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An approa
h towards fast simulation of virtual 
loth with adaptivemesh re�nement and 
oarsening on Fujitsu HPC2500Alam MUJAHID,y Koh KAKUSHO,yy Mi
hihiko MINOH,yyYasuhiko NAKASHIMA,yyy Shin-i
hiro MORIyand Shinji TOMITAyParallel simulation of shape and for
e a
ting on 
loth is proposed for Fujitsu HPC2500 byusing OpenMP. Parallelization is feasible due to iterative and higher 
omputations neededfor 
loth model. Adaptive mesh re�nement together with 
oarsening (AMRC) is employedto obtain the optimum mesh density of 
loth. Mesh size 
hanges at runtime due to AMRC,whi
h initiates the ne
essity of load-balan
ing. Therefore, a load balan
ing s
heme basedon 'A
tive-Lists' has been implemented. Comparison with built-in s
heduling 
onstru
ts inOpenMP shows its good performan
e for simulating the shape as well as for
e of virtual 
loth.1. Introdu
tionFast as well as realisti
 simulation of 
lothis an interesting issue in 
omputer graphi
s.Cloth has been represented by the mass-springmodel, �nite element model and parti
le-basedmodel. Its shape has been simulated by usingthe for
e integration3),10) or energy minimiza-tion1),5),9). However, only visual information isinsuÆ
ient for virtual manipulation and shapeas well as for
e are ne
essary to represent the
loth in virtual environment. We have 
onsid-ered, for the �rst time, the relation of for
e withshape deformation for 
loth5).A realisti
 
loth 
an only be represented bya denser mesh, whi
h is 
omputationally ex-pansive. A 
loser look on variety of 
loth ap-pli
ations indi
ates that some parts of 
lothhave a
tive role in simulation while others 
on-tribute very little. This fa
t expresses thene
essity of adaptive mesh. Adaptive re�ne-ment has been employed in di�erent waysand for di�erent appli
ations in 
loth simula-tion3),4),7). Villard10) has modi�ed the me
han-i
al model for more a

ura
y. Volkov11) has in-trodu
ed the re�nement and simpli�
ation for
loth meshes but without adjusting the me-
hani
al model. We have already implementeda 
ombination of adaptive mesh re�ning with
oarsening (AMRC) that adjusts me
hani
aly Graduate S
hool of Informati
s, Kyoto Universityyy A
ademi
 Center for Computing and Media Studies,Kyoto Universityyyy Graduate S
hool of E
onomi
s, Kyoto University

model a

ordingly6). Simulation begins with�nest mesh and mesh density varies adaptivelyduring the 
ourse of simulation.AMRC redu
es the sequential 
ost but larger,
omplex and real time appli
ations requiremore speed. Developing a parallel 
loth sim-ulator 
an solve this problem and OpenMP isa good 
hoi
e due to its easier implementation.Romero8) has implemented fast simulation of
ag represented by a very small size. Cloth issimulated as multi-level meshes using OpenMPby Lario4) similar to multi-grid model7). Its ef-�
ien
y may degrade be
ause some regions of
loth are re�ned or simpli�ed unne
essarily.Division of work 
an be de
ided easily for uni-form meshes but AMRC generates uneven meshdensity that needs to manage the load balan
-ing. Therefore, we are developing a load bal-an
ing s
heme using A
tive-Lists. Lists of el-ements are 
reated a

ording to the run-timedensity of mesh and equal number of elementsare assigned to ea
h pro
essor. This parallelalgorithm works well for draping of 
loth.2. Cloth ModelCloth is a deformable obje
t by stret
hing,bending and shearing to des
ribe the basi
property of 
loth. Simulation is performed byusing parti
le-based model, empiri
al data 
ap-tured by Kawabata Evaluation System(KES)and minimization algorithm. KES 
urves givethe unidire
tional and hystereti
 relation be-tween for
e and shape of 
loth. KES data hasbeen utilized by1),9) without 
onsidering the all
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onditions appli
able during the KES measure-ment pro
ess. We are assuming three 
ondi-tions to develop the model that are 1) Initialstate at ea
h simulation step serves as internalvariable that keeps the tra
k of previous history.2) KES 
urve works as boundary value. 3) Allother hystereti
 
y
les lie within this boundary.Cloth is modeled as a mesh of I X J parti-
les and ea
h parti
le represents the 
rossing ofwarp and weft thread. We are de�ning threetypes of elements; parti
les, edges and triplesin our model. An edge 
onne
ts two adja
entparti
les and its length des
ribes the stret
h.Similarly three adja
ent parti
les make a tripleto 
ompute the bending angle. Xij is the posi-tion of a parti
le, fs is the internal stret
hingfor
e of an edge and f b is the bending for
e for atriple. All other variables are fun
tion of abovevariables and detail is given in the work5).Three energy/
ost fun
tions, motion & gravi-tation (En), stret
hing (Es) and bending (Eb),are 
onsidered for simulation. Sin
e KESstret
h 
urve is a relation from for
e to shapewhile KES bend 
urve des
ribes the relationfrom shape to for
e, so stret
hing and bend-ing properties are in
orporated to have the re-lations in both dire
tions. On the other hand,Newton's law des
ribes the bilateral relation be-tween for
e and shape. Therefore, we are ableto involve the for
e as well as shape at the sametime. Other properties may be added in themodel in similar way. Ea
h 
ost fun
tion is de-�ned based on the KES data and represents theamount of violation from KES data. The 
ostis zero when the 
al
ulated data lies within oron the KES 
urve and 
ost in
reases outside theKES 
urve. The total 
ost fun
tion is the sumof individual 
ost fun
tions.Algorithm 1 : Simulationfor(Simulation Loop) {do{ Itr ++; /* Minimization Loop */SaveVariables(position, for
e);ComputeGradient(
lothMesh);ComputeMinima(
lothMesh, gradient);UpdateVariables(position, for
e);ComputeCost(
lothMesh);} while(Cost> Toleran
e && Itr< MaxItr);DisplayCloth();} \* End Simulation */Simulation pro
ess, in sequential order, is de-s
ribed as pseudo 
ode in Algorithm 1. The
urrent variables are saved and gradient is 
om-

Refine/Coarse Particle Ghost Particle

Fig. 1 Mesh re�ning(left) and 
oarsening(right)puted numeri
ally. The values of desired vari-ables 
orresponding to the equilibrium state ofthe 
loth are obtained through 
ost minimiza-tion by using the 
onjugate gradient method.Then 
ost is 
omputed after updating the vari-ables. This pro
ess 
ontinues until 
ost redu
esto toleran
e or maximum iterations are rea
hed.3. Adaptive MeshesWe are implementing the adaptive re�ning to-gether with 
oarsening by utilizing bending 
ostas 
riterion to re�ne or 
oarse the mesh. Flatregion of 
loth is represented with 
oarser meshand deformed region is represented with densermesh. Adaptive mesh implementation needs toadjust the mass 
onservation, for
e distributionand me
hani
al model.Adaptive mesh re�nement adds eight a
tiveand eight ghost parti
les in deformed region of
loth. Ghost parti
les just maintain the topol-ogy of mesh. Length of new edge redu
es to halfand a new parti
le represents 1=4 of the area as
ompared to one level 
oarser parti
le. On theother hand, adaptive 
oarsening has maximumdensity for initial mesh and omits parti
les thathave very small bending 
ost. Omission of aparti
le removes the four edges and six triples
onne
ted with this parti
le as shown in Fig. 1.3.1 Adjusting Me
hani
al ModelKES 
hara
teristi
s, for both bend andstret
h, are available for a spe
i�
 size of 
loth.Therefore, our model uses KES data interpo-lated for adaptive size of meshes.In 
ontrast to mass-spring model, we 
al
u-late bending angle formed by three parti
les ofa triple that permits to add or omit a parti-
le from mesh. Eliminating a parti
le mergesneighboring triples and edges, for example seeFig. 2. Triple T2 is merged in the triples T1and T3, as a result for
e 
orresponding to T2 isdivided equally between T1 and T3. Similarlymerging of edges E2 and E3, adds for
es to re-sultant edge.Re�nement splits an edge into two with half
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3(f  + 0.5T2Fig. 2 For
e adjustment for removing a parti
lelength and spa
e having four edges is rep-resented by sixteen edges after re�nement asshown in Fig. 1. Therefore, uniform for
e dis-tribution over the area assigns fs=4 to the �neredges. The bending parameters in re�ning 
anbe adjusted in the similar manner as explainedabove for 
oarsening but in opposite dire
tion.As re�nement redu
es the area representedby a parti
le to 1=4, so mass should be m=4 for�ner parti
le to preserve the total mass. How-ever, di�erent masses show di�erent responsethat should be ta
kled 
arefully. To have thesame response, one way is to take the heaviermass as for 
oarser mesh and adjust it when 
al-
ulating the stret
hing and bending. The otherway is to take the lighter masses (like 
on
eptof mass density) as for �nest mesh by 
onsider-ing that whole mesh is re�ned and 
oarser area
ontains more non-a
tive parti
les. We are us-ing the latter 
on
ept that also remains validfor adaptive 
oarsening.3.2 Adaptive Mesh Re�nement andCoarsening (AMRC)We have already adopted the adaptive re�n-ing and 
oarsening separately and together to
loth simulation6). Both of these 
hange meshdensity in one dire
tion that may represent the
omplex shape ina

urately. Thus implement-ing AMRC produ
es optimum mesh densityand 
exible model. Initial 
loth with 
at shapeis 
on�gured as maximum resolution for simula-tion. When it drapes over an obje
t, deforma-tion takes pla
e around the boundary of obje
t.Therefore, mesh needs 
oarsening to lower thedensity in the region away from the boundary ofobje
t. Elements, removed during 
oarsening,are not 
ompletely deleted from data stru
turebut those are just made ina
tive. This infor-mation is later used for re�nement. Similarly,in 
ase of re�ning, previously in-a
tivated ele-ments are made a
tive in data stru
ture. As ele-ments are neither deleted nor added by AMRC,memory lo
ation remains un
hanged. Mesh re-
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Fig. 3 Adaptive mesh re�nement and 
oarsening
(a)

(c)

(b)

Fig. 4 Simulated image with (a)
oarser mesh (b)�nermesh and (
)AMRC�nement and 
oarsening are employed a

ord-ingly if 
riteria for re�ning/
oarsening is sat-is�ed. This pro
ess 
ontinues throughout thesimulation and few possible mesh transitions asan example are shown in Fig. 3.A re
tangular 
loth, taking 77 � 77 as max-imum and 20 � 20 as minimum mesh density,draping over a box is simulated on the pentiumpersonal 
omputer without using the adaptivemeshes. The simulated images with 
oarser and�ner mesh are shown in Fig. 4. Simulation with
oarser mesh is faster but 
loth is penetratingin the box and requires denser mesh for realisti
simulation. On the other hand, simulation with�ner mesh gives the best quality but needs max-imum time. Then sequential algorithm for sim-ulation with AMRC is exe
uted and simulatedimage is shown in Fig. 4. Algorithm observes
riteria for re�ning or 
oarsening after three it-erations by assuming that there is no abrupt
hange in the model in few iterations. Coars-ening is dominant initially be
ause most of the
loth is 
at. Later high deformation o

urs nearthe edges of the box that need re�nement.A 
ost fun
tion represents the violation of
loth parameters from experimental (KES)data. Simulation would be realisti
 when 
ostfun
tion approa
hes to zero. Therefore, mini-mized value of 
ost fun
tion indi
ates the qual-
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Table 1 Comparison for di�erent meshesMesh Time No. of Quality[se
℄ Parti
les ErrorFiner Mesh 2940 5939 0.0AMRC 829 5939 { 1378 +0.057Coarser Mesh 176 400 +0.071ity of simulation by 
onsidering that KES data
orresponds to best quality. The 
ost value of�nest mesh, a
hieved in experiment, is used aszero quality error for referen
e. Comparisonamong di�erent simulations proves that AMRCprodu
es good speed and quality (see Table 1).4. Parallel SimulationOpenMP, a shared memory based API, is uti-lized for parallel programming to have faster
loth simulation. When a parallel region is
alled in OpenMP, a master thread 
reates slavethreads, divides iterations and syn
hronizesthreads at the end of parallel region. It requiresextra 
ost, 
alled Parallel Overhead, whi
h in-
reases with number of threads2). Some perfor-man
e tuning is ne
essary to run the programa

eptably fast. However, over-all performan
edepends on the per
entage of 
ode that 
an bemade parallel, granularity, load balan
ing, lo-
ality and syn
hronization among pro
essors.4.1 Syn
hronizationCloth mesh is divided into blo
ks of 50� 50parti
les. Blo
k size may vary depending on theappli
ation. Memory is allo
ated blo
k-wise toparti
les, edges and triples respe
tively in 
y
li
fashion. There are three 
ost fun
tions relat-ing a parti
le to its eight neighbors throughedges and triples in 
loth stru
ture. Thesetasks may use the same data and 
annot be
omputed without some syn
hronization. Thisfa
tor limits the parallel eÆ
ien
y that mustbe resolved by keeping the overhead minimum.Therefore, we utilize the work-sharing dire
tiveof OpenMP to keep the all tasks in one parallelregion separated by event syn
hronization andparallelism is exploited within a task. Com-puteGradient() is parallelized as shown in Fig5 and same idea is applied to other fun
tions.4.2 Load Balan
ing in OpenMPVariation in mesh density by AMRC dur-ing exe
ution, raises the ne
essity of dynami
load balan
ing. There are stati
, dynami
 andguided s
heduling available in OpenMP to bal-an
e the load. Stati
 s
heme simply divides the

Start : Parallel 

Compute Gradient (position)

Compute Gradient (F-Bend)

End : Parallel 

Synchronize

Compute Gradient (F-Stretch)

Synchronize

Fig. 5 Parallelization of ComputeGradient()
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Fig. 6 A
tive List 
reationwork equally among pro
essors. As distribu-tion is de
ided at the start, it has the minimumoverhead but faster pro
essor has to wait forslower one at the end.In dynami
 s
heduling, a �xed amount ofjob is allo
ated to a pro
essor on �rst 
ome�rst served basis. When a thread �nishes itswork, it goes to the system runtime manager ofOpenMP and asks for a next job. The fastestthread never has to wait for the slowest threadto 
ompute more than �xed amount of job. Asthis s
heme allo
ates job to pro
essors at run-time, it is more expansive than stati
 s
heme.Guided s
hedule is same as dynami
 s
heduleex
ept that next job size is not �xed. It as-signs larger job size to �rst pro
essor and jobsize de
reases exponentially until it rea
hes thede�ned minimum size. Size of next job is equalto the remaining work divided by the numberof threads. Computing the job size at run time,in
reases its overhead than dynami
 s
heduling.Its eÆ
ien
y depends on the 
ombination of jobsize and number of pro
essors.4.3 Load Balan
ing Using A
tive ListsWe propose the distribution of data on the ba-sis of a
tive elements in the mesh. Elements arestored in data stru
ture for �nest mesh. Omit-ting an element during 
oarsening sets its statusas non-a
tive. Similarly status of an element is
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Fig. 7 Work distribution among pro
essors
hanged from non-a
tive to a
tive while re�n-ing. The lists of a
tive elements are 
reatedin su
h a way that non-a
tive elements are re-moved from the list after 
oarsening and a
tiveelements are inserted in the list after re�ning asshown in Fig. 6. There are three types of ele-ments that demands to make three a
tive lists.Therefore, three threads are employed to up-date the ea
h list in sequential way. Then to-tal number of elements in ea
h list are dividedamong pro
essors like stati
 s
heduling. Theabove pro
edure for maximum 20 elements iselaborated by an example in Fig. 7. Only a
-tive elements are redistributed among four pro-
essors at di�erent iterations.5. Experimental ResultsParallel algorithm based on OpenMP is de-signed to simulate the 
loth with 1000 � 1000parti
les, draping over a box using the Fu-jitsu PRIMEPOWER HPC2500 ma
hine. TheHPC2500 
ontains 96 CPUs distributed over 12system boards that are 
onne
ted with ea
hother via a 
rossbar network supporting 133GB/s. A system board has 8 SPARC64 V pro-
essors (1.3GHz) and 16GB of memory. All ex-periments are exe
uted in bat
h mode to ensurethe equal number of threads and pro
essors. C-
ompiler f

 with KOMP, Kfast GP2=2, V9,Klargepage=2 and Khardbarrier options is usedto 
ompile our sour
e 
ode. The performan
eevaluation in terms of 
omputational time for100 iterations and number of pro
essors is ex-pressed by the graph in Fig. 8.Stati
 s
heduling is a simplest s
heme withminimum parallel overhead. It has the poorestperforman
e due to uneven distribution of loadamong pro
essors as shown in Fig. 8.Dynami
 s
heduling is employed for one, twoand three blo
ks as minimum job size to see
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Fig. 8 Performan
e evaluationTable 2 Timing analysisNo. of Seq. Para. Time Speedpro
e- over- over- [se
℄ Upssors head head1 11.5 0.000 10459.70 1.004 11.5 0.050 2498.97 4.188 11.5 0.080 1167.61 8.9616 11.5 0.131 583.80 17.9132 11.5 0.205 316.86 33.0148 11.5 0.382 220.16 47.5064 11.5 0.457 168.06 62.2480 11.5 0.588 145.58 71.85the e�e
t of job size. The 
hoi
e of job size isa 
ompromise between quality of load balan
-ing and syn
hronization 
ost. Load balan
ingimproves for smaller size be
ause fastest pro-
essor has to wait for less time but small sizeof job in
reases the number of job allo
ationsat run time. So, syn
hronization 
ost in
reasesbe
ause one syn
hronization per job allo
ationis required. Simulation results in Fig. 8 showthat smaller job size is better for large numberof pro
essors while larger job size is better forless number of pro
essors. Anyhow, di�eren
ein performan
e 
orresponding to the number ofblo
ks is not prominent in our simulation.Guided s
heduling is done with minimum sizeequal to one blo
k. At the end, job size be
omesvery small spe
ially for large number of pro
es-sors. Due to this reason, its performan
e liesbetween stati
 and dynami
 s
heduling.Using A
tive-Lists, ea
h pro
essor has samenumber of elements for pro
essing. As a result,it has the best performan
e as 
ompared withstati
, guided and dynami
 s
heduling s
hemes.Elapsed time for 
loth simulation by A
tive-Lists s
heme is elaborated in the Table 2 forfurther analysis. It gives the best performan
efor 8 to 32 pro
essors. Parallel overhead is very
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small as 
ompared with total elapsed time upto 32 pro
essors and ea
h pro
essor has largeenough per
entage of total work to 
ompute,whi
h mat
hes with the size of 
a
he memory.On the other hand, performan
e slows downwith larger number of pro
essors. The mainreasons are sequential and parallel overheads,whi
h be
ome gradually obvious as the numberof pro
essors in
reases over 48.Sequential overhead is the time required to
ompute the sequential part of the 
ode that isapproximately 10 se
onds and time needed toupdate the a
tive lists is 1:5 se
onds. As thereare three a
tive lists, so always three threadsare used to update these lists. Parallel overheadis the 
ost needed for thread 
reation, syn
hro-nization among threads and event syn
hroniza-tion. Table 2 shows that these 
osts in
reasewith the number of pro
essors.If the 
ost of overheads, mentioned above, isdedu
ted from the total elapsed time then re-sult shows the linear speed up. For example,net time spent by 80 pro
essors in parallel 
om-putation is (145:58� 11:5� 0:588) = 133:4 se
-onds. In 
ase of single pro
essor, parallel exe
u-tion part spending (10459:7� 11:5) = 10448:2se
onds might be exe
uted in parallel. Ideallythis time would be redu
ed to (10448:2=80) =130:6 se
onds if we employ the 80 pro
essors.These two values 133:4 and 130:6 se
onds areapproximately the same. This fa
t means thatA
tive-List s
heme works well to a
hieve thebest load balan
ing and the 
rossbar networkof HPC2500 has not yet be
ome a bottlene
k.6. Con
lusion and Future WorkWe have su

essfully implemented the par-allel algorithm in OpenMP for simulating therealisti
 for
e as well as shape of 
loth us-ing AMRC. AMRC redu
es the sequential timewhile a s
heme based on the A
tive-Lists is im-plemented to balan
e the work load. Its 
om-parison with the s
heduling s
hemes availablein OpenMP re
e
ts a good speed up.We have simulated the 
loth 
ontaining1000X1000 parti
les that is large enough for areal size appli
ation. This algorithm may em-ploy to 
omplex appli
ations like dressed hu-man after improving the speed in future.S
alability for a very large set of CPUs is afuture 
onsideration to get the real time simu-

lation. Sin
e number of CPUs are limited forOpenMP be
ause of shared memory API, it re-quires swit
hing to MPI or 
luster-based sys-tems. Su
h systems need mesh de
ompositionand boundary ex
hange. It demands the par-allel 
ode for AMRC and A
tive-Lists s
heme.Later s
heme 
an be de
omposed by assigninga smaller private list to ea
h distributed partof memory. When AMRC 
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