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An approach towards fast simulation of virtual cloth with adaptive
mesh refinement and coarsening on Fujitsu HPC2500

Aram MUJAHID," Kon KAKUSHO,* MicHIHIKO MINOH, i
YASUHIKO NAKASHIMA . itt SHIN-ICHIRO MORI!
and SHINJT TOMITA

Parallel simulation of shape and force acting on cloth is proposed for Fujitsu HPC2500 by
using OpenMP. Parallelization is feasible due to iterative and higher computations needed
for cloth model. Adaptive mesh refinement together with coarsening (AMRC) is employed
to obtain the optimum mesh density of cloth. Mesh size changes at runtime due to AMRC,
which initiates the necessity of load-balancing. Therefore, a load balancing scheme based
on ’Active-Lists’ has been implemented. Comparison with built-in scheduling constructs in
OpenMP shows its good performance for simulating the shape as well as force of virtual cloth.

1. Introduction

Fast as well as realistic simulation of cloth
is an interesting issue in computer graphics.
Cloth has been represented by the mass-spring
model, finite element model and particle-based
model. Its shape has been simulated by using
the force integration®'9) or energy minimiza-
tion')?):?) . However, only visual information is
insufficient for virtual manipulation and shape
as well as force are necessary to represent the
cloth in virtual environment. We have consid-
ered, for the first time, the relation of force with
shape deformation for cloth?).

A realistic cloth can only be represented by
a denser mesh, which is computationally ex-
pansive. A closer look on variety of cloth ap-
plications indicates that some parts of cloth
have active role in simulation while others con-
tribute very little. This fact expresses the
necessity of adaptive mesh. Adaptive refine-
ment has been employed in different ways
and for different applications in cloth simula-
tion®)*)7) . Villard!®) has modified the mechan-
ical model for more accuracy. Volkov'") has in-
troduced the refinement and simplification for
cloth meshes but without adjusting the me-
chanical model. We have already implemented
a combination of adaptive mesh refining with
coarsening (AMRC) that adjusts mechanical
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model accordingly®). Simulation begins with
finest mesh and mesh density varies adaptively
during the course of simulation.

AMRC reduces the sequential cost but larger,
complex and real time applications require
more speed. Developing a parallel cloth sim-
ulator can solve this problem and OpenMP is
a good choice due to its easier implementation.
Romero® has implemented fast simulation of
flag represented by a very small size. Cloth is
simulated as multi-level meshes using OpenMP
by Lario®) similar to multi-grid model™. Tts ef-
ficiency may degrade because some regions of
cloth are refined or simplified unnecessarily.

Division of work can be decided easily for uni-
form meshes but AMRC generates uneven mesh
density that needs to manage the load balanc-
ing. Therefore, we are developing a load bal-
ancing scheme using Active-Lists. Lists of el-
ements are created according to the run-time
density of mesh and equal number of elements
are assigned to each processor. This parallel
algorithm works well for draping of cloth.

2. Cloth Model

Cloth is a deformable object by stretching,
bending and shearing to describe the basic
property of cloth. Simulation is performed by
using particle-based model, empirical data cap-
tured by Kawabata Evaluation System(KES)
and minimization algorithm. KES curves give
the unidirectional and hysteretic relation be-
tween force and shape of cloth. KES data has
been utilized by')*) without considering the all
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conditions applicable during the KES measure-
ment process. We are assuming three condi-
tions to develop the model that are 1) Initial
state at each simulation step serves as internal
variable that keeps the track of previous history.
2) KES curve works as boundary value. 3) All
other hysteretic cycles lie within this boundary.
Cloth is modeled as a mesh of I X J parti-
cles and each particle represents the crossing of
warp and weft thread. We are defining three
types of elements; particles, edges and triples
in our model. An edge connects two adjacent
particles and its length describes the stretch.
Similarly three adjacent particles make a triple
to compute the bending angle. Xj;j is the posi-
tion of a particle, f* is the internal stretching
force of an edge and f? is the bending force for a
triple. All other variables are function of above
variables and detail is given in the work®.
Three energy/cost functions, motion & gravi-
tation (E™), stretching (E*) and bending (E?),
are considered for simulation. Since KES
stretch curve is a relation from force to shape
while KES bend curve describes the relation
from shape to force, so stretching and bend-
ing properties are incorporated to have the re-
lations in both directions. On the other hand,
Newton’s law describes the bilateral relation be-
tween force and shape. Therefore, we are able
to involve the force as well as shape at the same
time. Other properties may be added in the
model in similar way. Each cost function is de-
fined based on the KES data and represents the
amount of violation from KES data. The cost
is zero when the calculated data lies within or
on the KES curve and cost increases outside the
KES curve. The total cost function is the sum
of individual cost functions.
Algorithm 1 : Simulation
for(Simulation Loop) {
do{ Itr ++; /* Minimization Loop */
SaveVariables(position, force);
ComputeGradient (clothMesh) ;
ComputeMinima(clothMesh, gradient);
UpdateVariables(position, force);
ComputeCost (clothMesh) ;
} while(Cost> Tolerance && Itr< MaxItr);
DisplayCloth();
} \* End Simulation */
Simulation process, in sequential order, is de-
scribed as pseudo code in Algorithm 1. The
current variables are saved and gradient is com-

O Refine/Coarse Particle [JGhost Particle

I

L O

[

Fig.1 Mesh refining(left) and coarsening(right)
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puted numerically. The values of desired vari-
ables corresponding to the equilibrium state of
the cloth are obtained through cost minimiza-
tion by using the conjugate gradient method.
Then cost is computed after updating the vari-
ables. This process continues until cost reduces
to tolerance or maximum iterations are reached.

3. Adaptive Meshes

We are implementing the adaptive refining to-
gether with coarsening by utilizing bending cost
as criterion to refine or coarse the mesh. Flat
region of cloth is represented with coarser mesh
and deformed region is represented with denser
mesh. Adaptive mesh implementation needs to
adjust the mass conservation, force distribution
and mechanical model.

Adaptive mesh refinement adds eight active
and eight ghost particles in deformed region of
cloth. Ghost particles just maintain the topol-
ogy of mesh. Length of new edge reduces to half
and a new particle represents 1/4 of the area as
compared to one level coarser particle. On the
other hand, adaptive coarsening has maximum
density for initial mesh and omits particles that
have very small bending cost. Omission of a
particle removes the four edges and six triples
connected with this particle as shown in Fig. 1.

3.1 Adjusting Mechanical Model

KES characteristics, for both bend and
stretch, are available for a specific size of cloth.
Therefore, our model uses KES data interpo-
lated for adaptive size of meshes.

In contrast to mass-spring model, we calcu-
late bending angle formed by three particles of
a triple that permits to add or omit a parti-
cle from mesh. Eliminating a particle merges
neighboring triples and edges, for example see
Fig. 2. Triple T5 is merged in the triples T}
and T3, as a result force corresponding to 75 is
divided equally between T} and T3. Similarly
merging of edges Fy and Ej3, adds forces to re-
sultant edge.

Refinement splits an edge into two with half
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Fig.2 Force adjustment for removing a particle

length and space having four edges is rep-
resented by sixteen edges after refinement as
shown in Fig. 1. Therefore, uniform force dis-
tribution over the area assigns f*/4 to the finer
edges. The bending parameters in refining can
be adjusted in the similar manner as explained
above for coarsening but in opposite direction.

As refinement reduces the area represented
by a particle to 1/4, so mass should be m/4 for
finer particle to preserve the total mass. How-
ever, different masses show different response
that should be tackled carefully. To have the
same response, one way is to take the heavier
mass as for coarser mesh and adjust it when cal-
culating the stretching and bending. The other
way is to take the lighter masses (like concept
of mass density) as for finest mesh by consider-
ing that whole mesh is refined and coarser area
contains more non-active particles. We are us-
ing the latter concept that also remains valid
for adaptive coarsening.

3.2 Adaptive Mesh Refinement and

Coarsening (AMRC)

We have already adopted the adaptive refin-
ing and coarsening separately and together to
cloth simulation®. Both of these change mesh
density in one direction that may represent the
complex shape inaccurately. Thus implement-
ing AMRC produces optimum mesh density
and flexible model. Initial cloth with flat shape
is configured as maximum resolution for simula-
tion. When it drapes over an object, deforma-
tion takes place around the boundary of object.
Therefore, mesh needs coarsening to lower the
density in the region away from the boundary of
object. Elements, removed during coarsening,
are not completely deleted from data structure
but those are just made inactive. This infor-
mation is later used for refinement. Similarly,
in case of refining, previously in-activated ele-
ments are made active in data structure. As ele-
ments are neither deleted nor added by AMRC,
memory location remains unchanged. Mesh re-
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Fig.3 Adaptive mesh refinement and coarsening

Fig.4 Simulated image with (a)coarser mesh (b)finer
mesh and (¢c)AMRC

finement and coarsening are employed accord-
ingly if criteria for refining/coarsening is sat-
isfied. This process continues throughout the
simulation and few possible mesh transitions as
an example are shown in Fig. 3.

A rectangular cloth, taking 77 x 77 as max-
imum and 20 x 20 as minimum mesh density,
draping over a box is simulated on the pentium
personal computer without using the adaptive
meshes. The simulated images with coarser and
finer mesh are shown in Fig. 4. Simulation with
coarser mesh is faster but cloth is penetrating
in the box and requires denser mesh for realistic
simulation. On the other hand, simulation with
finer mesh gives the best quality but needs max-
imum time. Then sequential algorithm for sim-
ulation with AMRC is executed and simulated
image is shown in Fig. 4. Algorithm observes
criteria for refining or coarsening after three it-
erations by assuming that there is no abrupt
change in the model in few iterations. Coars-
ening is dominant initially because most of the
cloth is flat. Later high deformation occurs near
the edges of the box that need refinement.

A cost function represents the violation of
cloth parameters from experimental (KES)
data. Simulation would be realistic when cost
function approaches to zero. Therefore, mini-
mized value of cost function indicates the qual-
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Table 1 Comparison for different meshes

Mesh Time No. of Quality
[sec] Particles Error
Finer Mesh 2940 5939 0.0
AMRC 829 5939 - 1378 | +40.057
Coarser Mesh 176 400 +0.071

ity of simulation by considering that KES data
corresponds to best quality. The cost value of
finest mesh, achieved in experiment, is used as
zero quality error for reference. Comparison
among different simulations proves that AMRC
produces good speed and quality (see Table 1).

4. Parallel Simulation

OpenMP, a shared memory based API, is uti-
lized for parallel programming to have faster
cloth simulation. When a parallel region is
called in OpenMP, a master thread creates slave
threads, divides iterations and synchronizes
threads at the end of parallel region. It requires
extra cost, called Parallel Overhead, which in-
creases with number of threads? . Some perfor-
mance tuning is necessary to run the program
acceptably fast. However, over-all performance
depends on the percentage of code that can be
made parallel, granularity, load balancing, lo-
cality and synchronization among processors.

4.1 Synchronization

Cloth mesh is divided into blocks of 50 x 50
particles. Block size may vary depending on the
application. Memory is allocated block-wise to
particles, edges and triples respectively in cyclic
fashion. There are three cost functions relat-
ing a particle to its eight neighbors through
edges and triples in cloth structure. These
tasks may use the same data and cannot be
computed without some synchronization. This
factor limits the parallel efficiency that must
be resolved by keeping the overhead minimum.
Therefore, we utilize the work-sharing directive
of OpenMP to keep the all tasks in one parallel
region separated by event synchronization and
parallelism is exploited within a task. Com-
puteGradient() is parallelized as shown in Fig
5 and same idea is applied to other functions.

4.2 Load Balancing in OpenMP

Variation in mesh density by AMRC dur-
ing execution, raises the necessity of dynamic
load balancing. There are static, dynamic and
guided scheduling available in OpenMP to bal-
ance the load. Static scheme simply divides the

Start : Parallel

Synchronize

‘Compute Gradient (F-Stretch)‘

/Synchronize

End : Parallel

Fig.5 Parallelization of ComputeGradient ()
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Fig.6 Active List creation

work equally among processors. As distribu-
tion is decided at the start, it has the minimum
overhead but faster processor has to wait for
slower one at the end.

In dynamic scheduling, a fixed amount of
job is allocated to a processor on first come
first served basis. When a thread finishes its
work, it goes to the system runtime manager of
OpenMP and asks for a next job. The fastest
thread never has to wait for the slowest thread
to compute more than fixed amount of job. As
this scheme allocates job to processors at run-
time, it is more expansive than static scheme.

Guided schedule is same as dynamic schedule
except that next job size is not fixed. It as-
signs larger job size to first processor and job
size decreases exponentially until it reaches the
defined minimum size. Size of next job is equal
to the remaining work divided by the number
of threads. Computing the job size at run time,
increases its overhead than dynamic scheduling.
Its efficiency depends on the combination of job
size and number of processors.

4.3 Load Balancing Using Active Lists

We propose the distribution of data on the ba-
sis of active elements in the mesh. Elements are
stored in data structure for finest mesh. Omit-
ting an element during coarsening sets its status
as non-active. Similarly status of an element is

0100


研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス

研究会Temp
テキストボックス
－10－


S
[ 3 |
L2 3]

Active

\
2

EXXXXN
Non-Active

| B
[ R ]
R

P3 "E| @

Iteration i Iteration j Iteration k

Fig.7 Work distribution among processors

changed from non-active to active while refin-
ing. The lists of active elements are created
in such a way that non-active elements are re-
moved from the list after coarsening and active
elements are inserted in the list after refining as
shown in Fig. 6. There are three types of ele-
ments that demands to make three active lists.
Therefore, three threads are employed to up-
date the each list in sequential way. Then to-
tal number of elements in each list are divided
among processors like static scheduling. The
above procedure for maximum 20 elements is
elaborated by an example in Fig. 7. Only ac-
tive elements are redistributed among four pro-
cessors at different iterations.

5. Experimental Results

Parallel algorithm based on OpenMP is de-
signed to simulate the cloth with 1000 x 1000
particles, draping over a box using the Fu-
jitsu PRIMEPOWER HPC2500 machine. The
HPC2500 contains 96 CPUs distributed over 12
system boards that are connected with each
other via a crossbar network supporting 133
GB/s. A system board has 8 SPARC64 V pro-
cessors (1.3GHz) and 16G'B of memory. All ex-
periments are executed in batch mode to ensure
the equal number of threads and processors. C-
compiler fce with KOMP, Kfast.GP2=2, V9,
Klargepage=2 and Khardbarrier options is used
to compile our source code. The performance
evaluation in terms of computational time for
100 iterations and number of processors is ex-
pressed by the graph in Fig. 8.

Static scheduling is a simplest scheme with
minimum parallel overhead. It has the poorest
performance due to uneven distribution of load
among processors as shown in Fig. 8.

Dynamic scheduling is employed for one, two
and three blocks as minimum job size to see
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Fig.8 Performance evaluation

Table 2 Timing analysis

No. of | Seq. | Para. Time Speed

proce- | over- | over- [sec] Up

ssors head | head
1 11.5 | 0.000 | 10459.70 1.00
4 11.5 0.050 2498.97 4.18
8 11.5 | 0.080 1167.61 8.96
16 11.5 | 0.131 583.80 17.91
32 11.5 0.205 316.86 33.01
48 11.5 | 0.382 220.16 47.50
64 11.5 0.457 168.06 62.24
80 11.5 | 0.588 145.58 71.85

the effect of job size. The choice of job size is
a compromise between quality of load balanc-
ing and synchronization cost. Load balancing
improves for smaller size because fastest pro-
cessor has to wait for less time but small size
of job increases the number of job allocations
at run time. So, synchronization cost increases
because one synchronization per job allocation
is required. Simulation results in Fig. 8 show
that smaller job size is better for large number
of processors while larger job size is better for
less number of processors. Anyhow, difference
in performance corresponding to the number of
blocks is not prominent in our simulation.

Guided scheduling is done with minimum size
equal to one block. At the end, job size becomes
very small specially for large number of proces-
sors. Due to this reason, its performance lies
between static and dynamic scheduling.

Using Active-Lists, each processor has same
number of elements for processing. As a result,
it has the best performance as compared with
static, guided and dynamic scheduling schemes.

Elapsed time for cloth simulation by Active-
Lists scheme is elaborated in the Table 2 for
further analysis. It gives the best performance
for 8 to 32 processors. Parallel overhead is very
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small as compared with total elapsed time up
to 32 processors and each processor has large
enough percentage of total work to compute,
which matches with the size of cache memory.
On the other hand, performance slows down
with larger number of processors. The main
reasons are sequential and parallel overheads,
which become gradually obvious as the number
of processors increases over 48.

Sequential overhead is the time required to
compute the sequential part of the code that is
approximately 10 seconds and time needed to
update the active lists is 1.5 seconds. As there
are three active lists, so always three threads
are used to update these lists. Parallel overhead
is the cost needed for thread creation, synchro-
nization among threads and event synchroniza-
tion. Table 2 shows that these costs increase
with the number of processors.

If the cost of overheads, mentioned above, is
deducted from the total elapsed time then re-
sult shows the linear speed up. For example,
net time spent by 80 processors in parallel com-
putation is (145.58 — 11.5 — 0.588) = 133.4 sec-
onds. In case of single processor, parallel execu-
tion part spending (10459.7 — 11.5) = 10448.2
seconds might be executed in parallel. Ideally
this time would be reduced to (10448.2/80) =
130.6 seconds if we employ the 80 processors.
These two values 133.4 and 130.6 seconds are
approximately the same. This fact means that
Active-List scheme works well to achieve the
best load balancing and the crossbar network
of HPC2500 has not yet become a bottleneck.

6. Conclusion and Future Work

We have successfully implemented the par-
allel algorithm in OpenMP for simulating the
realistic force as well as shape of cloth us-
ing AMRC. AMRC reduces the sequential time
while a scheme based on the Active-Lists is im-
plemented to balance the work load. Its com-
parison with the scheduling schemes available
in OpenMP reflects a good speed up.

We have simulated the cloth containing
1000X1000 particles that is large enough for a
real size application. This algorithm may em-
ploy to complex applications like dressed hu-
man after improving the speed in future.

Scalability for a very large set of CPUs is a
future consideration to get the real time simu-

lation. Since number of CPUs are limited for
OpenMP because of shared memory API, it re-
quires switching to MPI or cluster-based sys-
tems. Such systems need mesh decomposition
and boundary exchange. It demands the par-
allel code for AMRC and Active-Lists scheme.
Later scheme can be decomposed by assigning
a smaller private list to each distributed part
of memory. When AMRC changes mesh den-
sity, data is migrated and individual lists are
updated. Parallel AMRC and data movement
are big limitation and need more attention.
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