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Our study proposes a Reducing-size Task Assignation technique (RTA), which is a novel approach to
solve the grain-size problem for the hybrid MPI-OpenMP thread-to-thread (hybrid TC) programming model
in performing distributed matrix mulitplication on SMP PC clusters. Applying RTA, hybrid TC achieves an
acceptable computation performance while retaining the dynamic task scheduling capability, thereby it can
yield a 22% performance improvement for a 16-node cluster of Xeon dual-processor SMPs in comparison
with the pure MPI model. Moreover, we provide formulas to predict hybrid TC performance in different
circumstances.

1. Introduction

The Hybrid TC model1)�3) has proved its advan-
tages over a pure MPI model for SMP clusters. In
Hybrid TC, an SMP node runs only a single MPI pro-
cess while innernode parallelization is achieved with
OpenMP. All communication tasks of a node are per-
formed by the master thread inside the OpenMP fork-
and-Join section. During the communication, other
threads execute computation tasks, thereby resulting
in the appearance of the overlap between computation
and communication inside a node, which improves
overall performance for the cluster. This phenomenon
can be explained based on the limitation of shared re-
sources for computation and/or communication. When
all processors together perform computation or com-
munication, they require the same kind of resources.
This may lead to a scarcity of resources, thereby form-
ing an execution bottleneck. In our SMP PC system,
network and memory bus bandwidth limitations are the
root causes of communication and computation bottle-
necks, respectively.

The hybrid TC model requires a dynamic task
schedule, by which the master thread can join the com-
putation group anytime when it is free of communica-
tion. Hence, the MPI coarse-grain size approach is not
available and a fine-grain size approach costs a per-
formance degradation. This study proposes RTA that
allows computation threads to work with coarse grain
size most the execution time while retaining the dy-
namic task schedule capability. Applying RTA, the
cluster can obtain 99.3% of computation performance
and 122% of overall performance in comparison with
pure MPI. Besides, we provide formulas to predict per-
formance of hybrid model according to different cir-
cumstances, accurrancy of which is proved by the ex-
perimental results.

As an example, RTA is applied to perform a dis-
tributed matrix multiplication. The experimental envi-
ronment consists of a cluster of 16 Intel Xeon 2.8 GHz
dual-processor nodes connected via a Gigabit Ether-
net network. Each node has 1.5 GB of memory, Red
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Hat Linux 9.0 as the operating system, and MPICH
1.2.64) as the MPI library. Local matrix multiplication
(�����) is performed by the goto-blas library5).

The remaining paper is organized as follows. Sec-
tion 2 introduces related studies that also examine pro-
gramming models for SMP clusters. Section 3 de-
scribes a distributed matrix multiplication solution, the
SUMMA algorithm and the developtment of the hy-
brid TC solution. Section 4 not only presents RTA with
its implementation and performance but also shows
formulas determining the outperformance of hybrid
TC with RTA over MPI. Section 5 shows the experi-
mental results. Section 6 explains initial ideas of an
asynchronous MPI model, which is another approach
expected to achieve a similar performance as hybrid
TC. Finally, section 7 concludes the paper.

2. Related Studies

With regard to specific hierarchical memory sys-
tems, several studies have proposed hybrid MPI-
OpenMP programming models in which each SMP
node runs only a single MPI process and computation
parallelization inside a node is achieved by OpenMP.
In comparison with pure MPI, hybrid models not only
replace internode communication with the usage of
shared variables located in share memory areas but
also reduce the number of MPI processes.

Hybrid models are classified as a hybrid model with
process-to-process communication (hybrid PC) and
a hybrid model with thread-to-thread communication
(hybrid TC). The hybrid PC model has been examined
earlier but it could not show a positive result. F. Cap-
pello et. al have shown a common path to develop
a fine-grain hybrid PC code from an existing MPI
model6). Based on this path, they derived a fine-grain
hybrid PC solution for the NAS benchmarks and com-
pared its performance with that of a pure MPI model
for a cluster of IBM SP nodes7),8). Using COSMO–
a cluster of Intel dual processor nodes–T. Boku et. al
compared hybrid PC with pure MPI through solving
the smooth particle applied mechanics (SPAM) prob-
lem9). The above-mentioned studies revealed that in
most cases, hybrid PC is inferior to pure MPI de-
spite its three main advantages: (1) low communica-
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Fig. 1 The SUMMA algorithm

tion cost, (2) dynamic load balancing capability, and
(3) coarse-grain communication capability9). The poor
performance of the fine-grain hybrid PC model is pri-
marily due to its poor intranode OpenMP paralleliza-
tion efficiency8) resulting from an extremely low cache
hit ratio9).

Then, we proposed an enhanced hybrid version, the
hybrid TC model1),2), which was also discussed by G.
Wellein et. al10) and R. Rabenseifner et. al11),12). Fi-
nally, we proposed a middle grain size approach that
allows hybrid TC to achieve an impressive perfor-
mance on different platforms in various types of ex-
periments3).

This paper improves the hybrid TC model by
proposing RTA that is more effective than the middle
grain size approach. Moreover, the paper also provides
formulas to prove the outperformance of the hybrid TC
model and to predict its performance according to dif-
ferent circumstances.

3. Distributed Matrix Multiplication

3.1 SUMMA
In this study, we focus on performing a distributed

matrix multiplication operation:

��
� � ������ � ���	�� � 
�� � (1)

where ����� � � , �� or �� ; �� , 	� , and �� are
global matrices of sizes � � 
, 
 � �, and � � �,
respectively; � and 
 are scalars. In this paper, we
focus on the case ����� � � , but the idea can easily
be extended to other cases.

The scalable universal matrix multiplication algo-
rithm (SUMMA)13) is one of the most effective al-
gorithms for this problem. In comparison with other
strong candidates like PUMMA14) or DIMMA15), it
exhibits a comparable performance and high scalabil-
ity. Moreover, SUMMA is simple and straightforward.
Due to these advantages, SUMMA is used as the basic
for developing a hybrid TC solution with RTA.

In SUMMA, processes are mapped onto an
������ � ������ process grid. Global matrices ��,
	� , and �� are split into ������������� equal sub-

� � ��
for (� � �� � � ��� �++) �

bcast(��	 
�� 
���);
bcast(��	 
�� 
���);
� += ���� � ���;

�

Fig. 2 Pure MPI SUMMA pseudo-code.
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Fig. 3 Elimination of dependency by loop reconstruction.

matrices. A process stores the local submatrices �, 	
and � that are coressponding to its location in the pro-
cess grid. Then, the local matrices� and	 are divided
into 

 blocks of columns and 

 blocks of rows, each
of size ��. Figure 1 shows the data distribution cor-
responding to a � � � process grid. Shaded cells �,
	, and � are the submatrices distributed to a process
that is located in the second row, third column of the
process grid.

Figure 2 shows the pseudo-code of the algorithm,
in which function bcast(����� ����) broadcasts ����
over the communicator ����.

3.2 Elimination of Dependency
Hybrid TC requires independent communication

and computation tasks, which can be executed simul-
taneously by different threads of a node. The pure MPI
task schedule, two iterations of which is shown in Fig-
ure 3(a), does not satisfy this requirement. In the fig-
ure, shaded and non-shaded circles imply communica-
tion and computation tasks, respectively, descriptions
of which are shown in Table 1. The computation task
P(�) cannot be executed until the completion of com-
munication tasks M1(�) and M2(�).

To eliminate the dependency, we reconstruct the
loop such that a new iteration includes the computation
part of the original ��� iteration and the communication
part of the �� � ���� iteration. By this reconstruction,
we obtain a new iteration with no dependency between
the communication and computation parts. The result
of the reconstruction is shown in Figure 3(b).

Table 1 SUMMA task list.

No. Description Type
M1(i) bcast(��� ��� ����) communication
M2(i) bcast(��� ��� ����) communication
P(i) 	 += 
��� � ��� computation
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#pragma omp parallel default(shared) private(i)
�

#pragma omp master
�

M1(� � �);
M2(� � �);

�
#pragma omp for schedule(dynamic) nowait
for (� � �� � � ��
����� � ��) P(�)(�);

�

Fig. 4 Hybrid TC SUMMA pseudo-code for an iteration.

Table 2 Task assignation efficiency.

Variation MFlops Percentage of MPI
MPI 4799 100%

Cell based 3653 76.12%
Colunm based 4272 89.02%

RTA 4762 99.23%

3.3 Hybrid TC Solution for SUMMA
Pseudo-code for a single iteration of the hybrid TC

SUMMA solution is shown in Figure 4. The com-
munication tasks of a node are executed by the mas-
ter thread. The computation task P(�) of an itera-
tion is split into ������� grains, which are executed
in parallel by the #openmp for pragma. The sched-
ule(dynamic) option allows the master thread to join
the computation group after the communication com-
pletion.

4. RTA Development and Efficiency

4.1 Task Assignation Variations
During the computation-communication overlap,

hybrid TC exceeds pure MPI in performance. How-
ever, the model requires the dynamic task scheduling
capability, which may decreases performance of hy-
brid TC outside of the overlap. This section discusses
a method to avoid this performance degradation.

In each SUMMA loop iteration, a node has to per-
form a rank-
� update to its local matrix �:

� � � � ��� � ���� (2)

which should be split into ������� grains. Each grain
updates a part of � by calling a well-tuned function
dgemm() supplied by the goto-blas library5). Perfor-
mance of dgemm() depends on the the level of effi-
ciency it uses the cache. In general, with a large grain
size, dgemm() is more capable to get a high cache
hit ratio. However, the large grain size costs a large
synchronization time, during which a processor has to
wait for completion of the remaining.

We have examined several variations of task assig-
nation that are shown in Figure 5, in which shaded
areas present data to be accessed during a grain ex-
ecution. The performance of the variations is shown
in Table 2 in comparison with the MPI coarse grain
model. Experiments are based on a matrix C of size
����� ���� and 
� is fixed to 112.

In the cell-based task assignation, which is shown in
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Fig. 5 Task Assignation Variations.

��
���� � �;

��������� � �
����������;
for (; 
��������� � ��
������; ��
����++) �
�
������
���������� � 
����������	;

��������� -= �
������
����������;

�
�
������
����++]=
���������;

Fig. 6 Process of RTA pseudo-code.

Figure 5(a), each grain updates a cell of size ��� ��.
This can be considered as a fine grain size model. The
synchronization time is minimal but the overall per-
formance is fairly poor (76.12% of pure MPI). Then,
we expand the grain size to improve the performance.
Figure 5(b) shows the column-based task assignation,
in which each grain updates �� columns of �. As
expected, a performance improvement appears with
89.02% of MPI performance. The synchronization
time is acceptable with a value of less than 1% of ex-
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Fig. 7 Pure MPI and Hybrid TC comparision for a dual-processor
SMP node

ecution time. However, this result is still far from the
MPI performance.

Finally, Figure 5(c) shows the reducing-size task
assignation technique (RTA). With RTA, a grain size
is defined by half of the remaining task size. However,
if the remaining task size is smaller than a predefined
threshold, it will not be split any more. By this assigna-
tion, at any point of time, a free thread is assigned with
a maximum possible grain size, thereby achieving an
acceptable performance. On the other hand, the size of
the remaining task is large enough to limit the synchro-
nization time. The pseudo-code of the RTA process is
shown in Figure 6. The new task assignation technique
results in a 99.23% of pure MPI performance for the
hybrid TC model.

4.2 Hybrid TC and Pure MPI Comparision
Figure 7 shows activities of a dual-processor SMP

node for the pure MPI and hybrid TC solutions. In the
pure MPI solution, all the processors of a node work
together. They execute communication or computation
simultaneously. The execution time ���� is the sum
of the communication time �� and the computation
time � , which usually depend on the problem size:

���� � �� � � (3)

In hybrid TC, the master thread executes commu-
nication tasks first. Meanwhile, the remaining thread
performs computation by executing a loop. After the
communication completion, the master thread enter
the computation loop. In matrix multiplication, the
growth rate of � is O(�
) while that of �� is only
O(�	). In other words, �� grows faster than � . In
this study, we focus on the case that problem size is
sufficiently large such that at the time of communica-
tion completion, there remains computation task. Con-
sequently, the communication time is just the overlap
time and is denoted by ��!�
�� . After ��!�
�� , both

the processors execute computation task. The time
that they perform computation together is denoted by
� ���". The sum of ��!�
�� and � ���" forms the
hybrid TC model execution time ��� :

��� � ��!�
�� � � ���"� (4)

Applying RTA during � ���", hybrid TC achieves
an approximately similar performance as that of pure
MPI. In constrast, hybrid TC can omits intranode com-
munication, thereby somewhat gaining performance
advantage. Further discussions are based on the as-
sumption of the elimination of these two disadvantage
and advantage of the hybrid model.

We define the communication speed-up �� as the
ratio between communication speeds per processor
during ��!�
�� of hybrid TC and �� of pure MPI. The
computation speed-up � is defined similarly. During
��!�
�� , an SMP node has better communication and
computation speeds than the pure MPI model has. In
other words,

�� � � ��� � � �� (5)

In addition,

�� � ��� ��!�
�� � ��� (6)

and the time that pure MPI needs to perform the
computation volume that hybrid TC performs during
�� ���� is ��� ��!�
�� � � . Consequently, the dif-
ference between execution time of pure MPI and hy-
brid TC �� can be found by:

�� �
�

�
� ��!�
�� ��� � � � ��� (7)

The performance speed-up � of hybrid TC is evaluated
by

� �
����

���
� � �

��

���
� (8)

or

� � � �
�

�
�

�� � � � �

� �
�� ����

������	�

� (9)

Equations (6), (7), and (9) define the time saved and
the speed-up of hybrid TC through ��, ��, and � .
In general, �� increases with the problem size, which
also increases ��!�
�� and �� . This implies that as the
problem size increases, the time saved by hybrid TC
also increases. However, the ratio between � ���" and
��!�
�� also increases then, which results in a degra-
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Fig. 8 Experimental results.

Table 3 Predicted saved time �� with different problem sizes.

�=
=� �� (sec.) Expected �� (sec.)
5000 1.72 0.65
10000 6.85 2.59
15000 15.69 5.94
20000 27.80 10.53
25000 43.56 16.50
30000 62.35 23.62

dation of hybrid TC speedup �.

5. Experimental Results

Preliminary examination results show that when the
sizes of local matrices �, 	, and � are sufficiently
large to guarantee stability of the local matrix mul-
tiplication function �����, the communication and
computation speed-ups of the hybrid TC model dur-
ing ��!�
�� are relatively stable for different problem
sizes.

�� � ��	�
 � � ����

Experimental results for different problem sizes are
shown in Figure 8. Square and equal size matrices ��,
	� , and �� are considered. The block size �� is fixed
to 112. The values of �=�=
 vary between 5000 and
30000, which are sufficiently large to stabilize the local
goto-blas ����� and small enough to fit the memory
limit. The results are in good agreement with those
obtained by using the formulas given by Equation (7)
and shown in Table 3, although there is a small dispar-
ity due to measurement error.

The left chart of Figure 8 shows the time saved by
the hybrid solution in comparision with the pure MPI
one. As expected, the saved time increases together
with the problem size.

The right chart shows the absolute performance
per processor. The hybrid TC model always ex-
hibits a better result. However, the distance between
the two performance lines reduces gradually. At
�=�=
=5000, the difference is approximately 21.7%
(458 MFlops). At �=�=
=30000, it decreases by
5.8% (216.3 MFlops). This result can be exlained by

Equations (7) and (9) together with the nature of the
matrix multiplication. The growth rate of � is O(�
)
while that of �� is only O(�	). Consequently, the
growth rates of �� and ��� are O(�	) and O(�
),
respectively. This implies that the increase in �� is
slower than that in ��� , and � becomes smaller with
an increase in �.

6. Discussions: the Asynchrnonous MPI Model

Performance enhancement of hybrid TC over pure
MPI results by the computation-communication over-
lap. In this section, we propose initial ideas of an-
other programming approach, the asynchronous MPI
model, which is also capable of generating these over-
laps. Figure 9 shows activities of the two processors of
a dual-processor SMP node running an asynchoronous
MPI solution. Like pure MPI, each processor of a node
runs an MPI process. OpenMP is not invoked. Tasks
performed by the two processes of a node need to be
rescheduled such that the even processor performs its
internode communication first, then computation; the
odd processor executes in a reverse order: computa-
tion followed by internode communication. Intranode
communication should be performed simultaneously
by both processes.

Asynchronous MPI has some strong points over the
hybrid TC. The most important point is the retaining
of the MPI computation pattern. The two processors of
a node have separated computation tasks and thereby,
the effective coarse-grain size approach becomes avail-
able. The problem of grain-size does not exist any-
more.

However, the model also has obstacles. For exam-
ple, it requires a global communication arrangement.
In the model, an even process can perform communi-
cation operations only with other even processes from
other nodes. Therefore, every internode communica-
tion operation needs to be reorganized to satisfy this
requirement. In addition, the asynchronous model re-
tains the intranode communication, which is omitted
with hybrid TC.

By the above analyses, when the communincation
rearrangement problem is solved, asynchronous MPI
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Fig. 9 Asynchronous MPI for a dual-processor SMP node

is expected to achieve a similar performance as that of
hybrid TC.

7. Conclusions

This paper proposed a Reducing-size Task Assigna-
tion technique (RTA), an effective method to assign
tasks dynamically to OpenMP threads during a hy-
brid TC solution. Using the method, hybrid TC can
overcome the poor intranode computation paralleliza-
tion performance, which is the main obstacle of hy-
brid models. Thereby, RTA allows hybrid TC to over-
come pure MPI in overall performance. The formulas
for evaluating the increase of performance are also re-
markable. Beside proving performance advangtage of
hybrid TC over pure MPI, they can predict the behav-
ior of a cluster in various circumstances.

For problems in which the computation and com-
munication time have different growth rates (e.g.,
SUMMA), performance enhancement decreases to-
gether with an increase in the problem size. However,
the problem size is limited by the memory size of the
system, and the degradation of the performance im-
provement also has a limit. For problems in which the
computation and communcation time have the same
growth rates (e.g., the NAS CG problem), we expect a
constant speedup of hybrid TC over pure MPI.

Though the analyses and experiments in this paper
are mainly for a dual-processor cluster, the conclusions
are expandable to other clusters with more processors
per node. In this case, the formula to determine the
grain size should be changed to 1/���� instead of 1/2
of the remaining task size, with ���� is the number of
processors per SMP node.

We also shows initial ideas for the asynchronous
MPI, which has certain strong points over hybrid TC
and is expected to achieve the same performance as
hybrid TC with RTA does.

For future study, beside applying the RTA technique
to the HPL benchmark, we would like to run the ex-
periments on larger systems to confirm scalability of
the technique. Besides, we would like to continue to
develop the asynchronous model. Performance and re-
quired programming efforts of the two approaches will
be analized to find the most effective programming

model for SMP PC clusters.
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