mETEEMML 40—5
(1987 12.17)

Generalized Manhattan Path Algorithm

with Applications

K &K

Tetsuo Asano

ARERBERF LHEBSHET TR

Osaka Electro—Cpmmunication University

1. Introduction

In this paper we first consider the problem known
as Manhattan Path problem stated as follows. We are
given a set S of orthogonal line segments (horizontal
and vertical). When two line segments s and t in S
are specified as source and target segments, we want
to find an alternative sequence of horizontal and
vertical line segments connecting s with ¢ only using
line segments of S. This problem was first proposed
and solved by Lipski. [Li83, L684].. He presented an
efficient algorithm for this problem which runs in
0(n log n) time using 0(n log n) space, where n is
the number of given 1ine segments. Note that the time
and space does nolt depends on the number of
intersections between line segments.

in Section 2 we consider a generalization of the
above Manhattan path problem. In the new problem we
are given a set R of connected regions in addition to
a set S of line segments. Then we place a condition
that every intersection of successive line segments
on a route to connect the source and target line
segments must lie on some connected region of R. Thus
the Manhattan path problem can be considered as a
special case of this problem in which R is the entire
plane. For this generalized problem we present an
aigorithm which runs in 0(n log n) time and 0(n)
space or 0(n log?n) time and space depending on the
data structure used. This algorithm always finds a
route between two specified line segments if any like
Lipski’s algorithm.

In Section 3, based on the proposed algorithm we
solve another practical prob{em which is connected
with a layout design of bipolar LSls. The purpose is
to find an orthogonal wiring route of predetermined
width between pairs of terminals avoiding polygonal
obstacles in two layers. The route must consist only

of horizontal and vertical wire segments and wire

segments on different layers must be connected by

large rectangular vias. The most difficult is to

decide at any specified point whether there is a room

for a via 1o be placed. Also, each terminal may be of
an arbitrary rectilinear polygonal shape, and a wiring
route may start and end at any part of a terminal.
The width of wiring segments may be specified
arbitrarily for each layer. Two layers are available
for interconnection; one layer called the X-layer is
used only for horizontal wiring routes and the other
called the Y-layer used only for vertical ones.
Horizontal wire egments have width 2%w, and vertica!
wire segments have width 2%w,. Horizontal wire
segments are connected with vertical wire segments by
vias of size 2#:1X x 2%d, . We assume terminals occupy
the X-layer only while vias occupy both layers. Then,
the problem of finding a route hetween two specified
terminals can be formulated as an instance of the
generalized Manhattan path problem described above.

2. Generalized Manhattan Path Algorithm

Ve first describe the Manhattan Path Problem.
[Manhattan Path Problem] Given a set of horizontal and
vertical line segments and specified two line segments
s and t, find a path between s and t using given line
segmenis.

The problem was first proposed by Lipski and soived
by himself [Li83,Li84]. His algorithm runs in 0(n log
n) time with O(n log n) space even in the worst case
where n is the number of line segments. The key idea
is that the problem can be solved by a breadth-first-
search, which can be executed by at most n DELETE
operations, which delete line segments from a set, and
n LIST operations which enumerate all the line



segments intersecting a query line segment. The data
structure used is a combination of segment tree [Be79]
and the Gabow and Tarjan’s linear time version of the
union-find algorithm on consecutive sets. We could
also use a similar data structure proposed by Imai and
Asano [1A84]. We could implement Lipski’s algorithm
in linear space by using priority search tree [Mc85],
a data structure which was originally devised to deal
with a set of points in the plane, although it needs 0
(n log2n) time instead. In [Mc85, AS086], it is shown
that LIST can be done in 0Clog?n + k) time where k is
the number of 1line segments to be enumerated in a
dynamic environment in which DELETE of a !ine segment
is performed in 0Clog n) time. The priority search
tree requires only linear storage. Note that in
either case the time and space does not depend on the
number k of interseétions between given line segments.
0f course, we could implement the Lipski’s algorithm
without DELETE operations while in this case 0(n log n
+ k) time may be needed in the worst case.

Ve consider a generalization of the above Manhatian
path problem. in the new problem we are given a sei R
of connected in addition to a set S of line
Then we place a condition that every inter-
line segments on a route to

regions
segments.
section of successive
connect the source and target line segments must lie
on some connected region of R. Thus the Manhattan
path problem can be considered as a special case of
this problém in which R is the entire plane. For this
generalized problem we present an algorithm which runs
in 0(n log n) time and 0(n log n) space or B(n log2n)
time and 0(n) space. This algorithm alvays finds a
route between two specified |ine segments if any like
Lipski’s algorithms.

[Generalized Manhattan Path Problem] Ye are given a
set S of  orthogonal C(horizontal and vertical) line
segments and a set R of connected regions bounded by
fine segments, which are assumed to bhe
When two line segments s and t

sequence  of

orthogonal
parts of those of S.
are specified, find an
horizontal and vertical line segments of S5 such that
each intersection between two successive line segments
lies in the interior of some region of R.

An example is given in Fig. 1, which consists of 20
line segments (10 horizontal and 10 vertical) and 5
connected regions. Note that the region Rl is not
simple in the strict sense. Some regions may contain
holes and other may. be contained in a hole of some
other connected region. On eof the solutions to the
problem given in Fig. 1 is (s=h0, v3, h3, v6, h6, v8=t
). The sequence (s=h0, v3, h3, v6, h9, v8=t) is not a

altermating

solution since the intersection between h9 and v8 is
not contained in any connected region.

One way to solve this problem is to combine the
Lipski’s algorithm with point location technique (for
example, see [Ki83], [Li84], and [EKA841), which finds
the name of a region containing an arbitrary specified

point in 0Clog n) time with 0(n log n)-time prepro-
cessing, where n is the number of vertices of given
connected regions. In our case all the intersections
are not available. In the worst case we have to

examine every intersection and at each intersection we
need 0(log n) time for each point location to decide
whether the is available, that s,
whether it lies interior of some connected
region of R. Thus it leads to an 0(K log n)-time

is the number of intersections of

intersection
in  the
algorithm where K
given line segments.
wve present an efficient algorithm
whose time complexity does not depends on K, the
Recall that we have assumed

In this paper
number of intersections.
that every boundary portion of given connected regions
is contained in some |line segment. Thus, we have the
following key observation.

[Lemmna 1]
intersecting the same connected region Rk. Then, there
is a seguence of |line segments connecting si and sj
such that each intersection

ones lies in the interior of Rk.

This teads to the following algorithm.
[Algorithm for Generalized Manhattan Path Problem]
(input)

-5 and $: source and target line segments;

Let si and sj be any two line segments of S

between two successive

-H: a set of all horizontal line segments;

Via set of all vertical line segments;

R a set of connected regions;

(¥ for each boundary edge e of R the line segment
containinge is denoted by s(e) %)

(initialization)

-for each line segment L do NEXTRLL] = NULL:

-for each connected region Ri do NEXT[Ri] = NULL;

cinitialize a (first-in-first-out) queue OR;
(% OR is now empty %)

-construct data structure T(H), T(V), and T(R) which
support LIST and DELETE operations for the sets H
and V and the set of houndary edges of R;

(% segment-tree type data structure or priority
search tree %)

-mark all the connected regions of R, that is,

mark[Ri] = ON for each region Ri of R;
(Breadth-first search){
.for every connected region Ri intersecting t do{
-unmark the region Ri;

i 32 —



NEXTULLRID = t;
.put Ri into OR;} .
.if t is horizontal then DELETE it from H
else DELETE it from V;
~.while( QR is not empty and s is not deleted yet){
.take a connected region Ri out of OR;
.initialize a queue QOL;
(% QL will contain a set of line segments
intersecting the region Ri %)
.for each boundary edge e of Ri do{
.put the line segment s(e) into OL;
.DELETE s(e) from T(H) or T(V), depending on
" vwhether it is horizontal or vertical;
.for each line segment L intersecting e do {
.put L into QL;
.DELETE L from T(H) or T(V);}
}
.while{QL is not empty) do {

.take a line segment L out of QLS

NEXTRLL] = Ri;

.enumerate all the marked connected regions
that intersect L by performing LIST operation
against a set of existing boundary edges,
i.e., T(R);

.for each such region Rj do{

.unmark Rj;
NEXTLIRGT = L5
.put Rj into QR;}

}
.if s has been deleted then {
.find the alternating sequence of line segments
and connected regions connecting s to t by
tracing the links NEXTR[] and NEXTLLI;
.for each three tuple (Li,Rj,Lk) in the sequence
.find a sequence of line segments connecting
Li to Lj within the connected region Rj;
(% see EQUENCE CONVERSION below for detail %)
}
else report{ ”no solutiont” );
K
procedure unmark(Ri){
(% Ri is a connected region %)
ark(RiT = OFF;

JDELETE all the boundary edges of Ri from T(R);}

In the Lipski’s algorithm breadth-first search was
performed with
connecting two specified line segments using the mini-

respect to line segments and a route

In the above
we look for a shortest possible sequence of
line segments and connected
specified

mum number of line segments is obtained.
algorithm
regions connecting two
line segments by performing the breadth-

first search with respect to connected regions. As a
result we obtain a tree as shown in Fig. 2 which has
two vertex sets, one corresponding to a set of line
segments and the other to a set of connected regions.
The root corresponds to t, the target. It is easily
seen that the above algorithm finds a route hetween
two specified 1ine segments which is optimal in the
sense that it goes through the least connected re-
gions.

We have seen that the algoriihm finds a sequence of
line segments and connected regions (s=L0, RO, L1, RI,
ve. s Rm, Lm = t). The only remaining probiem is how
to connect two line segments Li and s;. ,within the re-
gion Ri for each i=0, 1, ... , m. Such a sequence is
easily found since the boundary of the region Ri gives
one such sequence. Or we can find such a sequence

connecting L; to L;.; within Ri as follows.

[ SEQUENCE CONVERSION]
Cinput) a sequence (s = LO, RO, L1, R1, ..., Lm = )3
(output) a route connecting s to t: (s=L0, L17, L27, .
L, e = 1))
(method)
{ .for every line segment L do
NEXTLL] = NULL;
.for each i=m-1, m-2, ... , 0 do {
.initialize a queue Q;
Lif Lis1 is contained in W or V then DELETE it;
.put Li.g into Q; ’
.while(@ is not empty and L; has not been
deleted) do {
.take a line segment L out of Q)
.compute the portion LLi] occupied by Ri;
.for each line segment L’ intersecting L[i] do{
DELETE L’ from H or Vy
CNEXTIL'] = L
sput L7 into Q53
}
-finally trace the link NEXT[] to get a sequence;
4

[Theorew 11 The above algorithm for the general ized
Manhattan path problem together with the procedure
SEQUEKCE CONVERSION finds a route connecting two arbi-
btrarily specified segments if any in 0{n log n) time
using O{n log n) space or
0(n) space.

in 0(n log?n) time using

3. Application to Layout Design
In this section as an appiication of the aigorithm
for the generalized Manhattan path problem we consider



a wire-routing probiem defined as follows. We are

given terminals, pads, and wire segments which have
already been routed. The problem is to find an ortho-
gonal wiring route between two specified terminals

avoiding obstacles (other terminals, pads, and wiring
seguents already routed) under the following condi-
tion. Terminals and pads may be of arbitrary polygonal
shapes, which must be rectilinear, and the route desi-
red may start from any part of a source terminal and
end at any part of target terminal. Two layers are
available for interconnection; one layer called the X-
layer is used only for horizontal wiring routes and
the other called the Y-layer used only for vertical
ones. We can specify the horizontal and vertical
widths 2w, and 2we of the route together with the
source and target terminals. Horizontal wire segments
are connected with vertical wire segments by vias of
size 2d, x 2d,. We assume that terminals occupy the X
while layer. (This
assumption is based on the present technology of a
bigolar LS!1.) The purpose of this section is to formu-
fate the above-stated problem as an instance of the

-layer only vias -occupy both

generalized Manhattan path problem considered in the
previous section and present an efficient algorithm
for the problem which runs in 0(nh log n) time using 0(
n log n) space or 0(n logn) time using linear space,
vhere n is the total number of vertices in a given
layout (including terminals, pads, wire segments, and
vias. )

Initially we are given a set of terminals which be-
come obstacles for the first net. Wire segments and
vias for already routed nets become obstacles for the
next net. ~Since wire segments and vias are of rect-
angular shapes, a set of obsiacles can be represented
by two sets of rectilinear polygons for the two lay-
ers. Let X = {P[x1], P[x2], ... , PLxml} and Y = {P[
yi], PLy21, ... , PLynl} be the sets of obstacle poly-
gons for the X- and Y-layers, respectively.

We assume every net is-a. two-terminal net.
we can specify a net by a pair of terminals.
example, Fig. 3, where the two terminals S and T are
to be connected. The probtem is to find a path as
shown in Fig. 4. Note that horizontal (vertical, resp.
) wire segments must have width 2w, (2w, respectively
) and vias of size 2d, x 2d,must be placed at every
intersection of horizontal andvertical wire segments.
Of course, any part of the path must not have proper
intersection with obstacle polygons.

In order to find such a path between two specified

Then,
See, for

terminals, we find a region which can accomodate
center lines of horizontal wire segments for the X-
layer. Such a region, called Horizontal Routable

Region denoted by HR(S, T, X, w,), can be obtained by
vertically expanding every obstacle polygon of X by w,
in the X-tayer excepting S and T [0S84] (see Fig. 5).
Although terminais S and T themselves are not obsta-
cles, those horizontal wire segments which intersect
them but do not have enough contact with them are use-
less. Thus, we shrink those terminals by w, in the
vertical direction. Then, any horizon@al line segment
intersecting the shrunk terminal can be a center liné
of a feasible horizontal wire segment which has suffi-
cient contact with the terminal.

1t is easily observed that if a horizontal line
segment L is contained in Horizontal Routable Regton
then we can place the horizontal vire segment ws(L) of
width 2w, with L as its center line avoiding obstacles
and that if L touches a shrunk polygon Sy(S, w,) then
the wire segment ws(L) has sufficient contact with the
terminal S.

In a similar way we define Vertical Routable Region
VR(S,T,V, 4 ) (see Fig. 6).

In addition to these, we deine a region called Via
Acceptable Region where the center of a via can be
laid without any intersection with obstacles (see Fig.
7). Since the size of a via is 2d, x 2d,, we can
define the region by enlarging every obstacle polygons
by specified widths.

Using these three regions, Horizontal and Vertical
Routable Region HR and VR and Via Acceptable Region
VA defined above, we define two sets of line segments,
denoted by H and V, which are candidate for the center
lines of horizontal and vertical wire segments,
respectively, as follows.

H = { horizontal line segment L;

(1) L is contained in Horizontal Routable Region,
and (2) L touches some horizontal boundary segment of
Horizontal Routable Region or Via Acceptable Region}

and

Vv = { vertical line segment L;

(1) L is contained in Vertical Routable Region,
and (2) L touches some vertical boundary segment of V
ertical Routable Region or Via Acceptable Region}.

Such line segments can be enumerated by a plane
sweep technique after resizing obstacle polygons (see
Fig. 8).

Now the problem is formulated as follows.

[Two Layer Routing Problem with large Vias]

We are given two sets H and V of horizontal and
vertical line segments, respectively, and a rectili-
near polygonal region VA referred to as Via Acceptable
Region. When two subsets Ns and Nt of H V are speci-
fied as source and target 1ine segments, find such a

path between some 1line segment of Ns and some of Nt



only using given line segments that each intersection
between any two consecutive line segments lie in the
region VA. 1t is easily seen that this is an instance
of the generalized Manhattan path problem considered
in the previous section. The via acceptable region
plays a part of the connected region in the previous
section. Note that boundary edges of the region are
contained in some line segments of H or V, which is
easily recognized from the above definition of the
sets H and V. The only difference is that in this case
source and target are sets of line segments. But it
is easy to modify the previous algorithm so as to
allow sets of line segments as source and target.
Thus, we can apply the algorithm given in the previous
section to solve the above two-layer routing problem.
Acknowledgment The author wouid like to express his
gratitude for Dr. Kenji Yoshida and Dr. Mituhiro Koike
of Toshiba Corporation for giving the problem with
some examples and for their discussions.

References

[Be79] J.L. Bentley: "Decomposable Searching Probiem,”
information Processing Letters, vol.8, pp.244-251,
1979.

[Ed80] H. Edelsbrunner: “Dynamic Data Structure for
Orthogonal Intersection Queries,” Report 59,
Institut fur Informationsverarbeitung Technishe,
Universitet Graz, 1980.

[EKA84] M. Edahiro, |. Kokubo, and Ta. Asano: “A New
Point Location Algorithm and Its Practical
Efficiency -- Comparison with Existing Algorithms,”
ACM Trans. on Graphics, 3, 2, pp.89-109, 1984.

[FS084] Y. Furuya, M. Sato, and T. Ohtsuki: "An
Algorithm for One-Dimensionally Shortest Two-Layer
Interconnection,” (in Japanese) in Proc. of tnfor-
mation Processing Society of Japan, 1984.

[1A84] H. Imai and Ta. Asano. ”Dynamic Segment Inter-
section Search with Applications, ” Proc. 25th [EEE
Symp. on Foundations of Computer Science, Florida,
pp.393-402, 1984.

[Ki83] D.G. Kirkpatrick: ”Optimal Search in Planar
Subdivisions,” SIAM J. Comput., 12, 1, pp.28-35,
1983.

[Li83] W. Lipski: "Finding a Manhattan path and
related problems,” Networks, 13, pp.399-409, 1983.

[Li84] ¥. Lipski: ”An 0(n log n) Manhattan Path
Algorithm,” Information Processing Letters, 19, pp.
99-102, 1984.

[LP84] D.T. Lee and F.P. Preparata: “Computational
Geometry -- A Survey,” 1EEE Trans. on Computers,
€-33, pp.1072-1101, 1984.

[Mc85] E.M. McCreight: “Priority Search Tree,” SIAM J.
Comput., 14, 2, pp.257-276, 1985.

[0S84] T. Ohtsuki and M. Sato: “Gridless Routers for
Two-Layers Interconnection,” Proc. of 1CCAD84,
Santa Clara, pp.76-79, 1984.

[ST0841 M. Sato, M. Tachibana, and T. Ohtsuki: “An
Algorithm for Resizing Polygonal Regions and |ts
Appltications to LS| Mask Pattern Design,”
Electronics and Communications in japan, 67-C, 4,

pp.93-101, 1984. Translated from Trans. |ECE Japan
, 66-c, 12, pp.1132-1139, 1983.
v0
R 3 hé RS
s =ho ’
/{ W / h8
1
h9
h2 ) /
v3 / V8=t
R 1 R 4'// v8
vS ////
b3
. v4
vi vé
X h4 v7
hs v2 /K 2 4

Fig. 1. Generalized Manhaftan‘path problem

defined by 10 horizontal and 10 vertical line
segments and 5 connected regions.

t=v8
|
R5
hﬁlllfl’JB\\\\\\VQ
:
v6"””{5\\\\\\h7
//' {< //R f\

h3 h3 v7  hd h5 v3 v4
R1 ’

hﬁ(’) \:1\v2

=S

Fig. 2. Search tree constructed by the algorithm.



Fig. 3. Initial layout pattern. S and T are Fig. 6. Vertical Routable region VR(S,T,Y,WX).
terminals to be connected.

Fig. 4. Resulting Tayout pattern. Fig. 7. Via acceptable region VA(S,T,X,Y,dX,dy),

Fig. 5. Horizontal Routable region HR(S,T?X,wy). Fig. 8. Sets of line segments and Via Acceptabie
region.

—36



