
1

An approah towards fast simulation of virtual loth with adaptivemesh re�nement and oarsening on Fujitsu HPC2500Alam MUJAHID,y Koh KAKUSHO,yy Mihihiko MINOH,yyYasuhiko NAKASHIMA,yyy Shin-ihiro MORIyand Shinji TOMITAyParallel simulation of shape and fore ating on loth is proposed for Fujitsu HPC2500 byusing OpenMP. Parallelization is feasible due to iterative and higher omputations neededfor loth model. Adaptive mesh re�nement together with oarsening (AMRC) is employedto obtain the optimum mesh density of loth. Mesh size hanges at runtime due to AMRC,whih initiates the neessity of load-balaning. Therefore, a load balaning sheme basedon 'Ative-Lists' has been implemented. Comparison with built-in sheduling onstruts inOpenMP shows its good performane for simulating the shape as well as fore of virtual loth.1. IntrodutionFast as well as realisti simulation of lothis an interesting issue in omputer graphis.Cloth has been represented by the mass-springmodel, �nite element model and partile-basedmodel. Its shape has been simulated by usingthe fore integration3),10) or energy minimiza-tion1),5),9). However, only visual information isinsuÆient for virtual manipulation and shapeas well as fore are neessary to represent theloth in virtual environment. We have onsid-ered, for the �rst time, the relation of fore withshape deformation for loth5).A realisti loth an only be represented bya denser mesh, whih is omputationally ex-pansive. A loser look on variety of loth ap-pliations indiates that some parts of lothhave ative role in simulation while others on-tribute very little. This fat expresses theneessity of adaptive mesh. Adaptive re�ne-ment has been employed in di�erent waysand for di�erent appliations in loth simula-tion3),4),7). Villard10) has modi�ed the mehan-ial model for more auray. Volkov11) has in-trodued the re�nement and simpli�ation forloth meshes but without adjusting the me-hanial model. We have already implementeda ombination of adaptive mesh re�ning withoarsening (AMRC) that adjusts mehanialy Graduate Shool of Informatis, Kyoto Universityyy Aademi Center for Computing and Media Studies,Kyoto Universityyyy Graduate Shool of Eonomis, Kyoto University

model aordingly6). Simulation begins with�nest mesh and mesh density varies adaptivelyduring the ourse of simulation.AMRC redues the sequential ost but larger,omplex and real time appliations requiremore speed. Developing a parallel loth sim-ulator an solve this problem and OpenMP isa good hoie due to its easier implementation.Romero8) has implemented fast simulation ofag represented by a very small size. Cloth issimulated as multi-level meshes using OpenMPby Lario4) similar to multi-grid model7). Its ef-�ieny may degrade beause some regions ofloth are re�ned or simpli�ed unneessarily.Division of work an be deided easily for uni-form meshes but AMRC generates uneven meshdensity that needs to manage the load balan-ing. Therefore, we are developing a load bal-aning sheme using Ative-Lists. Lists of el-ements are reated aording to the run-timedensity of mesh and equal number of elementsare assigned to eah proessor. This parallelalgorithm works well for draping of loth.2. Cloth ModelCloth is a deformable objet by strething,bending and shearing to desribe the basiproperty of loth. Simulation is performed byusing partile-based model, empirial data ap-tured by Kawabata Evaluation System(KES)and minimization algorithm. KES urves givethe unidiretional and hystereti relation be-tween fore and shape of loth. KES data hasbeen utilized by1),9) without onsidering the all

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
テキストボックス
2004－HPC－98　（2）

研究会Temp
テキストボックス
2004／4／13

研究会Temp
テキストボックス
－7－

2

onditions appliable during the KES measure-ment proess. We are assuming three ondi-tions to develop the model that are 1) Initialstate at eah simulation step serves as internalvariable that keeps the trak of previous history.2) KES urve works as boundary value. 3) Allother hystereti yles lie within this boundary.Cloth is modeled as a mesh of I X J parti-les and eah partile represents the rossing ofwarp and weft thread. We are de�ning threetypes of elements; partiles, edges and triplesin our model. An edge onnets two adjaentpartiles and its length desribes the streth.Similarly three adjaent partiles make a tripleto ompute the bending angle. Xij is the posi-tion of a partile, fs is the internal strethingfore of an edge and f b is the bending fore for atriple. All other variables are funtion of abovevariables and detail is given in the work5).Three energy/ost funtions, motion & gravi-tation (En), strething (Es) and bending (Eb),are onsidered for simulation. Sine KESstreth urve is a relation from fore to shapewhile KES bend urve desribes the relationfrom shape to fore, so strething and bend-ing properties are inorporated to have the re-lations in both diretions. On the other hand,Newton's law desribes the bilateral relation be-tween fore and shape. Therefore, we are ableto involve the fore as well as shape at the sametime. Other properties may be added in themodel in similar way. Eah ost funtion is de-�ned based on the KES data and represents theamount of violation from KES data. The ostis zero when the alulated data lies within oron the KES urve and ost inreases outside theKES urve. The total ost funtion is the sumof individual ost funtions.Algorithm 1 : Simulationfor(Simulation Loop) {do{ Itr ++; /* Minimization Loop */SaveVariables(position, fore);ComputeGradient(lothMesh);ComputeMinima(lothMesh, gradient);UpdateVariables(position, fore);ComputeCost(lothMesh);} while(Cost> Tolerane && Itr< MaxItr);DisplayCloth();} * End Simulation */Simulation proess, in sequential order, is de-sribed as pseudo ode in Algorithm 1. Theurrent variables are saved and gradient is om-

Refine/Coarse Particle Ghost Particle

Fig. 1 Mesh re�ning(left) and oarsening(right)puted numerially. The values of desired vari-ables orresponding to the equilibrium state ofthe loth are obtained through ost minimiza-tion by using the onjugate gradient method.Then ost is omputed after updating the vari-ables. This proess ontinues until ost reduesto tolerane or maximum iterations are reahed.3. Adaptive MeshesWe are implementing the adaptive re�ning to-gether with oarsening by utilizing bending ostas riterion to re�ne or oarse the mesh. Flatregion of loth is represented with oarser meshand deformed region is represented with densermesh. Adaptive mesh implementation needs toadjust the mass onservation, fore distributionand mehanial model.Adaptive mesh re�nement adds eight ativeand eight ghost partiles in deformed region ofloth. Ghost partiles just maintain the topol-ogy of mesh. Length of new edge redues to halfand a new partile represents 1=4 of the area asompared to one level oarser partile. On theother hand, adaptive oarsening has maximumdensity for initial mesh and omits partiles thathave very small bending ost. Omission of apartile removes the four edges and six triplesonneted with this partile as shown in Fig. 1.3.1 Adjusting Mehanial ModelKES harateristis, for both bend andstreth, are available for a spei� size of loth.Therefore, our model uses KES data interpo-lated for adaptive size of meshes.In ontrast to mass-spring model, we alu-late bending angle formed by three partiles ofa triple that permits to add or omit a parti-le from mesh. Eliminating a partile mergesneighboring triples and edges, for example seeFig. 2. Triple T2 is merged in the triples T1and T3, as a result fore orresponding to T2 isdivided equally between T1 and T3. Similarlymerging of edges E2 and E3, adds fores to re-sultant edge.Re�nement splits an edge into two with half

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－8－

3

Removing Particle
s
2(f)E2

s
3(f)E3

s
1(f)E1

E4
s
4(f)

E4
s
4(f)

` s
3 f)

s
2(f +E2

s
1(f)E1

Removed Particle

b
2(f)T2

b
1(f)T1

b
3(f)T3

` b
2 f)

b
1(f + 0.5T1

` b
2 f)

b
3(f + 0.5T2Fig. 2 Fore adjustment for removing a partilelength and spae having four edges is rep-resented by sixteen edges after re�nement asshown in Fig. 1. Therefore, uniform fore dis-tribution over the area assigns fs=4 to the �neredges. The bending parameters in re�ning anbe adjusted in the similar manner as explainedabove for oarsening but in opposite diretion.As re�nement redues the area representedby a partile to 1=4, so mass should be m=4 for�ner partile to preserve the total mass. How-ever, di�erent masses show di�erent responsethat should be takled arefully. To have thesame response, one way is to take the heaviermass as for oarser mesh and adjust it when al-ulating the strething and bending. The otherway is to take the lighter masses (like oneptof mass density) as for �nest mesh by onsider-ing that whole mesh is re�ned and oarser areaontains more non-ative partiles. We are us-ing the latter onept that also remains validfor adaptive oarsening.3.2 Adaptive Mesh Re�nement andCoarsening (AMRC)We have already adopted the adaptive re�n-ing and oarsening separately and together toloth simulation6). Both of these hange meshdensity in one diretion that may represent theomplex shape inaurately. Thus implement-ing AMRC produes optimum mesh densityand exible model. Initial loth with at shapeis on�gured as maximum resolution for simula-tion. When it drapes over an objet, deforma-tion takes plae around the boundary of objet.Therefore, mesh needs oarsening to lower thedensity in the region away from the boundary ofobjet. Elements, removed during oarsening,are not ompletely deleted from data struturebut those are just made inative. This infor-mation is later used for re�nement. Similarly,in ase of re�ning, previously in-ativated ele-ments are made ative in data struture. As ele-ments are neither deleted nor added by AMRC,memory loation remains unhanged. Mesh re-

AMRC

xx
xx

xx
xx

xxx
xxxxx

xx
xx
xx

xx
xx
xx
xx

xx
xx
xx

xx
xx
xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xxxx
xxxx
xxxx

xx
xx

xxx
xxx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx
xx
xx

xx
xx

xx
xx
xx
xx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

xx
xx

xx
xx

xxx
xxx

AMRC

AMRC

xx
xxCoarsening Refining

Fig. 3 Adaptive mesh re�nement and oarsening
(a)

(c)

(b)

Fig. 4 Simulated image with (a)oarser mesh (b)�nermesh and ()AMRC�nement and oarsening are employed aord-ingly if riteria for re�ning/oarsening is sat-is�ed. This proess ontinues throughout thesimulation and few possible mesh transitions asan example are shown in Fig. 3.A retangular loth, taking 77 � 77 as max-imum and 20 � 20 as minimum mesh density,draping over a box is simulated on the pentiumpersonal omputer without using the adaptivemeshes. The simulated images with oarser and�ner mesh are shown in Fig. 4. Simulation withoarser mesh is faster but loth is penetratingin the box and requires denser mesh for realistisimulation. On the other hand, simulation with�ner mesh gives the best quality but needs max-imum time. Then sequential algorithm for sim-ulation with AMRC is exeuted and simulatedimage is shown in Fig. 4. Algorithm observesriteria for re�ning or oarsening after three it-erations by assuming that there is no abrupthange in the model in few iterations. Coars-ening is dominant initially beause most of theloth is at. Later high deformation ours nearthe edges of the box that need re�nement.A ost funtion represents the violation ofloth parameters from experimental (KES)data. Simulation would be realisti when ostfuntion approahes to zero. Therefore, mini-mized value of ost funtion indiates the qual-

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－9－

4

Table 1 Comparison for di�erent meshesMesh Time No. of Quality[se℄ Partiles ErrorFiner Mesh 2940 5939 0.0AMRC 829 5939 { 1378 +0.057Coarser Mesh 176 400 +0.071ity of simulation by onsidering that KES dataorresponds to best quality. The ost value of�nest mesh, ahieved in experiment, is used aszero quality error for referene. Comparisonamong di�erent simulations proves that AMRCprodues good speed and quality (see Table 1).4. Parallel SimulationOpenMP, a shared memory based API, is uti-lized for parallel programming to have fasterloth simulation. When a parallel region isalled in OpenMP, a master thread reates slavethreads, divides iterations and synhronizesthreads at the end of parallel region. It requiresextra ost, alled Parallel Overhead, whih in-reases with number of threads2). Some perfor-mane tuning is neessary to run the programaeptably fast. However, over-all performanedepends on the perentage of ode that an bemade parallel, granularity, load balaning, lo-ality and synhronization among proessors.4.1 SynhronizationCloth mesh is divided into bloks of 50� 50partiles. Blok size may vary depending on theappliation. Memory is alloated blok-wise topartiles, edges and triples respetively in ylifashion. There are three ost funtions relat-ing a partile to its eight neighbors throughedges and triples in loth struture. Thesetasks may use the same data and annot beomputed without some synhronization. Thisfator limits the parallel eÆieny that mustbe resolved by keeping the overhead minimum.Therefore, we utilize the work-sharing diretiveof OpenMP to keep the all tasks in one parallelregion separated by event synhronization andparallelism is exploited within a task. Com-puteGradient() is parallelized as shown in Fig5 and same idea is applied to other funtions.4.2 Load Balaning in OpenMPVariation in mesh density by AMRC dur-ing exeution, raises the neessity of dynamiload balaning. There are stati, dynami andguided sheduling available in OpenMP to bal-ane the load. Stati sheme simply divides the

Start : Parallel

Compute Gradient (position)

Compute Gradient (F-Bend)

End : Parallel

Synchronize

Compute Gradient (F-Stretch)

Synchronize

Fig. 5 Parallelization of ComputeGradient()
xxxx
xxxx

xxxx
xxxx
xxxx

xxxx
xxxx

xxxx
xxxx
xxxxxxxx
xxxx

xxxx
xxxx
xxxx

E
le

m
en

ta
l

D
a
ta

 i
n

 f
in

es
t

m
es

h

A
ct

iv
e

L
is

t

0

n-3

.

n-2
n-1

2
1

.

.

.

.

.

.

.

.

.

.

.

.

Active

Non-Active
xxxxxx
xxxxxx

Fig. 6 Ative List reationwork equally among proessors. As distribu-tion is deided at the start, it has the minimumoverhead but faster proessor has to wait forslower one at the end.In dynami sheduling, a �xed amount ofjob is alloated to a proessor on �rst ome�rst served basis. When a thread �nishes itswork, it goes to the system runtime manager ofOpenMP and asks for a next job. The fastestthread never has to wait for the slowest threadto ompute more than �xed amount of job. Asthis sheme alloates job to proessors at run-time, it is more expansive than stati sheme.Guided shedule is same as dynami sheduleexept that next job size is not �xed. It as-signs larger job size to �rst proessor and jobsize dereases exponentially until it reahes thede�ned minimum size. Size of next job is equalto the remaining work divided by the numberof threads. Computing the job size at run time,inreases its overhead than dynami sheduling.Its eÆieny depends on the ombination of jobsize and number of proessors.4.3 Load Balaning Using Ative ListsWe propose the distribution of data on the ba-sis of ative elements in the mesh. Elements arestored in data struture for �nest mesh. Omit-ting an element during oarsening sets its statusas non-ative. Similarly status of an element is

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－10－

5

P3

P2

P1

P0

xxxxx

x
x
x
x
x
x
x
x
x
x
x
x

xxxxx

xxxxx

x
x
x
x
x
x
x
x
x
x
x
x

xxxxx

xxxxx

x
x
x
x
x
x
x
x
x
x
x
x

xxxxx

xxxxx

x
x
x
x
x
x
x
x
x
x
x
x

xxxxx

Iteration i

xxxxxx
xxxxxx

xxxxxx
xxxxxx

xxxxxx
xxxxxx

xxxxxx
xxxxxxxxxxxx
xxxxxx

xxxxxx
xxxxxx

P3

P2

P1

P0

xxxxx

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

xxxxx

xxxxx

x
x
x
x
x
x
x
x

xxxxx

xxxxx

x
x
x
x
x
x
x
x
x
x
x
x

xxxxx

xxxxx

x
x
x
x
x
x
x
x
x
x
x

xxxxx

Iteration j
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxxxxxxxx
xxxxxx

xxxxxx
xxxxxxxxxxxx
xxxxxx

xxxxxx
xxxxxx

xxxxxx
xxxxxx

Iteration k

P3

P2

P1

P0

xxxxx

x
x
x
x
x

xxxxx

xxxx

x
x
x
x
x
x
x
x
x
x
x

xxxx

xxxxx

x
x
x
x
x
x
x
x

xxxxx

xxxxx

x
x
x
x
x
x
x
x
x

xxxxx

Non-Active

Active

xxxxxx
xxxxxx

Fig. 7 Work distribution among proessorshanged from non-ative to ative while re�n-ing. The lists of ative elements are reatedin suh a way that non-ative elements are re-moved from the list after oarsening and ativeelements are inserted in the list after re�ning asshown in Fig. 6. There are three types of ele-ments that demands to make three ative lists.Therefore, three threads are employed to up-date the eah list in sequential way. Then to-tal number of elements in eah list are dividedamong proessors like stati sheduling. Theabove proedure for maximum 20 elements iselaborated by an example in Fig. 7. Only a-tive elements are redistributed among four pro-essors at di�erent iterations.5. Experimental ResultsParallel algorithm based on OpenMP is de-signed to simulate the loth with 1000 � 1000partiles, draping over a box using the Fu-jitsu PRIMEPOWER HPC2500 mahine. TheHPC2500 ontains 96 CPUs distributed over 12system boards that are onneted with eahother via a rossbar network supporting 133GB/s. A system board has 8 SPARC64 V pro-essors (1.3GHz) and 16GB of memory. All ex-periments are exeuted in bath mode to ensurethe equal number of threads and proessors. C-ompiler f with KOMP, Kfast GP2=2, V9,Klargepage=2 and Khardbarrier options is usedto ompile our soure ode. The performaneevaluation in terms of omputational time for100 iterations and number of proessors is ex-pressed by the graph in Fig. 8.Stati sheduling is a simplest sheme withminimum parallel overhead. It has the poorestperformane due to uneven distribution of loadamong proessors as shown in Fig. 8.Dynami sheduling is employed for one, twoand three bloks as minimum job size to see

0

500

1000

1500

2000

10 20 30 40 50 60 70 80

E
la

ps
ed

 T
im

e
[s

ec
]

Number of Processors

Static
Guided B=1

Dynamic B=1
Dynamic B=2
Dynamic B=3

ActiveList

Fig. 8 Performane evaluationTable 2 Timing analysisNo. of Seq. Para. Time Speedproe- over- over- [se℄ Upssors head head1 11.5 0.000 10459.70 1.004 11.5 0.050 2498.97 4.188 11.5 0.080 1167.61 8.9616 11.5 0.131 583.80 17.9132 11.5 0.205 316.86 33.0148 11.5 0.382 220.16 47.5064 11.5 0.457 168.06 62.2480 11.5 0.588 145.58 71.85the e�et of job size. The hoie of job size isa ompromise between quality of load balan-ing and synhronization ost. Load balaningimproves for smaller size beause fastest pro-essor has to wait for less time but small sizeof job inreases the number of job alloationsat run time. So, synhronization ost inreasesbeause one synhronization per job alloationis required. Simulation results in Fig. 8 showthat smaller job size is better for large numberof proessors while larger job size is better forless number of proessors. Anyhow, di�erenein performane orresponding to the number ofbloks is not prominent in our simulation.Guided sheduling is done with minimum sizeequal to one blok. At the end, job size beomesvery small speially for large number of proes-sors. Due to this reason, its performane liesbetween stati and dynami sheduling.Using Ative-Lists, eah proessor has samenumber of elements for proessing. As a result,it has the best performane as ompared withstati, guided and dynami sheduling shemes.Elapsed time for loth simulation by Ative-Lists sheme is elaborated in the Table 2 forfurther analysis. It gives the best performanefor 8 to 32 proessors. Parallel overhead is very

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－11－

6

small as ompared with total elapsed time upto 32 proessors and eah proessor has largeenough perentage of total work to ompute,whih mathes with the size of ahe memory.On the other hand, performane slows downwith larger number of proessors. The mainreasons are sequential and parallel overheads,whih beome gradually obvious as the numberof proessors inreases over 48.Sequential overhead is the time required toompute the sequential part of the ode that isapproximately 10 seonds and time needed toupdate the ative lists is 1:5 seonds. As thereare three ative lists, so always three threadsare used to update these lists. Parallel overheadis the ost needed for thread reation, synhro-nization among threads and event synhroniza-tion. Table 2 shows that these osts inreasewith the number of proessors.If the ost of overheads, mentioned above, isdeduted from the total elapsed time then re-sult shows the linear speed up. For example,net time spent by 80 proessors in parallel om-putation is (145:58� 11:5� 0:588) = 133:4 se-onds. In ase of single proessor, parallel exeu-tion part spending (10459:7� 11:5) = 10448:2seonds might be exeuted in parallel. Ideallythis time would be redued to (10448:2=80) =130:6 seonds if we employ the 80 proessors.These two values 133:4 and 130:6 seonds areapproximately the same. This fat means thatAtive-List sheme works well to ahieve thebest load balaning and the rossbar networkof HPC2500 has not yet beome a bottlenek.6. Conlusion and Future WorkWe have suessfully implemented the par-allel algorithm in OpenMP for simulating therealisti fore as well as shape of loth us-ing AMRC. AMRC redues the sequential timewhile a sheme based on the Ative-Lists is im-plemented to balane the work load. Its om-parison with the sheduling shemes availablein OpenMP reets a good speed up.We have simulated the loth ontaining1000X1000 partiles that is large enough for areal size appliation. This algorithm may em-ploy to omplex appliations like dressed hu-man after improving the speed in future.Salability for a very large set of CPUs is afuture onsideration to get the real time simu-

lation. Sine number of CPUs are limited forOpenMP beause of shared memory API, it re-quires swithing to MPI or luster-based sys-tems. Suh systems need mesh deompositionand boundary exhange. It demands the par-allel ode for AMRC and Ative-Lists sheme.Later sheme an be deomposed by assigninga smaller private list to eah distributed partof memory. When AMRC hanges mesh den-sity, data is migrated and individual lists areupdated. Parallel AMRC and data movementare big limitation and need more attention.Referenes1) D.E Breen, et al.: Prediting the drape of wo-ven loth using interating partiles; ComputerGraphis (SIGGRAPH Proeedings), pp. 365-372 (1994).2) J.M. Bull: Measuring synhronization andsheduling overheads in OpenMP, 1st EuropeanWorkshop on OpenMP, Lund, Sweden (1999).3) D. Huthinson, M. Preston and W.T. Hewitt:Adaptive re�nement for mass/ spring simula-tions, 7th Eurographis Workshop on Anima-tion and Simulation, pp. 31-45 (1996).4) R. Lario, et al.: Rapid parallelization of a mul-tilevel loth simulator using OpenMP, 3rd Eu-ropean Workshop on OpenMP, Spain (2001).5) Mujahid, et al.: Modeling virtual loth to dis-play realisti shape and fore based on physialdata, Journal of System, Control and Informa-tion, Japan, Vol. 47(4), pp. 183-191 (2003).6) Mujahid, et al.: Simulating realisti fore andshape of virtual loth with adaptive meshesand its parallel implementation in OpenMP,IASTED Int'l Conf. on PDCN, Austria, pp.386-391 (2004).7) H.N. Ng, R.I. Grimsdale and W.G. Allen: Asystem for modeling and visualization of lothmaterial, Computer and Graphis, Vol. 19(3),pp. 423-430 (1995).8) S. Romero, et al.: Fast loth simulation withparallel omputers, 6th Int'l Euro-Par Conf.(Euro-Par2000), Germany, pp. 491-499 (2000).9) Y. Sakaguhi, et al.: Party: A numerial al-ulation method for a dynamially deformableloth model, System and Computers in Japan,Vol. 26(8), pp. 75-87 (1995).10) Jullian Villard and Houman Borouhaki:Adaptive meshing for loth animation, 11thInt'l Meshing Roundtable, pp. 243-252 (2002).11) Vasily Volkov and Li Ling: Adaptive loal re-�nement and simpli�ation of loth meshes,1st Int'l Conferene on Information Tehnol-ogy and Appliation, Australia (2002).

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－12－

