (l div ﬁ) mod _P7
Eqioc(L,i) : L = B * (i div PB) + i mod S,

where ¢ is a global address, p the processor to
which 7 belongs, P the number of processors exe-
cuting the parallel program, L the local address of
1 on processor p, and (3 is the distribution scheme
of the array. For the purpose of local execution
of the statement S in the loop £, we must decide
(1 and s so that the following formula is needed
to became true:

3 517 ﬂg,Iﬂ&X(H(ih . Jn)'(f div ,61) mod P
= (g div 82) mod P,1 < f,
Ny Ny 5 = =
h< 3 2 (X <I<TY)
The £, and (5 to satisfy the above formula can
be easily solved. However, even if at the compile-
phase, the solving time may be very long. In order
to efficiently decide the distribution schemes, we
should pay attention to the fact that because the
random access of array elements for irregular ap-
plications, the optimal distribution schemes for a
small range should also be suitable for a larger
range. This conjecture is verfied by our exper-
iment. For the Example 1, when NV is selected
as 500, 1000, and 5000, the best (1,32 all show 7
and 3 respectively. Thus, the optimal distribution
schemes can be determined at compile-time with
a short excerpt of array.

4 Symbolic Analysis Meth-
ods for Generating Com-
munication Sets

In order to compute communication sets when ar-
ray subscripts and loop bounds are symbolic and
nonlinear expressions, a symbolic analysis method
is proposed. A symbolic expression may consist of
arbitrary arithmetic operators and operands that
can be array subscripts, loop indices, loop bounds
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and strides, integer constants and infinity symbol
(—00,+00).

A restriction is a set of symbolic qualities and
inequalities defined over loop variables and pa-
rameters (loop invariant) which are commonly de-
rived from loop bounds, array subscript expres-
sions, conditional statements, data declarations,
and data and computation distribution scheme of
a program. In this paper, the symbolic variables
are designated as loop indices. An integer solu-
tion to a set of restriction is a set of loop indices
satisfying all of the constraints.

There are three sub-restrictions. They are,

e loop bounds and control-flow restriction Cf;

o array A reference and distribution restriction
Co;

e array B reference and distribution restriction
Cs.

To generate the communication sets, our goal
is to solve the symbolic solution vector T'to satisfy
restriction C = C7; U Cy U Cjs.

The first sub-restriction is derived from the
loop bounds and control-flow (ex. condition state-
ments). That is, C1 = {X; < i; < Y}, (5 —
X;)modZ; = 0,1 < j < n}. Before computa-
tion of expressions, in order to solve the equa-
tions as easily as possible, we must simplify sym-
bolic expressions. The simplification can be han-
dled based on a set of rules of simplification. Af-
ter simplifying this restriction, the initial lower
and upper bounds, low(i) and wup(i), for each
symbolic variable i can be deduced. Also, we
use eva(i) to represent the evaluated symbolic
value under the restrictions. Thus we can obtain
low(i) < eva(i) < up(i). Furthermore, we define
eva(f(it,...,in)) = fleva(ir),...,eva(in)).

For the k-th block of the array A distributed
onto processor p, we have

-

Cs {p=(f{I) fiv 1) mod P}, or (1)

Cy = {LBr < f(I) SUBx,0<k <mp}. (2)

and for the k-th block of the array B distributed
onto processor ¢, we have

Cs = {g=(g(]) div f2) mod P}, or  (3)
Cs = {LB,<g(I)<UBL,0<k<mg} (4)

where LBy, = o, + s, *k,UBr = 0, + b, + s, *
k,LB}, =04+ sqxk, and UB}, = 0y + by + s *x k.

Our evaluation method is, from the restriction
Cs, to limit the maximum lower and minimum up-
per bounds for a symbolic variable, to replace the
old, wide bounds accordingly. The most intuitive

method to replace with its bounds is to physically
substitute each occurrence of the variable in the
given expression with the variable’s bounds, then
simplify the resulting expression until the mini-
mum range can be obtained. The replacement is
progressively applying rewrite rules at each point
where the variable is replaced by its bounds. All
these rewrite rules are as a form of range of in-
equalities. If the derived new range is wider than
the old one, the replacement does not occur. The
similar way is applied to restriction Cj.

In some cases, using replacement shown in the
above can not determine the exact lower and up-
per bounds for an expression. Determining these
bounds need to observe whether f(i1,...,i,) is
monotonic for . Determining whether f(i) is
monotonically non-decreasing or monotonically
non-increasing is not difficult. One can prove
that f(z) is monotonically non-decreasing for x
by proving that f(x + 1) — f(z) > 0.

The range determination of a loop index
i, is more easily if the access functions f
and g are monotonically non-decreasing (non-
increasing) for ix, because we can replace eva(iy)
simply with its known lower or upper bound in
Formula (2). That is, if assuming f is monotoni-
cally non-decreasing for iy,

LB, < eva(f(i1,...,%,...,in)) < UB; =
LB, < f(eva(i1),...,eva(ij),...,eva(is))

< fleva(ir),...,up(ij),...,eva(i) A
UBr > eva(f(ity..-y%5,..-,0n))

> fleva(ir),..., low(i;),...,eva(in). (5)

5 Experiments

We evaluated our symbolic analysis algorithm
on a 32-node distributed memory parallel com-
puter CM-5, using MPI communication library
and gettimeofday () system call to measure exe-
cution time. We select a subroutine OLDA from
the code TRFD, appearing in Perfect benchmark
[11]. A simplified version of this loop nest is
shown in the left side of Figure 2. After using
induction variable substitution to replace the in-
duction variable mrsij at statement Sp, the opti-
mized version is shown in the right side of Figure
2. There is nonlinear array subscript for zrsij at
S5. To parallelize this loop nest, the communica-
tion set generation and address translation rou-
tine must be used.

The best distribution cases cyclic(2) for array
zrsij, and cyclic(4) for xij are selected when N =
16 (with global array size 18632) and cyclic(3)
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mrsijo=0
DO mrs=0, (N*N+N)/2-1
mrsij = mrsijo
DO mi=0,N-1
DO mj =0, mi-1
S1: mrsij = mrsij + 1
Sa2: xrsij(mrsij) = xij(mj)
ENDDO
ENDDO
mrsijo = mrsijo+(N*N+N)/2
ENDDO

—>

DO mrs=0, (N*N+N)/2-1

DO mi=0,N-1
DO mj =0, mi-1
Si1: mrsij = (mi*mi+mi+ &
mrs* (N*N+N))/2+mj+1
S2: xrsij(mrsij) = xij(mj)
ENDDO
ENDDO
ENDDO

Figure 2: Simplified version of loop nest OLDA from TRFD

and cyclic(7) are selected when N = 20 (with
global array size 44310). Figure 3 and 4 show the
total loop execution time when N = 16 and N =
20 respectively. runtime algo and symbolic algo
respectively represent that we use runtime algo-
rithm and symbolic algorithm in the communi-
cation set generation routine. We observed the
number of nodes increases, the execution time is
not so much improvement because each proces-
sor has to communicate with increasing number
of nodes. Although the communication set gen-
eration only involves the computation overhead,
the performance can also be improved by using
symbolic analysis algorithm.

07
08
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03

—#—runtima algs
—#—symbalic algs

0z

execution time{sec.)

Q1

4 B 16 24 32
number of procs

Figure 3: Results of TRFD loop nest OLDA when
N =16, 1 = 2,82 =4 on CM-5.

6 Related Work

Many researches have focused on the problem of
communication set generation under regular ar-
ray reference in parallel loop nest, or array state-
ments such as A(ly : uy : s1) = B(la : ua2 : $2)
in some data-parallel languages such as HPF and
Fortran D [12], with block-cyclic distribution. For
instance, Gupta et al. proposed closed forms for
representing communication sets. These closed

12
1
I+ -—
& 08 —— .
B —
< 086
$
g 04 —4— runtime algo
o —#— symbolic algo
02
0
4 8 16 24 32

Figure 4: Results of TRFD loop nest OLDA when
N =20, 81 = 3,02 =7 on CM-5.

forms are then used with a virtual processor ap-
proach to obtain a solution for arrays with block-
cyclic distribution [1]. Chatterjee et al. enumer-
ated the local memory access sequence based on a
finite-state machine (FSM). Their run-time algo-
rithm involves a solution of by linear Diophantine
equations to determine the pattern of accessed ad-
dresses, followed by sorting of these addresses to
derive the accesses in a linear order [2]. Kennedy
et al. adopted an integer lattice method to gen-
erate the memory access sequence [5)].

However, seldom work gives attention to the
problem of generating communication for irregu-
lar access in loop nest. Antonio Lain et al. im-
plemented a library, called PILAR, for exploit-
ing regularity in irregular application. They pre-
sented methods for detecting irregularity in array
references, as well as the presence of locality in
such references, and finally, placement of inspec-
tors and interprocessor communication schedules
[7]. The CHAOS/PARTI library [8], and in par-
ticular, the original PARTT library, had a signif-
icant impact in the design of PILAR. Similarly,
LPARX [9] is a C++ library that provides run-
time support for dynamic, block-structured, ir-
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regular problems in a variety of platforms.

7 Conclusions

Communication set generation influences the per-
formance of parallel programs significantly. In
this paper, we have proposed a symbolic anal-
ysis method to generate communication set for
irregular array references. The technique over-
comes the existed library’s drawback which incurs
significant overhand caused by the inspector and
mapping nonlocal indices into local buffers. It
completes the computation for generating com-
munication at compile-time as much as possible.
Thus, the total performance of the parallel pro-
grams including loop nest with nonlinear array
references can be upgraded.
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