HEAEA fHAEES g
IPS] SIG Technical Report

2006—ARC— 167 (3)
2006 —HPC—105 (3)
200672721

Multi-section with Multiple Eigenvalues Method for Computing Eigenvalues
in Symmetric Tridiagonal Eigensolvers

TAKAHIRO KATAGIRI, 't CHRISTOF VOMEL'
and JAMES W. DEMMEL *

In this paper, a new parallel implementation method for computing eigenvalues in symmetric
_tridiagonal eigensolver is proposed. In this method, natural parallelism for multiple eigenvalue
computations and multi-section points of the eigenvalue searching are used. The performance
evaluation results with the HITACHI SR8000 using 8 processors per node indicated that:
(1) maximum 7.7x speedup to a case of using conventional bisection metkod; (2) maximum

4.3x speedup to a case of using conventional multi-section method; were obtained.

1. Introduction

Bisection method is one of widely used meth-
ods to compute eigenvalues for the symmetric
tridiagonal eigensolvers. The executjon time for
bisection method is getting heavy, if the target
eigenvalues are tightly clustered in a LAPACK
routine with MRRR. algorithm~%). To solve
such problem, we need to speedup the part of
bisection. Parallelizing the part with shared
memory parallel machines is one of ways.

In this paper, a new parallel implementa-
tion method of the bisection part for computing
eigenvalues is proposed. The target machine
is shared memory parallel machine. The main
idea for the method is using natural parallelism
for computing multiple eigenvalues and multi-
ple searching points for each eigenvalue. We call
this method Multi-section with Multiple Eigen-
values (MME) method.

To obtain speedup, using multiple searching
points is not new idea. The method is referred
to multi-section method to bisection method.
For example, Lo et.al.5) and Simon” mentioned
the merit to use the multiple searching points in
vector machines. Their methods, however, fo-
cused on the vectorization to the IF-sentences
located in the inside of loop, which is the count-
ing part for the number of eigenvalues less than
the value of 0.

Our method proposed in here is focusmg on
the natural parallelism for the outer loop of the
kernel. In addition, the parallelism with multi-
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ple eigenvalues computation for the part is also
considered. With taking into account of the
multiple eigenvalue computations, the length of
the outer loop can keep long, even if we take
smeall length for the multi-section points. This
is crucial factor to obtain high. parallelism and
high computation efficiency in shared memory
parallel machines. The computation efficiency
will be down for the conventional multi-section,
if we take long loop length for the multi-section
loop. This is because the additional overhead
of multi-section cannot be ignored, if the target
eigenvalue is found in early iteration time. -

This paper is organized as follows. Section 2
explains MME method, and its kernel is de-
rived. In Section 3, performance of MME is
evaluated with a LAPACK routine with MRRR
algorithm as one of benchmarking application
on the HITACHI SR8000. The routine will be
provided in LAPACK 4.0 as xSTEGR. Finally,
we give a conclusion for this paper.

2. Kernel Derivation for The MME
Method

'In this chapter, we will derive the MME ker-
nel from kernel of bisection method.

2.1 LAPACK dlarrb Routine

First of all, the kernel of bisection method ex-
plained in here is based on LAPACK xSTEGR
implementation. Figure 1 shows the whole bi-
section kernel for dlarrb routine in LAPACK
xSTEGR 4.0. However, the nature of MME
method is not limited to the implementation of
LAPACK xSTEGR.

The kernel in Figure 1 returns the number
of eigenvalues under the value o. Please note
that the kernel in Figure 1 is bisection for target



one eigenvalue. The total number of eigenval-
ues should be calculated in dlarrb routine is
given by the Relatively Robust Representation
(RRR)?.
" The value o is determined by an interval for
the target eigenvalue. The interval is given by
the Representation Tree® in MRRR algorithm.
The dlarrb routine performs ”limited” bisec-
tion to refine the eigenvalues of L D LT. The
IEEE-features®), for example NaN, are used in
the kernel to obtain speedup.

(0) S=0; P=0; NEG1=0;
NEG2=0; NEGCNT =0;
{1) I) Upper Part
(@ doJ=1R~-1
3) T'=8S-o0 ‘
) DPLUS=DWJ)+T
(5) S =T*LLD(J)/ DPLUS
(6) if (DPLUS lt. ZERO)
NEG1 = NEG1 + 1
(7) enddo
(8) if (S .eq. NaN) Use a slower version
the above loop;
(9) NEGCNT = NEGCNT + NEG1

(10) II) Lower Part
(11)doJ=N-1,R, -1

(12) DMINUS = LLD(J) + P
(18 P =P*D(J) / DMINUS — ¢
(14) if (DMINUS .t. ZERO)
NEG2=NEG2 +1

(15) enddo
(16) if (P .eq. NaN) Use a slower version
the above loop;
(17) NEGCNT =
NEGCNT + NEG2

(18) III) Twist Index
(19) GAMMA = S + P
{20) if (GAMMA It. ZERO),
.. NEGCNT = NEGCNT + 1.
{21) return (NEGCNT)

Fig 1 The Whole Bisection Kernel for The dlarrb

'Routine in LAPACK xSTEGR. The variable R
is a twisted point for the twisted factorization
to the tridiagonal matrix T'. '

The value of ¢ in Figure 1 shows the point for
the bisection search for the target eigenvalue.
The value of o is calculated-by a + (b—a)/2 in
the bisection method, if the current interval is

[a.B)].

In the kernel in Fxgure 1, there are three kinds
of parts I) Upper part of LDLT — oI = L,
D, LT, 1) Lower part of LDLT — ¢ =U_ D_
U7, and TII)' Twist index, respectively. This is
because the MRRR algorithm is based on the
Twisted Factorization®) for the target tridiago-
nal matrix of T

‘We can consider that the condensed bisection
kernel is the lines (2)—{7) for the part I) in Fig-
ure 1, since the data dependency of Part II)
is same ‘as Part I), and the computation for
Part IIT) is negligible. The kernel of Part I),
hence, can be regarded as the kernel in bisec-
tion method in hereafter.

2.2 The Bisection Kernel

Figure 2 shows the kernel of bisection method
for the target one eigenvalue.

tn

(0) S=0;, NEGL=0;

(1) doJ=1R-1

@) T=S—-o

3) DPLUS=D(J) +T

(4) S=T*LLD(J)/ DPLUS

(3) if (DPLUS Jt. ZERO )
NEG1 = NEG1 + 1

(6) enddo

Fig.2 The Bisection Kernel.
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The kernel of Figure 2 cannot be pa.ra.llelizéd,
since there is loop-carried flow-dependency for
the variable of S *.

2.3 The Multi-section Kernel

Figure 3 shows the kernel of multi-section
method with ML points for the target one

- eigenvalue.

The values of o(1 : ML) in Figure 3 are cal-
culated by o(i) =a + h-i,fori =1,2,... ML,
where h = (b— a)/(ML +1), if the current in-
terval is [a,b].

The kernel of Figure 3 can be parallelized for
the outer loop of I, since there is no dependency

* There are two ways to be parallelized for the ker-
nel (or the bisection method) of Figure 2. First
method?) is using parallelism for dividing the inter-
val of the bisection. But the kernel of this method
cannot be vectorized, since the method is using the
kernel of Figure 2. The other method?) is using
tree based parallélism for the polynomias px(z) =
det(Ty — zJ) by parallel prefix method. However,
this method has numerical instability problem.



{0) S(1:ML)=0; NEG1{1: ML) =0;

(1) dof=1, ML

2) doJ=1R—-1

@) T = S{I) — o(l)

(4) DPLUS(I) = D(J) + T(I) _

(5) S(I)=T()*LLD(J)/ DPLUS(I)

6)  if ( DPLUS{I) 1. ZERO)
NEG1(I) = NEG1(I) + 1

(1)  enddo
{8) enddo

Fig.8 The Multi-section Kernel.

for the all variables indicated I.

However, there is a problem for the multi-
section kernel. If we want to take a large vec-
tor length for I to reduce parallel overhead,
we should take a large number for the points
of multi-section, which is the value of ML in
Figure 3. But the efficiency of computation is
getting worse according to the number of M L.
This is caused by the additional overhead to ap-
ply the multi-section method. Hence, there is
a trade-off between parallel execution efficiency
and computation efficiency in this kernel.

The idea to solve this problem is: Computing
multiple eigenvalues simultaneously with multi-
section method. We call this method Multi-
section with Multiple Eigenvalues (MME)
method.

2.4 The MME Kernel

Figure 4 shows the kernel of MME.

0) S(1: ML,1: EL) = 0
NEGI(1: ML,1: EL) = 0

() do K =1, EL

(2) doI=1,ML

(3 doJ=1,R-1

@ TU,K) = S(,K) - oI, K)

5) ~ DPLUS(I,K) = D(J) + T(I, K)

(6) S(I,K)=T(I,K)y*LLD(J)
' / DPLUS(I, K)

(7 if (DPLUS(I,K) .t. ZERO )
NEGI(I,K) = NEGI(I,K) + 1

(8) enddo

(9) enddo

(10) enddo

Fig.4 The Multi-section with Multiple Eigenvalues
(MME) Kernel. .

The valuesof ¢ (1: ML, 1: EL) in Fig-
ure 4 are calculated by o(é, k) = ax + h -4, for
i=1,2,.., ML, where hy = (bp—ax)/(ML+1),
if the current interval is [ax,bx] for the k-th
eigenvalue for k =1,2,..., EL.

The loops of K and I in Figure 4 can be fused.
Figure 5 shows the loop-fusion kernel.

(0) S(1:ML=*EL)=0;
NEG1(1: ML* EL) =0
(1) doI=1, ML*EL
) doJ=1,R-1
(3) T(I) =S{I) - o(I)
(4) DPLUS(I) = D(J) + T(I)
(6 S(I)=T(I)*LLD(J)/ DPLUS(I)
(6) if (DPLUS(I) dt. ZERO)
NEGYI) = NEG1(I) + 1
(7) enddo
(8) enddo

Fig.5 The loop-fusion MME Kernel.

The loop-fusion MME kernel in Figure 5 has
the following merits to normal multi-section
method.

First, with taking long loop-length for I, the
paralle] overhead can be reduced compared to
normal multi-section method. This is because
we can take the length EL times to the normal
multi-section with M L. Hence, the ratio is EL
times, which is the number of eigenvalues, to
the normal multi-section method.

Second, although we take the small length for
ML, the outer loop-length can keep long by set-
ting the EL appropriately. This means that it
can keep the computation efficiency high, since
we should not take a long length for ML to
obtain high parallelism.

There is a drawback for MME. Obviously, if
there is no multiple eigenvalue in the routine
of dlarrb, the merit of MME is same as the
normal multi-section method.

2.5 Overall Process of MME

Figure 6 shows overall of MME method.

We do not know the number of eigenvalues in
Figure 6 in advance even when we compute all
eigenvalues for input matrix. This is because
the usage of bisection routine strongly depends
on the algorithm and the numerical character-
istics in input matrices. In the case of MRRR
algorithm, the number of eigenvalues is decided



(1) if (#Eigenvalues .gt. 1) then
(2) Call MME routine with
EL = #Eigenvalues;
ML = an appropriate value;
(3) else
(4) Call normal multi-section routine
with ML = an appropriate value;
(5) endif

Fig.6 Overall of MME method.

by the Representation Tree based on the nu-
merical characteristics for input matrices.

The optimal parameters for EL and ML,
hence, cannot be found in advance. To obtain
the best parameters, we need a run-time opti-
mization for the parameters.

. Figure 7 shows the detailed explanation for
the MME method in LAPACK dlarrb routine.

There are three parts for the eigenvalue com-
putation in Figure 7. They are I) Com-
putation part of the intervals for LEFT; in
(3)—(9), II) Computation part of the inter-
vals for RIGHT; in. (10)-(16), and III) Ac-
curacy improvement part for the interval
[LEFT;,RIGHT;] in (17)-(23), for j = J, J+1,
w J + EL -1 in Figure 7.

If the eigenvalues are very clustered, the part
III in (17)-(23) will be heavy.

3. Performance Evaluation
3.1 Machine Environment
We used the HITACHI SR8000 (2Nodes/16PEs
model.) The detailed information for this ma-
chine in this performance evaluation is shown:
e PE configuration: 8PEs / Inode.
o Job type: E8E, which is the mode for occu-
pying 1 node of 8 PEs for the job.
o Compiler: HITACHI OFORTS0 versioned
V01-04-/B.
¢ Compiler Option: -04 -parallel=4, which
is the automatic parallelization option.
o Timer: xclock, which is a high accuracy
timer provided by HITACHI.
3.2 Benchmarking Information
For benchmarking matrices, we used four
kinds of matrix. The information is shown:
¢ Dimension: 2100
o Matrix#1: The (-1,2,-1) matrix.
o Matrix#2: A uniform random matrix gen-
erated from 0 to 1.

{1) do J =1, #Eigenvalues, EL
(2) Make sure that [LEFT;,RIGHT}]
for j-th eigenvalue (j = J,.., J+ EL—1);
(3) I) Compute NEGCNTj from
LyD,LT = LDLT — LEFT;.
{4) while (all intervals are enough small)
{5} Set the points of o(1: EL) in
the current interval of LEF'T};
(6) Call MME kernel with EL and M L;
(7) Fix the interval of LEFT; using
returned numbers on o(1 : EL)
(8) Check all intervals;
(9) end while

(10) II) Compute NEGCNT; from
L.D,LY = LDLT - RIGHT;.

{11) while (all intervals are enough small)
{12) Set the points of o(1 : EL) in

the current interval of RIGHT};
{13) Call MME kernel with EL and M L;
(14) Fix the interval of RIGHT; using

returned numbers on o(1: EL);

(15) Check all intervals;
(16) end while

(17) III) There is unconverged interval.
(18) while ((all intervals are enough
small) .or. (#iteration .gt. MAXITER))
(19) Set the points of o(1 : EL) in
the current interval of
[LEFT;, RIGHTj);
(20) Call MME kernel with EL and M L;
(21) Fixthe interval of [LEFT;,RIGHT;)
using returned numbers on
o(l: EL);
(22) Check all intervals;
(23) end while
(24) enddo
(25) if (#Eigenvalues is not divided by EL)
Call multi-section routine with ML
for the rest eigenvalue computations;
Fig.7 Detailed Explanation for MME method. This is

also detailed explanation for the dlarrb routine
with MME method.

o Matrix#3: The Wilkinson Matrix Wi,

e Matrix##4: The “Rotated Subdiagonal”
Glued Wilkinson Matrix W3|. This ma-
trix is defined as: Diag(T) = Diag( Glued
Wilkinson Matrix W3). Sub(T) is com-
posed of 100 times of (4, 1,..,1)2;. The glue
value § is le — 1.



Table 1 shows the distribution for the number
of eigenvalues in the dlarrb routine for each
benchmarking matrices.

Table 1 The Distribution for The Number of Eigen-
values in The dlarrb Routine with DQDS

Mode.
(a) Matrix #1 .
#Eigenvalues  Frequency % to Total Frequency
1 22 95.6
789 1 434
.{b) Matrix gZ -~
#Eigenvalues  Frequency % to Total Frequency
1 850 68.4
2 145 11.6
3 78 6.28
4 45 3.62
5 31 2.49
6 21 1.69
7 15 1.20
8 11 0.88
9 7 0.56
10 9 0.72
11 5 0.40
12 4 0.32
13 1 0.08
14 4 0.32
15 3 0.24
16 2 0.16
17 1 0.08
18 3 0.24
19 1 0.08
20 1 0.08
21 1 0.08
22 1 0.08
24 1 0.08
35 1 0.08
c) Matrix #3
#Eigenvalues  Frequency % to Total Frequency
1 2093 66.7
2 1043 33.2
102 1 - 0.31
(d) Matrix §4
#Eigenvalues  Frequency o to Total Frequency
1 235 82.7
2 . 27 9.50
3 1 0.35
99 7 2.46
100 12 4.22
200 2 0.70

For the target application, we used DSTEGR
routine in LAPACK version 4.0. The informa-
tion for the target application is summarized:

e Routine: The MME method was im-

plemented in the bisection routine of
DSTEGR, which is dlarrb routine.

e Computation: All eigenvalues and all eigen-

vectors.

® Process: There are two modes for the eigen-

value computation in DSTEGR. They are
DQDS mode' (Using LAPACK'’s DLASQ111))
and aggressive bisection mode.

— The DQDS mode is using DQDS
method in eigenvalue calculation part.
The mode is using the bisection in
eigenvector calculation part to fix the
eigenvalue accuracy.

—~ The aggressive bisection mode is using
the bisection in both of the parts.

The two modes were used in this evaluation.

e Object: Total execution time for the bi-
section routine dlarrb using MME method
was measured.

e Static Fixing Method for The Parameter:
The method using a constant parameter
for EL and ML while the xXSTEGR rout-
ing is running is defined as ”Static Fix-
ing Method.” The execution time for the
method was checked with:

~ EL € [1,2,3,4,8,16,32): 7 kinds,

- ML €[1,2,4,8,16,24] : 6 kinds.

Hence, the best parameter for EL- ML =
42 kinds of combinations was specified.
3.3 Effect of MME with Static Pa-
rameter Fixing Method to Multi-
section Method

Table 2 shows the effect of MME with the
static fixing method to multi-section method.

For Table 2, we obtained maximum 7.7x
speedup to bisection method, and maximum
4.3x speedup to multi-section method by using
MME method.

For Matrices #1 and #4, MME with 16 eigen-
values was selected. This is because there are
the calls with 789 or 200 eigenvalues in the
dlarrb in Table 1, which are very heavy ex-
ecutions.

On the other hand, MME method with 2
eigenvalues was selected in Matrices #2 and
#3.. This is because there are many calls with
low number of eigenvalues compared to Matri-
ces #1 and #4. For example, the execution is
done with 35 eigenvalues or 102 eigenvalues for
one time at most in Table 1. -

4. Conclusion

In this paper, we propose a new implementa-
tion method for computing eigenvalues in sym-
metric tridiagonal eigensolvers. The key idea
for this method is using natural parallelism



Table 2 Effect of MME Method with Static Fixing
for the parameter to Multi-section Method.
(a) Total Execution Time for dlarrb Routine in The

- DQDS Mode,
Method / #Matrix #1 #2 #3 #4
Bisection [9] 0.347 1.83 152  8.20
Multi-section [s] 0.323 145 580 3.30
The best ML 8 = 8 16 16
MME [3] 0075 1.16 534 1.75

The best (EL,ML) (162)  (2,8) (28) (16,1)

Sp. to Bisection 4.6x 1.5x' 2.8x  4.6x
Sp. to Multi-section  4.3x 1.2x  llx 1.8x

(b) Total Execution Time for-dlarrb Routine in The

. Aggressive Bisection Mode. .
Method 7 #Matrix #1 72 #3 #4

Bisection [s] 394 711 239 172
Multi-section [s] 211 369 870 6.19
The best ML 16 - 16 16 16

MME [5] 051 293 7.89 2.75

The best (EL,ML) _(161) (28) (28 (161)

Sp. to Bisection T.0x 24x  3.0x 6.2x
Sp. to'Multi-section  4.1x 12x  llx  2.2x

for multiple eigenvalues’ a.nd multi-section with
the interval for the target one eigenvalue. We
named the method ”Multi-section with Multi-
ple Eigenvalues (MME).” :

The static fixing method’ for MME, which is
defined in this paper; is not optimal. " This is
because the number of eigenvalues changes in
each dlarrb call. We proposed a run-time op-
timization method called "dynamic parameter
fixing method” in 12). The performance evalu-
ation results mdlcated that it was more effectlve
than the static one.

The parallel effect of MME seems to be in-
creased, if the number of processors is increas-
ing. Hence, the most important future work
is to evaluate the effectiveness with the other
parallel machines. The performance evaluation
with the other benchmark applications using
the bisection method w1l] be one of candldates
for future work.

' On the other hand, the difficulty to apply
numerical libraries -to- heterogeneous comput-
ing ‘environment is known!®. Appling MME
method for such environment, including GRID
environment, will be c}xalleng‘in‘g future work.
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