
A Reduced Bit-Width Instruction Set Architecture for FQM Execution

in Hybrid Processor Architecture (FaRM-rq)

ben a. abderazek ,† soichi shigeta ,† tsutomu yoshinaga †

and masahiro sowa †

Code size is a critical concern in many applications, especially for those requiring small code
size and special cores. The Queue based instruction set is a promising approach for reducing
code size and system complexity.
In this paper, we present an efficient narrow space instruction set architecture for a Queue
mode execution (FQM) in a functional assignment register microprocessor that supports a
multi instruction sets through run time functional assignment. In FQM mode, the system
executes queue based instruction set (termed rwQIS) that are carefully designed with a limited
opcode and access to a limited set of special registers. The rwQIS is targeted for a low system
complexity and reduced Bit-Width Instructions.
In addition to the instruction set architecture, we give a measure of the expressive power of
FQM instruction set by the relative density and the code ratio of some benchmark programs.

1. Introduction

One of the primarily goals of a computer ar-
chitect is the design and construction of ma-
chines that support the efficient execution of
the programs that will run on them. The sim-
plicity of the instruction set provides a num-
ber of implementation advantages that can sub-
stantially enhance the performance of the ma-
chine. For example, the restriction that arith-
metic and logical operation’s operand be lo-
cated in an internal processor storage may per-
mit the number of pipeline stages and/or their
duration to be reduced resulting in faster execu-
tion of a given application. Also the use of fixed
length instructions and a few formats permits
simpler hardware and faster instruction decod-
ing.

Recently, various design for Queue processors
have been proposed, and some hardware de-
signs are currently under constructions. The
work presented in3),4),6) presents examples of
research in progress or already finished. In any
stored-program in these architectures, informa-
tion is constantly transferred between the mem-
ory and the instruction processor. Since trans-
fer bandwidth is a limited resource, inefficient
in the encoding of instruction information can
have definite hardware and performance cost.
Such and other considerations supported the
development of a so named produced order par-

† Graduate School of Information Systems, The Uni-
versity of Electro-Communications, Tokyo, Japan

allel Queue processor (PQP)1),2),6). The earlier
version of the PQP system provides variable in-
struction length and relatively compact encod-
ing of computations and, therefore, the use of
fixed length instructions with few formats was
not the target of the earlier prototype. As a
result, the performance benefits of the PQP ar-
chitecture was offset by higher fetch alignments
and instruction decode overhead. In addition, it
has been conjectured that the resulting variable
instruction length and the large number of in-
struction formats could harmfully affect mem-
ory bandwidth performance4). Thus, to keep
balance between hardware simplicity and over-
all performance, we have decided to enhance
the earlier version by designing a fixed instruc-
tion set architecture that will be supported by
FQM mode within the hybrid FaRM architec-
ture. One major reason for this strategy is that
decoding instructions of a simple fixed-length
format can be done in a single processing step.
However, with variable-length instruction for-
mat, decoding is context-sensitive; determining
an instruction’s length and, therefore, the start
of the following instruction and the position of
instruction fields, is a multiple-step process that
requires examining some instruction bit values
to determine how to extract and interpret the
rest of the instruction fields. This can critically
complicate the design of our proposed architec-
ture. Another important concern is the den-
sity consideration. The strategy we used for in-
creasing density is to design a sixteen-bit fixed-
length format. By keeping all the instructions

研究会Temp
社団法人 情報処理学会 研究報告IPSJ SIG Technical Report

研究会Temp
2003－HPC－94　　(4)

研究会Temp
2003／6／13

研究会Temp
－19－

the same length, fetch and decode simplicity
can be maintained. However, the short instruc-
tions may limits the number of referenced queue
entries. Another problem is the shortage of
memory offset addressing range. We will show
that these limitations are avoided by adopting
compiler and hardware techniques.
The main consideration of this paper will be the
description of the rwQIS architecture and facil-
ities that have been developed to contribute to
a high degree of performance and simplicity of
the FQM execution.
The rest of this paper is organized as follow:
In section two, we first present a brief overview
of the earlier and the rwQIS instructions fea-
tures. Section three, gives the rwQIS architec-
ture design details and facilities that have been
developed. We give the performance evaluation
of the rwQIS and we compare it to the ear-
lier designed version in section four. In the last
section we give concluding remarks and future
work.

2. Instruction Set Classifications

PQP and PQPpf (parallel queue processor
with produced order scheme and fixed instruc-
tion set) are both based on queue computa-
tion model. They use a FIFO data structure
as the underlying mechanism for results and
operand manipulations; that is, each instruc-
tion removes the required number of operands
from the front of an operand Queue (OPQ),
performs some computation and stores the re-
sult back to the operand Queue. PQP and
PQPpf are nearly identical in function and sup-
ported on the same pipeline with identical ex-
ecution unit resources. Both have the nor-
mal complement of ALU, shift, memory, and
floating point operations. The principle dif-
ferences lie in the size and format of instruc-
tions encoding and the extra registers set. PQP
instructions are 8 and 24 bit length. While
PQPpf instructions are sixteen-bit fixed length.
Because the information density of 16-bit in-
structions is higher, a more elaborate encoding
scheme is necessary. Both instruction set define
Queue execution model, though internally they
are register machine-like. PQPpf has operation
with implicit operand and/or destination and
also has some operations that operate on reg-
ister. PQPpv and PQPpf instructions are both
executed on five stages execution pipelines.

3. rwQIS Instruction Set Architecture

The rwQIS instruction set is intended to be
used in Queue mode execution (FQM) within
FaRM processor. All instructions are byte ad-
dressed and provide access for bytes, half words,
words, and double words. Bellow we will dis-
cuss the instruction set design considerations
and the facilities that have been developed for
FQM mode.

Op Code d/a addr/value/target
M-type

Offset added to base address (+/- 128)
(7 bits magnitude + sign bit)Define Operation

Base address in memory

6 bits 2 bits 8 bits

Fig. 1 Memory instructions (M-type) format

3.1 Memory Type Instructions
The memory type (M-type), shown in Fig. 1,

consists of all load and store operations. When
data must be obtained from/sent to memory,
the M-type instructions are needed. The op
field is 6-bit and is used for operation coding.
The d field is 2-bit and is used to select one of
four data registers. The addr field is 8-bit offset
to be added to the base address (in one of the
d registers).
For load instructions (i.e., lw) the content of one
of the the d registers is added to the 8-bit offset
to form the 32-bit address of the memory word.
The word is loaded from memory to a Queue
entry pointed by the Queue tail (QT) pointer.
In Fig. 2 (b), the memory instruction would
be decoded as load the 8 bit byte at memory
location [contents of d0] + 0x52 into the Queue
tail pointed by the Queue tail (QT) pointer

The store instruction has exactly the same
format as load, and use the same memory cal-
culation method to form memory addresses.
However, for store instructions the data to be
stored are found from the head of the operand
Queue (OPQ) indicated by the Queue head
(QH) pointer. In Fig. 2(a), the memory instruc-
tion would be decoded as store the 32 bit word
of the OPQ entry indicated by the QH at mem-
ory location [contents of d1] + 0x53.
Memory Address Extension: In M-type in-
structions, the offset is only 8-bits wide; that is
the address space range (from the base address)
is only 128 memory slots. This may not be large
enough for real applications. To cope with this
address ”shortage”, we adopted the idea pro-
posed by Sowa5). In the above idea, the com-

研究会Temp
－20－

Offset = + 53H(= +83)Op Code = "stw"

Base addess is in d1 (=d1)

 101100 01 01010011

Offset = + 52H (= +82)Op Code = "ldb"

Base addess is in d0 (=d0)

 100000 00 01010010

(a)

(b)

Fig. 2 Load and Store instructions internal coding
example

piler uses static optimizations techniques and
automatically inserts (when needed) a convey
instruction before each load or store instruc-
tion. The convey instruction is simply an in-
struction which forwards its operand (offset) to
the consecutive load or store offset field. That
is, when a convey instruction is inserted be-
fore a load or store instruction, the processor
combines the convey instruction offset with the
current load or store instruction offset and the
data register to find the effective address. The
convey instruction utilization is illustrated in
Fig. 3.

; address space extension
covop 25H ; convey 25H address (offset)
ldb 12H(d0) ; load data from mem[25H(12H(d0)]
..
..
..
..
addp 4 ;
stw 24H(d1) ; store word at mem(24h(d1))

Fig. 3 Address space extension

3.2 Data/Address Register Instruc-
tions

The instruction set are designed with four
data registers (d0∼d3) and four address
(a0∼a4)) registers. These registers are used
as base addresses for memory and control in-
structions respectively. The control instruc-
tions, which will be described later, consist
of jump, loop, call, and interrupt instructions.
The data/address registers are general purpose;
that is they are visible to the programmer.
These registers are 32-bits wide. Therefore,
to set or reset one 32-bits address register,
four instructions (sethh, sethl, setlh, setll) are

needed. It may seam that the it set/reset op-
erations are costly since four instructions are
needed to set one address or data register. How-
ever, from our preliminary evaluations, oper-
ations on these registers occur not so often
within a give application. Figure 4 is an ex-
ample showing how data register d0 is set with
setxx instructions. Note that these instructions
have the same format as M-type instructions.

The data/address registers can be also in-

; set data register d0 with address A4121B45H

sethh d0, A4H ; set bits 23~31 of register d0

sethl d0, 12H ; set bits 16~24 of register d0

setlh d0, 1BH ; set bits 8~15 of register d0

setll d0, 45H ; set bits 0~7 t of register d0

; address space extension

covop 25H ; convey 25H address (offset)

ldb 12H(d0) ; load data from mem[25H(12H(d0)]

..

..

addp 4 ;

strw 24H(d1) ; store word at mem(24h(d1))

Fig. 4 Address register setting example

cremented or decremented by the inc instruc-
tion. The syntax is: inc a, value. This type
of instructions belongs to the I-type instruc-
tions shown in Fig. 5. Note that the range

 Op Code a/d/f value/kI-type

value to be added to a/d register
(-8,-7....-1<value<+1,+2.....+8)Define Operation

data/address register

8 bits 4 bits 4 bits

Fig. 5 I-type Instruction Format

of the value operand is:−8,−7, · · · , < value ¡
+1, +2, · · · , +8. The I-type instruction also
consists of swi (software interrupt) and setr (set
register) instructions.

3.3 Control Instructions (C-type)
The control instructions consist of move,

branch, jump, loop, call,interrupt, and barrier
instructions.

The jump,loop and call instructions have the
same format as the previously defined M-type
instructions. They all use a register as a base
address register and an offset target of eight
bits. As with memory instructions, target ad-
dresses of these instructions can be extended to
sixteen bits by convey instruction. The C-type
shown in Fig. 6 also has other control instruc-
tion with only one operand.

研究会Temp
－21－

 Op Code t/f/n
C-type

t: Target adderess
f: action value
n: Queue action counterDefine Operation

8 bits 8 bits

Fig. 6 C-type Instruction Format

3.4 Transfer Instructions
The FQM supports four types of control

flow (transfer) change: (1) Barrier-Branch, (2)
Jump, (3) Procedure call and (4) Procedure re-
turn. As illustrated in Fig. 6, the target ad-
dress (t) of these instructions is always explic-
itly specified in the instruction. Because the
explicit target (displacement) value, which will
be added to the fetch counter to find the real
target address (RTA), is only 8-bits the convey
instruction’s offset can be combined with the
transfer instructions’ explicit target to extend
the RTA space.
Branch Instruction: The branch instructions
belong to the C-type. To avoid having too
much work per instruction, the branch instruc-
tion resolution is divided into tasks (1) whether
the branch in taken (with comparison instruc-
tion) and (2) the branch target address (ad-
dress calculation). One of the most noticeable
properties of the FQM branches is that a large
number of the comparisons are simple tests, and
a large number are comparison with zero. Ac-
cording to the type of the condition the compar-
ison instruction compares two entries obtained
from the head of the OPQ and insert the result
(true/false) to a condition code (CC), which is
automatically checked by the branch instruc-
tion. In our implementation, branches are also
barrier instructions. That is, all instruction
preceding the branch instructions should com-
plete execution before new instructions (branch
successor instructions) can be issued.
Barrier Instructions: This type consists of
halt, barrier, SerialOn, and SerialOff instruc-
tions. These instructions are designed to con-
trol the execution and the process type of in-
structions.
Queue Control Instruction (QCI): The QCI
consists of stpqh (stop Queue head), stplgh
(stop life Queue head), autqh (automatic Queue
head), and autlqh (automatic life Queue head).
These instruction are designed to control the
life of data within the (OPQ).

3.5 Producer Order Instructions
This type (P-type) consists of about 70% of

Table 1 FQM Instructions Distribution

Class Type Inst. Nbr. Percentage
M-type 31 21.67
I-type 11 7.67
C-type 24 16.78
P-type 61 42.65
Others 16 11.23

the total instructions in FQM execution. It con-
sists of all single and double word computing,
logical, compare, and conversion instructions.
The format of the P-type instruction is illus-
trated in Fig. 7. We have to note that both

 Op Code nP-type

n: entry number from
 the QHDefine Operation

9 bits 7 bits

Fig. 7 P-type Instruction Format

integer and floating-point operations are sup-
ported.

4. FQM Instruction Set Performance

The measure we used to estimate the per-
formance of the expressive power of the FQM
instruction set is: (1) the path length, the total
number of instructions in an execution trace,
and (2) the relative density of two programs
that encode the same computation and is the
ratio of their sizes.
We have to note that the FQM model attempts
to speedup execution my three means: (1) re-
duces the path-length (instruction count) by
using a more powerful instruction set. (2)
Eliminates the instruction extraction stage and
avoids the introduction of other delays since
all instructions are fixed length and no need to
align them as with the previous PQPpv proces-
sor and (3) Reasonable Relative code density.

4.1 FQM Instructions Classifications
The rwQIS instructions are classified in Ta-

ble 1. The P-type instruction occupies nearly
half of the total instruction number. However,
the I-type instructions consists of the smallest
percentage of the total instructions.

4.2 Code Density
To evaluate the code density, we compared

some benchmark programs code size for vari-
able instruction set with the called rwQIS in-
struction set. The comparison result is shown
in Fig. 8. From the above figure, we can see
that the code density for programs with fixed
length instruction set (rwQIS) is considerably

研究会Temp
－22－

lower that programs with variable instruction
set. In average, the code density for rwQIS
programs is about 2.9 less that variable width
instructions programs.
For some programs, we had relatively low ex-
pectations for the rwQIS (16-bit fixed size) in-
structions Vis a Vis earlier designed variable
version. We expected that the weaker instruc-
tions set would increase the path length for pro-
grams, and this increase would preclude serious
interest in the instruction set for a practical ma-
chine. This assumption proved wrong for two
reasons; first the path length penalty was not
as great as we anticipated, and second, there
are performance limits that are independent of
instruction scale and packaging that 16-bit in-
struction set desirable.

4.3 Density Ratio and Path Length
Another measure is of the expressive power of

an instruction set is the relative density of two
programs that encode the same computation is
the ratio of their sizes. The size ratio is shown
in Fig.9.

� � � � � � � � � � � �� � � � � � � � � � � �� �� � � � � � � � � � � �
� � � � � � � � � � � �� � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� �� � � � � � � � � � � �� � � � � � � � � � � �
� � � � � � � � � � � �� � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � �

� �� � � � � � � � � � � �
	
	�
 �
	�

	�
 �
	�
 �
�
��
 �
��

��
 �

����� � ����� � ��� ����� �"!$# ��� �����&%"'(!)+*�,.-�/.0"132 4�5

6 7 89
: ;<=

> > >> > > ?.@A A A B�B3CEDEF�GH H H B�B3CED�I

Fig. 8 Code size figure

J
JLK J�M
JLK JON
JLK JOP
JLK JRQ
JLK JOS
JLK JOT

UVU WRXLY URU WOX M T Z [\�]R^R_R`OacbLd eOf

g hijhk
l mnh
o mlp q r�s t u s v w xVyOz�{E|

r�s t u s v w xVyO}.~3{

Fig. 9 Percentage Ratio

5. Conclusion and Future Work

In this article, we presented an efficient nar-
row space instruction set architecture for a
Queue mode execution (FQM) in a functional
assignment register microprocessor that sup-
ports a multi instruction sets through run time
functional assignment. The rwQIS is targeted
for a low system complexity and reduced Bit-
Width Instructions.
We measured the expressive power and per-
formance of FQM instruction set by the code
size ratio and the code density of some pro-
grams that encode the same computation. We
conclude that the prosed rwQIS set leads to
efficient code density and is expected be im-
plemented wit simple decoding circuitry when
compared with the earlier designed version

6. acknowledgements

This work is partly supported by JSPS
Grants-in-Aid for Scientific Research (C),
No.15500033.

References

1) Abderazek B. A., Kirilka N., Sowa M.: FARM-
Queue Mode: On a Practical Queue Execu-
tion model. Proc. of the Int. Conf. on Cir-
cuits and Systems, Computers and Communi-
cations, Tokushima, (2001) 939-944

2) Sowa Lab.: http://www.sowa.is.uec.ac.jp
3) Suzuki H., Shusuke O., Maeda A., Sowa

M.: Implementation and evaluation of a Su-
perscalar Processor Based on Queue Ma-
chine Computation Model. IPSJ SIG, Vol.99,
N0.21,pp. 91-96 (1999).

4) Abderazek B.A.: Dynamic Instructions Issue
Algorithm and a Queue Execution Model To-
ward the Design of a Hybrid Processor Ar-
chitecture. PhD. Thesis, IS Graduate School,
Univ. of Electro-Communications, (2002).

5) Sowa M.: Fundamental of Queue machine.
The Univ. of Electro-Communications, Sowa
Laboratory, Technical Reports SLL30305,
(2003).

6) Sowa M., Abderazek B.A, Shigeta S., Nikolova
K., d Yoshinaga T.: Proposal and Design of a
Parallel Queue Processor Architecture (PQP),
14th IASTED Int. Conf. on Parallel and Dis-
tributed Computing and System, Cambridge,
USA,pp.554-560 (2002).

研究会Temp
－23－

