ﬂ;lg

it B B {b 52—8
(1990. 5. 22)

THa O EREEI AT AKCBITS
BREEHZ T 7 E S0 M TS

WAMT BRE—M EIRE SERE
LEBAE THE
T724 HELETHLIKRETR

AWXTHE, 7Hus7AEE0—8 7Y ¥ F EBIRERESRTCBIT 2 T v -
MOBPERIEICT T2, HHEG2EZ2ER L -2BBRAETLHRS 75 7 2Kk 251
BRPXIVIENDEM 7 VT TA2RET L. ZORBTVTY X A0,
EHBRAKEEED 7T 72KODBIELT, PQR—AKZHVWTVWE I ETHL., #
LT, BKFEHDY S 72RKDOB 00087 VT X5 OWEESFMEITE - 7.

Findihg a Minimal Set of Jumpers in the Design of
Printed Wiring Boards for Analog Circuits

Tomohira Araki, Keiichiro Iwamoto, Toshimasa Watanabe,
and Kenji Onaga
Faculty of Engineering, Hiroshima University,
Saijo-cho, Higashi-Hiroshima, 724 Japan
Phone: 0824-22-7111 Ext.3285(Watanabe) Fax: 0824-22-7195

The paper proposes an O(IVIEl) algorithm for finding a minimal
set of jumpers in the. design of printed wiring boards of analog
circuits. It finds, under certain physical conditions, a maximal
spanning planar subgraph of a graph -constructed from given net
lists. The algorithm is based on the planarity testing using PQR-trees.
Comparison of solutions given by two planarization algorithm are
given.

(1)

1. Introduction

The paper proposes an O (IVIIEl) algorithm
PLAN-PWB for finding a minimal set of
jumpers in the design of printed wiring PLAN-
PWB boards of analog circuits. Suppose we are
given a set of net lists of an analog circuit
under consideration, a placement of modules
(such as ICs, registers and condensers) with
their terminals (the spots where the pins are to
be attached) located on one side of a board.
What we are going to do is to find a maximal
planar routing among those terminals on that
board, or equivalently to find a minimal set of
jumpers (lines not assigned -to be attached to
the board), under the following conditions (1)-
(4):

(1) There are two kinds of modules; up-sided
ones (each having a specified side which has to
be faced to the board in actual placing) and
free ones. (otherwise).

(2) Modules have to be placed on one side of
the board, where up-sided modules should be
placed as specified.

(3) Routing through module areas (an area
on the board to be occupied by one module) is
prohibited. (We add this condition to simplify
the discussion. There exist some modules which
allow routing through their module areas: such
one can be handled by means of post-
processings.)]

(4) Non-jumpers (lines assigned “on the
board) do not cross each other, while crossing
of jumpers and non-jumpers are permitted as
long as they do not violate physical
requirements.

The problem is a kind of finding a maximal
spanning planar subgraph of a given graph
G=(V,E). Incorporation of the conditions (1)-(3),
which come from practical requirements, show
the difference between the previous maximal
planarization problems[7,8,9,15] and this one.
We consider the maximality, since it is known
that the "maximum" planarization problem
with the conditions (1)-(3) incorporated is NP-
complete[14]. [13] proposed an O (IVIEI)
algorithm for finding a maximal spanning
planar subgraph of a given graph, wherec none
of the condition(1)-(3) is considered. They used
the PQ-tree[9], while we use the PQR-tree[14], a
variation of the PQ-tree, to handle those
conditions. Our algorithm is obtained by
adapting the algorithm of [13] for our subject.
Although the adaptation is not so difficult, the
result seems new and is very useful in the
design of printed wiring boards for analog
circuits, as is described briefly in the next
section. The research of PLAN-PWB is motivated
during the development of a printed wiring
board design system PRIDE proposed in [17].

The main result of the paper is that we can
determine in O(IVI+IEl) time a "minimum” set of
edges (jumpers) to be deleted whenever the
reduction of the PQR-tree becomes impossible
(that is, the current intermediate subgraph is
nonplanar). This procedure will be repcated at

(2)

most O(IVl) times and, therefore, a “"minimal"
set of jumpers can be obtained in O(IVIE!) time
by the union of such "minimum" sets. [14]
proposed an O(IVl) algorithm for detecting the
planarity of a graph constructed from a given
net list under the conditions(1)-(3). A minimal
set of jumpers can be given by repeating
adding an edge followed by this planarity
testing. We call this algorithm REPEAT-PLAN,
and its time complexity is O (IVIIEI).
Experimental evaluation through practical data
(audio circuits) shows that PLAN_PWB proposed
in the paper produces smaller solutions than
REPEAT-PLAN.

2. Preliminaries
2.1. Graph theoretical Formulation
The problem is formulated graph-
theoretically, according to [14]. Given a circuit
represented by a set of net lists, we construct a
graph G(C)=(V,E) as follows, where E=EqUE1UE2:
1° Place one vertex for each terminal and
one simple edge between each pair of
terminals requiring their connection.
2° Represent each of two-terminal modules
and free modules as a wheel with the
terminals connected as a cycle having a
new vertex inside (Fig. 2.1(a)).
3° Represent each of up-sided modules as a
directed cycle . considering of the
terminals, where they appear the same as
can be secen clockwise from above that
module (Fig. 2.1(b)).
4° Let V be the set of vertices introduced in
these steps. Let Ep, E1 and E2 devote the set

of edges introduced in 1°, 2° and 3°,
respectively, where every edge of E2 is
directed. :

Wheels prevent .routing through module

areas, and directed cycles are used to force up-
sided modules to placed as specified. G(C) is
devoted by G for simplicity. The subject of the
paper is stated graph-theoretically as follows:

"Find a maximal spanning planar subgraph
G'=(V,E) of G satisfying (a) EjuE2cE', and(b)
there cxists a plane cmbedding (a graph drawn
on a plane without edge crossing) of G' such
that every directed cycle is drawn clockwise

without edges existing inside.”

Maintaining clockwise directedness is done by
incorporating R-nodes into PQ-trees
(introduction of PQR-trees in [14]), and
avoiding edges inside directed cycles is handled
during the reduction process of PQR-trees.

It should be noted that a star-shaped
connection in a circuit (see Fig. 2.2(a) showing
a T-shaped connection) is represented as a
complete connection requirement (Fig. 2.2(b))
among those terminals. This may increase the’
number of jumpers. After some jumpers are
found, the designer can determine real
jumpers among them, by specifying a
spanning subtree of that complete connection.

2.2. PQR-trees

A PQR-tree, introduced in [14], is a directed
ordered rooted tree consisting of four kinds of
nodes, P-nodes, Q-nodes, R-nodes and leaves.
Fig. 2.3 shows an example of a PQR-tree, where
a circle, a rectangle without on arrow and one
with an arrow denote a P-node, a Q-node and an
R-node, respectively. (We use this notation
throughout the paper.) All nodes except R-
nodes are elements of well-known PQ-trees [9].

Let F(T) denote a sequence defined by
concatenating leaves of a PQR-tree T from left
to right. In Fig. 2.3, F(T)=abc. F(T) is called a
frontier of T and represents a permutation.
Two PQR-trees T and T' are equivalent (denoted
by T=T') if and only if T' is obtained from T by
repeating the following two transformations
(i) Changing the order of children of a P-
- node arbitrarily, and (ii) Reversing the order
of children of a Q-node. We note that the order
of children of any R-node cannot be changed.
This is because an R-node is introduced to
represent a directed cycle handling an up-
sided modules. Let con(T)={F(T') | T'=T}. A set S
consisting of only leaves of T is called a leaf
set of T. Given a leaf set S of T, a reduction of T
for S is a procedure to construct a PQR-tree T'
such that

con(T")={xnlr € con(T) and all elements of S
appear in © consecutively}.

As in the case with PQ-trees,
executable reducibility means that adding some
edges incident upon a certain vertex to the
current subgraph preserve planarity. If no
reduction is possible then the current
subgraph is nonplanar, and we search the
present PQR-tree for a "minimum" set of edges
whose deletion recover planarity. Our
searching method comes from the one using
PQ-trees proposed in (13}, with some adaptations
incorporated in order to handle R-nodes. A
reduction is done by one of template matchings
as shown in Fig. 2.4 (1)-(10). They are taken
from [14].

existing an

3. Maximal Planarization with PQR-trees
We describe an O(IVIEl) algorithm PLAN-PWB
for finding such a maximal spanning planar
subgraph H of G as described in Section 3, by
using PQR-trees. In this section we assume that
G in a 2-connected graph (a graph without

cutvertices) with V={1, -, n}.

3.1. An algorithm PLAN-PWB.
It is noted that each step except Step 4 comes
from those corresponding one of the algorithm
in [13] by replacing the term "PQ-tree" with
"PQR-tree” and by modifying appropriately. See
Figures 3.1 and 3.2 for an example. The detail of
Step 4 will be given later.
<PLAN-PWB>

1. Apply the st-numbering algorithm[10] to
G, Where, for simplicity, .we consider the
vertex ie V, is the i-th st-numbered onc.
construct a PQR-tree T consisting of only

(3)

the vertex 1. Ne 1.

2.(1) Construct a PQR-tree TN for the vertex
N as shown in Fig. 3.3 (a)-(d), where
directed edges are handled carefully t
avoid edges inside directed cycles.
{Leaves of TN correspond to vertice
adjacent to N in G. In the construction
of PQR-trees, if d edges are incident
upon a vertex v in G then we provide d

copies of v. These copies appear as
leaves of PQR-trees Tu, where u is
adjacent to v, and we try to coalesce

them in the following reductions.)

(2)Delete all copies of the vertex N appearing
as leaves of T, and add TN into T by making
the root of TN as a child of the node to
which those deleted copies were adjacent.
Let T denote the resulting PQR-tree.

(3)Assign a number Ky for each node v of
TN such that x is the parent of y if and
only if Kx < Ky.

(4)NN+1.

3. Let S be the set of those leaves of T
corresponding to the vertex N of G. If a
reduction of T for S is executable then

goto Step 5.
4 .Find a minimum set of leaves of T such
that, after deleting edges incident upon

those leaves from T, we can execute a
reduction of the resulting PQR-tree for S.
{Note that there is one-to one
correspondence between such edges and
leaves. This procedure will be explained in
the following subsection.}

5. In the PQR-tree obtained after one
reduction of Step 4, coalesce all elements
of S, appearing consecutively, into one

« leaf (this leaf corresponds to the vertex
N), and let T denote the resulting PQR-tree.
If N=n then halt else goto Step 2.

3.2. Explanation of Step 4.

We explain the details of Step 4 in PLAN-PWB:
how to find a minimum set of edges whose
deletion from the current PQR-tree enable at
least one reduction of the resulting PQR-tree.
Before describing the outline of the algorithm
of Step 4, we need a few more definitions.

Let T be a PQR-tree and S be a leaf set of T. The
S-tree (a counterpart of the pertinent subtree
in [9]) of T is the PQR-subtree of T having the
smallest height among those T' with ScF(T').
The root and and those leaves contained in S of
the S-tree are called the S-roor and S-leaves,
respectively. A node of T is called an S-node if
an S-leaf is one of its descendants. We define
five types B, W, HL, HR and A of a node v which
is a P-node, a Q-node or an R-node contained in
the S-tree as follows.

B: all leaves that are descendants of v are S-

leaves.

" W: no leaves that
leaves.

(HR,
consecutively

are descendants of v are S-

HL respectively):S-leaves

from the

appear
leftmost (the

rightmost) of the frontier consisting of all
leaves that are descendants of v.

A: S-leaves appear consecutively in the
middle with non-S-leaves running to both
the left and the right in the frontier
consisting ~ of all leaves that are
descendant of v. .)

B, W and A are the same as those in [13], while
H of [13] is divided into HL and HR to handle R-
nodes. Any leaf is either B or W. For each S-
node v, let by, wy, hLy, hRv or av denote the
minimum of leaves whose deletion make that S-
node B, W, HL, HR or A, respectively. In the
computation of those numbérs, B or W are
considered as a special case of each of HL, HR
and A. Let Ly denote the total number of
descendants of a node v.

Now we describe the outline of Step 4

consisting of six steps as follows.

Step4-1. Compute the total number c'v of
children of each node v, by beginning
with leaves and proceeding from
children to their parents in the current
PQR-tree T.

Step4-2. Compute bv of each non-S-node by
means of the procedure PRE_SCAN
described in the following subsection.

Step4-3. For each S-node v, compute the total
number cv of S-nodes that are children of
v, by beginning with the S-nodes and
proceeding from children to their parents
in the PQR-tree T. Determine the S-root by
comparing numbers Ky.

Step4-4.For each S-node v, compute by, wv,
hLy, hRy or ay, from those values already
obtained for children of v, by means of
the procedure SCAN described in the
following subsection. .

Step4-5.(1)Determine the type of the S-root r as
the one with the minimum among the
values br, wr, hLr, hRr-and ar.

Accordingly determine the type of each S-
node and assign the corresponding label
B, W, HL, HR or A, by proceeding from
‘parents to their children.

(2)For each node, delete nodes or leaves
as specified by the label and the values
assigned. - This is also done from the root in
the breadth-first manner. (The details will
be explained in the following subsection.)

Step4-6.Execute a reduction of the current T for
S. {At this stage there exists at least one

executable reduction.}
3.3. Minimum Deretion of Leaves.
There are two procedures PRE_SCAN and

SCAN. PRE_SCAN computes the value bu of each
non-S-node u, and SCAN does by, wy, hLy, bRy
and av of each S-node v.

3.3.1. Computing the number of Ileaves
Ly. When TN is created in Step 2 of PLAN-PWB,
the number of leaves of TN is equal to the
degree dG(N) of N in G. Note that the root of TN
is not always a P-node. This differs from the
discussion of PQ-trees. After TN is added to T by

(4)

coalescing the root of TN into the leaf
representing the vertex N, set Ly« Lv+dG(N)
for each ancestor v of the leaf in the resulting
tree.

3.3.2. Computing bu of a non-S-node u.
A non-S-node u has wuy=0 and therefore,
hLu=hRu=au=0. If u is a leaf then

1 ifeyeEp

"\ IE+1 if eye EyUE,,
where ¢, is the edge of G represented by u in
PQR-trees. The setting bu =IEl+1 presents the
deletion of edges representing modules.
<PRE_SCAN>
1. Put all non-S-leaves into a queue, and set
1 if eyeEy

=
| Bl if e, E1UEy,
for each leaf u that is a non-S-node.

2. Take the top X out of the queue. If the
queue is empty or X is the root of T then
halt.

3. If X is an S-node then goto Step 4 else
bP(X)¢bP(X)+bX, where P(X) is the parent
of X.

4. c'P(X)e<c'P(X)-1. If ¢c'P(X)21 then goto
Step 2 else {c'P(X)=0} put P(X) into the
queue {P(X) is the rear} and goto Step 2.

3.3.3. Computing bv, wy, hLv, hRv and
ay of an S-node v. We compute bv, wy, hLv,
hRv and ay of S-node v, by beginning with
leaves and processing from children to
parents. We provide a queue and a stack for
storing nodes of PQR-trees. That queue is used
in computing those values by proceeding from
leaves to the root, while the stack helps the
labeling process which proceeds from the root
to leaves.

<SCAN>

1. Put all S-leaves into both the queue and
the stack. For each S-leaf, set

1 ifeeEg

Wy=
[El+1 if eve EjUE2.

2. Take the top X out of the queue and
compute hLX, hRX and ax by means of the
formulas given in Theorems 2 through 4.

3. If X is an S-root then halt else
bp(x)(——bp(x)+bx and WP(X)< WP(X)*WX-

4. cpxy—cpx)-l. If cp(x)=1 then goto Step
2 else {cp(x)=0} put P(X) into both the
queue and the stack, and goto Step 2.

We show some theorems in which formulas to

compute hLX, hRX and aX are given. Let 1,2,",m

be the children of X.

Theorem 1{13]. If x is leaf then
hLX=hRX=ax=0.
We omit the subscript X for simplicity in the

following theorems.

Theorem 2. if X is P-node then

m
hp=). min{w;b;}-maxy ;culmin{wibi-hid (1),
i=1

m
hg=_), minfw;b;}-maxy ; ¢, [min{wibilhg] @,

a=miiT11{a1,a2} 3).
wher e
al—z min{w;,b;)
—maxK#ﬁm[mm(w,,b J-hritmin{w;,b;}-hg | @,
afz WirMaXcgem(Wi-aj)).

i=1

Proof. We consider only HL, since HR can be
handled symmetrically. X is HL if and only if
one child of X is HL and the others are either B
or W. Choose a child k such that min{wj,bj}-hLj
is maximum among children 1<i<m, and make k
HL. For any other child j(zk), make j B if bjswj,
or W if bj>wj. This choice minimizes the
number of leaves to be deleted, and (1) follows.

There are two ways of making X A. The first
one makes one child and another one HL and
HR, respectively, and the others are made
either B or W. In this case (4) follows similarly
to (1) or (2). The second one makes one child A
and the others are made W. In this case choose
a child k such that wi-aj is maximum among
children 1<i<m, and make it A. Then the
number of leaves to be deleted is minimized,
and (5) follows. Taking the minimum of (4) and

(5) gives the formula (3). Q.E.D.
Theorem 3. If X is a Q-node then
hL=mm1__k5m[mm{2 Wl b;)‘bk"'z bl,

k-1 i=1 \ i=
2 (bi-wi}wk+z wi+hy, (X
i=1 i=1 ’
‘ I kl m
hR:minlSkSm min 2 (Wi-bj)—bk+2 by,
\g n
kl m
2, (brwiwitY, Wi}"'th:I .
= =
a=min{a,,a;} ' 8),

where
i
an by+min| min; oy { 2. (wirbih+hyb;
i=1
m

i1
+Y, (wi-b;)+hmcbk},
i=k+l

A
miny <k<m{z (wir bJ+thb+z (wir bthkbk}]

ikt 1
.

m
ag=2 witmin, SiSm(ai-w;) (10).

i
Proof. We again consider only HL. The
discussion for HR is symmetric. X is HL if and
only if one child is HL, every child on the left
is either B or W, and every one on the right is
either W -or B, respectively. The number of
leaves to be deleted so that X many be HL is

(5)

given by

z W+th+z b; or z b+th+z Wi (11),

k1
respecuvely Hence

minimizes (11) gives

m1n1_k<n_{mm{z w+§ b; Z b+§m: w}+th]
(

el H Hel
12),

choosmg k which

- and (6) follows.

There are two ways of making X A. The first
one makes one child j and another onme k HL
and HR, respectively, every child between
them B, and the others W. The number of leaves
to be deleted in this case is given by (13-a) or
(13 b):

2 w+hLJ+2 bl+th+z Wi

1=k+1

_2 wl+hL,+z b: Z b; z b|+hgki-2 w;

ikt 1

m
=Z bi"'z (Wi-bi)+hLJ~b_,+ Z (Wi-bi)+hm(bk

H = K+
(13-a),

2 W+hRJ+2 bl+th+2 Wi

1=k+1

—Z w+hRJ+Z by Z by E b,+th+Z Wi
id i ik ket 1
m

=Y, b+2 (wibithgybj+ Z (wi-b+hpicby

H iK+1
(13-b).

Hence (9) follows The second one makes one
child A and the others W. The number of leaves
to be deleted in this case is

2 witaj+ 2 Wn—z Wi-Wjta;

i=j+1 i=1

(14),

and (10) follows.
and (10) gives the formula (8).

Taking the minimum of (9)
Q. E. D.

Theorem 4. If X is an R-node then
kl

m
hp=min; g |)" (brwi)-wit), w#th] (15),
L& i

hg=min; g . - 2 (wi- b,}bk+2 b,+th:| @16),

L i<l

a=min(a;,az} (17),

where

al—z brrming g Z (wi-biy+hgryb;
+3 (wx bl)"'thbk] as),
=K+1

m

az=2 w;&minlsiSm(arwi) (19).

i .
Proof. We consider, only HL. X is HL if and

only if one child is HL, every child on the left
is B and every one on the right is W. Then (15)
follows similarly to (6) for a Q-node in Theorem
3.

There are two ways of making X A. The first
one makes one child and another one HL and
HR, reprectively, every one between them B
and the others W, where the child of HR has to
be located to the left of that of HL. Then (18)
follows similarly to (9) for a Q-node in Theorem
3. The second one makes one child A and the
others W. This is the same as the case of a Q-
node, and (19) follows. Taking the minimum of
(18) and (19) gives (17). Q.E.D.

Scanning children 1 through m, once for
each, is enough for us to compute (1), (2), (4),
(5), (6), (7), (10), (15), (16), and (19). We can
compute (18) by a bidirectional scanning: 1
through m and reversely m through 1, once for
each. (9) can be computed by repeating this
bidirectional scanning twice.

If deletion of S-nodes and that of non-S-nodes
result in the same total number of leaves to be
deleted then we decide the types of nodes so
that non-S-nodes are forced to be deleted. This
is because, as PLAN-PWB proceeds to processing
a vertex with larger st-numbering, a smaller
degree of that vertex likely reduces the
number of leaves to be deleted.

3.4. Labeling and Deletion

Suppose that br, wr, hLr, hRr and ar for the
S-root r have been computed in Step 4-4 of
PLAN-PWB and that the type of r has been
determined by choosing the minimum among
them. We repeat three procedures: taking a
node v out of the stack, determining the type of
that node and assigning the corresponding
label to it. The children to be -deleted are
determined according to the label of v. If such
children exist then delete them. If they are
leaves then they are put into a list, and if not,
they are assigned the label D. If a node assigned
D is a non-S-node then it is put into another
queue. A node assigned D will be taken out of
‘the stack (S-nodes) or this second queue (non-
S-nodes) later, and processing the children is
repeated as above.

3.5. Time Complexity

The most time-consuming pat of PLAN-PWB is
the computation of the minimum number of
leaves to be deleted. This part takes time
proportional to the number of nodes in a PQR-
tree T, and at most O(IVI+IEl) nodes exist in any

PQR-tree. Since there is O(IVI) repetition, time
complexity of PLAN-PWB is O(IVI(IVI+IED).

4. Experimental Results
The Proposed algorithm PLAN-PWB and

REPEAT-PLAN [14], both having O(IVIIEl) time
complexity, are implemented on a workstation
NEC EWS-4800 by using C language. Table 1
shows some of our experimental results(in
complete connection for multi-terminals),

(6)

from which it is recognized that PLAN-PWB
produces a smaller sct of jumpers than REPEAT-
PLAN and that the computation time in
millisecond of the first one is also less than that
of the second one. Fig. 4. shows the circuit
corresponding to data 1, where three jumpers
given by PLAN_PWB are denoted by broken
lines in (a), while five jumpers given by
REPEAT-PLAN are shown by broken lines in
(b).

5. Concluding Remarks
An O(IVHE)) algorithm PLAN-PWB for finding
minimal set of jumpers in the design of printed
wiring boards of analog circuits is proposed. A

providing interactive tools useful to designers
and improving graphics are under
development.

6. Acknowledgement
The authors would like to thank. Eiki Kida, the
Department General Manager, Computer Aided
Design Center, Audio Systems Research
Laboratories, Audio Systems Group, SHARP
Corporation, for his suggestion on CAD of VLSL
The research of T. Watanabe is partly supported
by the Telecommunication, Advancement
Foundation (TAF). This work was partly
supported by the Grand in Aid for Scientific
Research of the Ministry of Education, Science
and Culture of Japan under Grand: (C) 01550289.

Reference

[1]Vanlier, M.C. and Otten, R.H. :"On the -
mathematical formulation of the wiring
problem”, Int.J.Circuit theory & Appl, 1,
pp.137-147(1973)

[21Goldstein, A.J. and Schweikert ,D.G. :"A
proper model for testing the planarity of

electrical circuits", Bell Syst. Tech. J., 52,
pp.135-142(1973)

[3}Uehara, T.,Takahashi, O. and Shiraishi, H.
:"Program of automatic circuit drawing for
mask making system", FUJITSU Scientific &
Technical Journal, 8, 3, pp.35-58(1972)
[4}Shirakawa, l.:"Applications of Graph Theory
to Packing Design", IECE, vol. 62, July, pp.780-
789(1979-07)

[5]Fisher, G.J., Wing, Q. :"Computer recognition

and extraction of planer Graphs from the
incidence matrix”", IEEE Trans. CT-13
p.154(1966)

[6]Nicolson, T.A.J. :"Permutation procedure for
minimizing the number of crossings in a
network”, Proc. Inst. Elect. Engrs, 115, 1,
p-21(1968)

[7]Chiba, T., Nishioka, 1. and Shirakawa, 1.:"An
algorithm of -maximal planarization of
graphs", Proc. 1979 ISCA P.649(1979-07)

[8]Lempel, A., Even; S. and Cederbaum, Il.:"An
algorithm for planarity testing of graphs”,
Theory of graphs:International Symposium: =

Rome, July, 1966(P.Rosenstichl, Ed.) pp.215-
232, Gordon and breath, New york, 1967
[9]Booth,K.S. and Lueker,G.S:"Testing for the

consecutive ones property, interval graphs,

and graph planarity using PQ-tree leaf X\ ==> AX
algorithms",J. Comput. & Syst. Sci., 13, pp.335- (1) L1
379

[10)Even, S. and Tarjan, R.E. :"Computing an st-
numbering", Theoretical Computer Science, 2,
pp.339-344(1976)

[11]Aho, A.V., Hopcroft, J.E. and Ullman,
I.D.:"The design and analysis of computer
algorithms”, Addison-Wesley, Reading(1974).

[13]0zawa, T. and Takahashi, H.:"An Algorithm
for Planarization of Graphs Using a PQ-Tree",
Technical Research Report CAS79-150 IEICE of
Japan ,pp.25-30(1979).

[14]Masuda, S., Kashiwabara, T. and Fujisawa,
T.:"A Wiring Problem on Single Layer Printed
Circuit Board without Mounting Modules
Upside-Down", IEICE Trans. Vol. J66-A NO.3,
pp.235-242(1983). LAy

[15]Jayakumar, R., Thulasiraman, K., and

Swamy, M.N.S. :"O(n2) Algorithms for
Graph Planarization", IEEE Trans. Computer-
Aided Design, Vol. 8, No. 3, March 1989,
[16]0zawa, T. and Takahashi, H. :"A graph-pla
narization algorithm and its application to
random graphs", in Graph Theory and
Algorithms, Springer-verlag Lecture Notes in
Computer Science, Vol. 108, pp. 95-107, 1981
[17)Araki, T., Iwamoto, K., Watanabe, T., and
Onaga, K.:"Finding a Minimal Set of Jumpers
in the Design of Printed Wiring Boards for
Analog Circuits", Technical Research Reports
IPS of Japan(May 1990), to appear.

nnono
—
uuano

(a) (b)

(3) P2

X(#ROOT(T.S))

>

(4)P3

. X(=ROOT(T.$))

nnnn
godn

Fig. 2.1. Graph representations of modules.

-]

Fig. 2.2. A star-shaped connection and its net
representation.

& X

b c (9) QrR2

Fig. 2.3. An example of a PQE'—trce.

(7)

LEELf

X(-ROOT(TS)) 1 4

Fig. 3.1. A graph G

ER i,

(10) QR3

Fig. 2.4. Template matchings for reductions of
PQR-trees.

Q
m
T, T,
T . } 4 (a) (b) (c) (d)
1
f Fig. 3.3. Construction of a PQR-tree TN.
3
6 3)
5 2 2 + Veeo
Sown Sy
1 Seev 4 R
b\o S /\
2 3
Output 0—
3
2 2 c
Input o}
b= Town _—
Tovany :;l, Tewz bew b4 R
n=0 w—
Q = Qb
=0 . b
beoe T v
bt Moo b=
== w = =
- =
s a9 @y e
W S on @ e (a)
Dwse bumee wa0 wa0 wae wul
=l wel
=0
T & G = +VECE
N RS Re Rc.% i
Ce 1
1
1
(1 @ 3) L ouput &
1
ﬁ '
Ts laput o 1
T, :
4 |
6° 5 ‘
|
.
\
5
Seins)
Sov-4) (b)
1 4 1 .
Fig. 4. The circuit corresponding datal, where
6 3 jumpers are denoted by broken lines : (a) by
5 PLAN-PWB, (b) by REPEAT-PLAN.
Tovasy [Tov=5) .
e oo -
@) hhl-: ol DATAY vl VI #Jumper Time (ms)
=1 ot ::"0 PLAN-PWD [REPEAT-PLAN| FPLAN-PWB [REPEAT-PLAN
[
joung - =0 1 33 45 14 16 11. 199141, 760
bl b0 s 69
b0 foirs b0 b0 2 33 138 11 13 58. 281|161, 643
e wem
10 09 08 69 3 19 21 2 3 3. 455} 23. 182
s =0 S = 4 32 40 10 7 7.816[127. 544
5 36 39 7 8 7.033[164. 250
) (5) 5 77 197 85 87 23, 102139, 988
Fig. 3.2. Reductions of PQR-trees for the graph Table 1. Some experimental results on PRIDE.

G of Fig. 3.1. Time is in millisecond.

(8)

