NANT = 2 A 91—19
A Ea—F4 7

(2002, 8. 22)

SMP 7 5 R % 2347 5~4 7 J » K MPI-OpenMP
Ty IvIDED WDV AZ—AV—=TTAIY Xh

9%‘7 gaxh, HAE, BHRAE
%% Big KT KFERERS AT LF2HFEHR

mw&%x&iwmmaommwwﬂ479ykfm77i

VIEFADOEDD ALy REBREETAERETH. AT

FLTHE, 12DFAF—RALy RERT, TABALV—T

ALy FEDELFROF@METS. ALy FET MPL@
452 &T, SMP /— FBlo@E L RO A — 1~y K%

Bl 5. EROBR, v R Z—A L —TWSNETNVIEE
T AR T, MN@&%%wt7n77A;ﬂLT§u&

Tiﬁt:’%'l”@’ Enbhhot.

A Master-Slave Algorithm for Hybrid MPI-OpenMP Programming
on a Cluster of SMPs ‘

- Ta Quoc Viet, Tsutomu Yoshinaga and Masahiro Sowa .
‘ The Graduate School of Information Systems
University of Electro-Communications, Tokyo Japan
E-mail: viet@sowa.is.uec.ac.jp

‘In this paper, we evaluate a hybrid MPI and OpenMP programming
model for a cluster of SMPs, and compare it with the pure MPI
model. We suggest a “thread-to-thread” Master-slave communication
method between SMP nodes. A thread is chosen to be the master,
which controls both communication and computation tasks for all the
others. This communication method can decrease commumcatnon
time in comparing with the “process-to-process” one.

¢nvironment variables. Within OpenMP,
“communication” can be performed via the
shared memory variables, and nearly with

‘1. Introduction

MPI is a distributed memory program-
ming model with * explicit control of
parallelism. Each process has its own
memory space and run the same procedure
(SPMD). Communication between any two
processes is to be done by the explicit
participation from = both processes. In
general, MPI is relatively scalable. We can
apply MPI on both shared and dlstrlbuted
memory systems [8].

In contrast, OpenMP is a shared memory
programming model. Parallel execution is
performed and controlled by a combination
of compiler directives, library routines and

—107—

no cost. However, unlike MPI, the OpenMP
paradigm can be used only on shared

“memory systems, and is not scalable to the

distributed memory systems. We do not
take into account here “software shared
memory systems”, which have relatively
poor performance with compa"ring to pure
MPI [7].

‘Thus, to parallelize a solution on a cluster
of SMPs, we need to use MPL. In this case,
we can divide messages into two types:
among the processes on the same SMP
node, and among those on different SMP
nodes. With regard to = communication

between the processes on the same node,
we expect that we can reduce the cost by
using OpenMP, instead of MPI send and
receive functions.

So we decided to explore the hybrid MPI-
OpenMP model, and compare its
performance to that of the pure MPI one. In
the hybrid model, MPI is used to perform
communication between = nodes, and
OpenMP is in charge with .communication
occurred within the same node. To confirm
the idea. we build some hybrid algorithms
to solve two example problems: “finding
the n" prime number”, and “solving a dense
linear equation system by LU decompo-
sition”. The results of the comparison
between ~hybrid and pure MPI solutions
allow us to make the conclusion that hybrid
model - has clear advantages over MPI
model in certain circumstances.

In general, this paper discusses the
benefits of a hybrid MPI-OpenMP solution
on a cluster of SMPs. Section 2 describes
related work on hybrid programming.
Section 3 discusses principles of hybrid
programming and suggests a new method
for communication between the nodes,
comparing it with the previous one. Section
4 describes the impleméntation of the

hybrid model on solving the “n™ prime

number” as well as the “dense linear -

equation system” problems. We present
experimental - results ‘and discussions in
section 5. Finally we conclude the paper

with section 6, writing about our con--

clusions and future erk.

2. Related work

Loma Smith et al.. showed a schematic
representation of the hybrid programming
model. Then they compared the two models
by using them to write the code of “Game
of Life” program. Their conclusion is that
hybrid model is better than pure MPI only
in some situations such as too fine grain
size or memory limitation [1]. v

Frank Cappello et al. suggested the
process-to-process communication method
between SMP nodes for hybrid program-
ming. Using this method, they rewrote
several NAS benchmarks on hybrid mode.

~cluster. These
~ information between each other by passing

Their work showed that purc MPI in most
cases gives a better result than hybrid one
13].

Jahed Djomehri ¢t al. used the same
communication method - to solve
“Overflow” problem by hybrid model.
They also showed some cascs that hybrid
model could get better performance than
pure MPI [4].

P.E.Strazdins et al. explained the parallel
algorithm for solving a linear equation
system [5]. We consulted their algorithm to
solve the linear equation system.

T.Boku et al. explored another kind of
hybrid parallel programming on PC-
CLUMP (Cluster of Multiprocessors): MPI-
Pthread. Their result shows that the MPI-
Pthread hybrid model is even better than
both pure MPI and MPI-OpenMP hybrid
models {6].

3. Principles of MPI-OpenMP

hybrid programming model

3.1 The way of creating parallelism

Figure 1 shows the schematic represen-
tation of the hybrid MPI-OpenMP program-
ming model.

The idea of hybrid programming can be
implemented by using a hierarchical model.
For the best performance, this programming
model should be physically correlative to
the hardware. At the top level, parallelism
is exploited by MPI. Each MPI process
should be mapped on a SMP node of the
processes exchange

the messages via MPI functions. In the next
level, each MPI process uses the OpenMP
components (compiler directives, library
routines or environment variables) to fork
and join a set'of OpenMP threads. Each
thread is run on a single processor.

3.2 Communication between SMP
nodes, process-to-process method

In some related works, authors suggested
a simple method of communication
between nodes |2, 3. 4]. ‘

—108—

Figure 1 also shows this method of
communication. Each MPI process
performs a task by “fork” into many
OpenMP threads running on different
processors. After finishing an assigned task,
these threads will “join” to a single one,
now is a process. Only processes (but not
threads) exchange information with- their
comrade processes by passing messages.
Communication phase is put outside of the
fork and join phase. The “fork and join then
communicate” structure can be duplicated
as many times as needed. From now on, we
call it “process-to-process communication
method”. :

The main advantage of this method is
simplicity. It is easy to build the algorithm,
easy-to manage the tasks and easy to debug.

However, this method cannot give us the
best performance. The reason is that, during
the time of MPI communication, all the
processors in a node, excluding the one that
actually perform the communication task,
have nothing to do. In addition, all the
OpenMP threads may not finish their tasks
in “fork and join” period at the same time,
and the fastest one has to waste time to wait
slower ones. Due to these reasons, hybrid
solutions in many cases give the worse
performance than the model of pure MPI.

MPI
process, . Commu

H

'Ope_ilMP Fork

OpenkP
thriead

— b

OpexfiMP Join

heL IS
isHp 0 ¥ iiswpl :

Figure 1. Schematic representation of the hybrid
MPI-OpenMP programming model, using a process-
-to-process communication method.

—109—

3.3 Communication between SMP
nodes, thread-to-thread method

To avoid the wasted time during
communication, we suggest a new method,
which is shown in figure 2. In our schema,
SMP nodes communicate with each other
by threads but not processes. When a
thread, being run on a processor, carries out
communication, other processors of the
same node are free to execute their own
duties. In other words, communication task
are carried out between OpenMP “fork”
and “join” points of time. In this paper, we
call this as “thread-to-thread communica-
tion method”.

To make the algorithm simple and easy to
manage, we use a thread on a node as the
master thread. All' the threads on other
nodes will communicate through that
master one.

gprocessé * Cod

5 =R
* .

Connugi

1™
el
i)

g
5

I

¥ 11

isup 0 ¥ : i SMP1

Figure 2. Communication between a master thread
) : and slave threads

This -approach- is especially suitable for
the computation of a Master-slave paraliel
model. The “communication master thread”
is also the “computation master”. It controls
and schedules not only the communication
but also the computation tasks.

To solve the problem what the threads
will do during the communication time, we
use the following method. Using the
Master-slave 'model, the master thread
sends tasks to the SMP nodes and receives
results. In the first stage; it sends to each

slave SMP node several tasks. In the slave
SMP nodes, there is a task-list to store
unsolved tasks. OpenMP threads solve the
tasks-1n parallel. When a task is finished,
any thread can send the result back to the
master, then receive a new task, and put it
to the task list. During the communication
time, other threads are still solving the next
tasks, which are taken from the task list.
Thus, we- do not waste time for waiting the
communication operation to be completed.
After receiving enough results, the master
thread sends a stop command to- all the
slaves.

4. Implementations of Hybrid
MPI-OpenMP model :

4.1 Experimental environment

Our experiments are carried out on a
cluster of two Sun Enterprise 3500 systems;
each of them has eight UltraSPARC-II 336
MHz processors. The systems are
connected . by 100Mbps Ethemnet cable.
Each SMP node has 2 Gbs of memory:

Operating system running on the SMPs is
Solaris 8. MPI library and environment are
provided by Sun HPC Cluster Tools 4. To
compile the programs, we use Sun Forte 6
Update 2 C compiler, which already sup-
ports OpenMP.

4.2 Fiﬁding the n™ prime number

_Algorithm: Sieve of Eratosthenes has
been used with some enhancements. In
detail, we firstly build a checklist, which is
a list of the first prime numbers. Using this
list, we can check primality of numbers not
larger than square of the biggest member of
the list. The set of positive integers is
divided into many subsets. of size numbers.
These subsets are checked primality by
using the checklist until the quantity of
prime numbers received exceeds ». Finally
we make a back-step to find the exact #™
prime number, .

- Parallelism: We have used the Master-
Slave -algorithm. The master sends the
beginning - number of the subsets to. the

slaves. Then it receives the quantity of

prime numbers as well as the largest one

that the slaves found from the subset.
~Major functions built and used:

int *ListInitial(int m). Returns the list of
the entire prime numbers not exceeding m
This function is used to build the checklist.

int *CheckSumPrimeRange (int*
checklist, int bottom, int range). Returns
the quantity of prime numbers and the
biggest among them.

With this problem we can easily change
the problem size by changing ». The
thread-to-thread communication method: is
also very suitable in this case so that we
expect good efficiency here.

4.3 Solving a linear equation system
Ax=b by LU decomposing

Using the LU decomposing algorithm to
solve the system, LU decomposing takes
most of the execution time. By this reason,
we take into account ~only ‘the LU
decomposing step here, the forward and
backward substitution time is not mcluded
to the discussion.

k N

N .
Figure 3. Algorithm for parallel LU decomposition

_Algorithm - for LU decomposition: we
use the Crout’s algorithm with row pivoting
[7, 10].. We have changed the order of
finding the elements of L and the U
triangular to parallelize the algorithm.
Figure 3 shows the order that we use. At
cach step &, we firstly find all the members
of column k of the lower triangular, then
choose the pivot element, and finally find
all the members of row k of the upper

—110—

triangular. In the figure, the elements to be
found in step k£ are presented by shaded
cells.

_Parallelism: Each MPI process stores the
whole data of matrix A. At each step, the
mission of finding column’s elements or
row’s - elements is divided into MPI
processes, each of which is located on a
single: SMP node. At nodes, this. piece of
the mission is divided once more to the
OpenMP threads. After finish the piece of
the mission, MPI. processes broadcast the
result to all the nodes and update their own
data. : :

In solution of the problem, we have not-

used the thread-to-thread method of
information exchange yet. The .-nodes
exchange information via the MPI pro-
cesses, so that we do not expect here the
best performance. We will optimize the
~ solution by using thread-to-thread commu-
nication method in the future work.

5. Results and discussions

5.1 The n™ prime number probiem

Speedup

01234567 8 910111213141516
Number of processors

Figure 4. Speedups of pure MPI, OpenMP and
hybrid models on solving the »™ prime number
problem, n=30.000.000

Figure 4 shows speedups which are given -

by different models when we change ‘the
number of processors. Because of weak
scalability, we can use OpenMP on a single
node, up to eight processors only. With
pure MPI, we are able to explore the
performance up to sixteen processors. The

“4™ prime number” problem can be

—111—

parallelized very effectively, so that within
a single SMP node, we can get a fairy good
speedup for both OpenMP and MPI, very
near to the ideal one. However, OpenMP is
a little better than MPI. This is caused by
the extra MPI sending and receiving cost.
To compare hybrid model to pure MPIL, we
use the same number of processors on cach
SMP node.: As we expected, using the
thread-to-thread method of communication
between nodes, we manage to avoid a lot of
communication time. The hybrid model
gives a result clearly better than the pure
MPI one.

Figure 5 shows the speedups that we
achieve. when we use pure MPI and
hybrid models, too. In this case, we use
all 16 processors and change the
problem size. The ideal speedup is 16,
so that the speedup difference between
the two models is significant.

15.0
145
14.0
135
130
125
12.0
15
11.0
105
10.0

Speedup

0 20 40 60 80 100
N (x1.000.000)
Figure 5. Speedups of hybrid MPI-OpenMP and pﬁre
MPI models on solving the n™ prime number
problem, 16 processors.]

5.2 LU decomposition

" Figure 6 shows speedup of the hybrid
model with different problem sizes. Solving
this problem, we do not use the thread-to-
thread communication method because of
the difficulty on applying effectively the
Master-Slave algorithm here. However, the
speedup we gained is ot so bad when we
increase the problem size. We suppose that
when we manage to apply the thread-to-
thread communication method and use the
suitable way of data distribution, we can
still improve the performance.

120

2000

0 500 1000 ' 1500
) Probriem Size

Figure 6. Speedup of hybrid model on LU
decomposition, using a process-to-process-
communication method.

6. Conclusions

Results of the experiments allow us to
conclude that, on a cluster of SMPs. in
many cases, hybrid MPI-OpenMP program-
ming model can give a better result than the
pure MPI one, especially when it is possible
to use the thread-to-thread communication
method. And we think that this method is
useful in solving a large number -of
problems. However the method is fairly
complicated in programming, and some
times we have to choose between effec-
tiveness and simplicity. '

In the next step, we would like to apply
the thread-to-thread communication method
on variety of problems. At first we will
optimize the LU solution by using the block
factorization algorithm, then compare the
performance to the one that supplied by
High Performance Linpack Benchmark
(HPL) [9]. We would like to build a Hybrid
Benchmark based on the above-mentioned
HPL too. ‘ L

We will also try to perform our
experiments on many different environ-
ments, ‘ S ‘

Acknowledgement ’
This research is partially funded by Grants-

in-Aid for Scientific Research of Japan
Society for the Promotion of Science,

Encouragement of Young Scientists-A,
No0.60210738.

References

k [1] L.Smith and M.Bull: Development of

mixed - mode -MPI/OpenMP applications.

Scientific Programming 9. pp. 83-98
(2001). :

[2] D.Etiemble: Mixed-mode Programming on
Clusters of ‘Multi-processors. ECE 17555- -

Parallel Computer Architecture and
Programming. http://www.eecg.toronto-
.edu/de/Pa-06.pdf (2001)

[3] F.Cappello and D.Etiemble: MPI versus
MPI+OpenMP on the IBM SP for the NAS
Benchmarks. Presented ad Supercomputing,
Dallas 2000, “http://www.sc2000.org/tech-
papr/papers/pap.pap214.pdf. (2000)

[4] J.Djomehri: Hybrid MPI+OpenMP. Pro-
gramming of an Overset CFD Solver and
Performance Investigations.. http://www-
.nas.nasa.gov/Research/Reports/techreports.
html (May 2002).

[5]1P.E.Strazdins: High Performance Dense’
Linear System Solution on a Beowulf
Cluster. http://cs.anu’edu.au/~Peter -
Strazdins/papers/ClustAlgBlk pdf (2001)

[6] T.Boku, K Itakura, S.Yoshikawa,
M.Kondo, M.Sato: Performance Analysis
of PC-CLUMP based on SMP-Bus

Utilization. Proceedings of 2002
International ~ Conference on - Parallel
Processing in~ Electrical — Engineering,

Warsaw, (Sep. 2002 to appear).
[7} OpenMP, - the OpenMP Architecture
Review Board, http://www.openmp.org/.

[8] Message Passing - Interfacé = Forum.
http://www.mpi-forum.org/.
[9] A Petitet; R.C.Whaley, J.Dongarra,

A Cleary: HPL - A Portable Implemen-
tation of the High-Performance Linpack
Benchmark:” - for' Distributed-Memory

Computers. “http://www .netlib-.org/-
benchmark/hpl/. ' ‘
[101J.Dongarra; 1.S.Duff, D.C.Sorensen,

H:A.van - der . Vorst. Numerical Linear
Algebra for High-Performance Compuiters.
SLAM (1998).

—112—

