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Exclusive-or Sum-0f-Products Expréssions:
--- Their Properties and Minimization Algorithm —--

Tsutomu SASAQ

Department of Computer Science and Electronics
Kyushu Institute of Technology, Iizuka 820, Japan

Abstract This paper presents properties of Exclusive-OR sum-of-products expressions (ESOPs) and their minimi-
zation algorithm. First, upper and lower bounds on the number of products in minimum ESOPs (MESOPs) are
shown. Then an algorithm to simplify ESOPs is presented. The algorithm can often prove their minimality
for functions of up to five variables. It utilizes the minimized results of all the 4-variable functions
and 1) finds lower bounds on the number of products in the MESOP, 2) obtains an initial solution for 5-
variable functions, 3) simplifies the ESOP by iterative improvement, and 4) stops the iterative
improvement when the solution is proved to be minimum

This algorithm proved the minimality of about 30% of randomly generated functions with 5 variables

We also show the number of the products in MESOPs for some classes of functions.




I. Introduction

Recently, logic synthesis tools are used to design
multi-level logic networks. Such tools often produce
better solutions in a shorter time than human logic
designers, and are now indispensable in the practical
VLSI design. It should be noted that most tools
utilize sum-of-products expression (SOP) minimizer
extensively in the programs. Similarly, in order to
design multi-leve! logic networks consisting of EXOR
gates as well as AND and OR gates., a good exclusive-0R
sun-of-products expression: (ESOP) minimizer is
necessary. As for exact minimization algorithm, only
exhaustive methods are known [BIO 73, KOD 89]. As for
near minimum ESOPs, several heuristic algorithms have
been developed[BES 83, EVE 67, FLE 87, HEL 88, PAP 79,
ROB 82, SAL 79]. Experimental results show that ESOPs
require fewer products than SOPs in many cases
[SAS 90a, SAS90b].

In this paper. we show methods to find upper and
lower bounds on the number of products in MESOPs for
the functions of n variables by using the minimum
ESOPs for the functions of (n-1) variables. We also
show an algorithm which simplifies ESOPs and prove
their minimality for a considerable percentage of
five-variable functions. Because no exact minimization
algorithn is known except for an exhaustive method,
this algorithm is the first one, although it can
ninimize up to five-variable functions. It also finds
a near optimal solution for functions with more input
variables, which are more important in practical
designs

I. Definitions and Basic Properties

Definition 2.1: x and X are literals of a variable x.
A logical product which contains at most one literal
for each variable is called a product term. Product
terms combined with OR operators form a Sum-of-
Products expression (SOP). Product terms combined with
EXOR operators form an Exclusive-Or Sum-of-Products
expression (ESOP).
Definition 2.2: A minterm is a logical product
containing a literal for each variable. A minterm
implying a function f is called a minterm of f.
Definition 2.3: A SOP for f is said to be a minimum
SOP (or MSOP) for f if the number of the products is
the minimun. An ESOP for f is said to be a minimum
ESOP (or MESOP) for f if its number of products is the
minimum.

Note that ESOPs are generalization of
1) Fixed polarity Reed-Muller Expressions (RMEs)

(2" ways),
2) Kronecker expressions :3% ways),

)

n+l_
3) Pseud-Kronecker expressions: 3(2 1 ways), and

. nZn—l
4) Generalized RMEs (2 ways).
As for the definitions of the above expressions,
read [DAV 781.

Definition 2.4: The number of products in a SOP F is
denoted by t(F). The number of products in an MSOP for
f is denoted by t(f). The number of products in an
ESOP F is denoted by 7 (F). The number of products in
an MESOP for f is denoted by = (f).
Lemma 2.1: If a function f can be represented as
f=g@h, then 7 (=7 @)+7 (h).
(Proof) Let G and H be MESOPs for functions g and h,
respectively. Because G®H represents the function f,
we need at most 7 (G)+7 (H) products to realize f.
Lemma 2.2: |z (D)-T D I=1.
(Proof) Suppose that g=F. Let MESOPs for f and g be F
and G, respectively. Because g=f®1 and f=g®1, two
ESOPs F&1 and G®1 represent g and f, respectively.
Therefore, we have 7 () =7 F@L) =7 (f)+] and
7 () =<7 D1 =7 (g)+1l. From these, we have
z(g)-7 () =1 and 7 (f)-7 (8 <1. Hence the lemma.
. (Q-E.D.)
Lemma 2.3: Suppose that g=F and z (f)<z (g). If F is
an MESOP for f, then Fé@1 is a MESOP for g.
(Proof) Let a MESOP of g be G. Because g=f@! and by
the condition of this lemma and by Lemma 2.2, we have
7 (G)=7 (F)+L. This shows that F@®1 is a MESOP for g.
(Q.E.D.)

Lemma 2.4: Suppose that two functions f and g are

represented as
f= x-f0@x-f1@1-f2 , and
g= X-g0Dx-gldl-gl .
Then, f=g =2 f0®gl=f1®gl=f2dg.
(Proof)
() Suppose that f=g. By setting x=0 to® and @, we
have
0@ f2=gl@g2.
By setting x=1 to® and @, we have
flef2-gldgl.
By ® and @, we have
f0Dgl=fldgl=f2dgl.
(<) Suppose that fO@g0=fl@gl=f2@g2=h. Then,
t@g=x (f0@g0) ®x{f1®gl) ®1- (120g2)=h GOxS 1 =0.
Therefore, f=g. (Q.E.D.)
Lemma 2.5a: Let x-HO®x-H1e1-H2 be an ESOP represent-
ing a function f. Let the ESOP x-HO®X-H1@1-H2, which
is obtained by interchanging the literals X and x of
the original ESOP, represent a function g.
Then 7 (£)=7 ().
(Proof)Let MESOPs for f and g be F=x-FO0®x-F1®1-F2,
and G=x-G0®x-G1®1-G2, respectively.
Let the ESOPs which are obtained by interchanging the
literals X and x in F and G be FP=x-FO@X-F1®1-F2,
and GP=x-GO®X-G1®1-62, respectively. Then, we can
show that FP represents a function g.
Note that f= X-HO®x-Hl®1-H2=x-FO®x-F1®1-F2.
By Lemma 2.4, HO®F0=H1@®F1=H2@F2. Therefore,
g®FP=(x-HO®X H1®1-H2) ® (x-FO®X-F1®1-F2)
= x- (HODFD) ®x- H1BFL) ®1- (H28F2)=0
In other words, FP represents g. Similarly, GP
represents f. Because F and G are MESOPs for f and &g,
respectively, we have 7 (F)< 7 (GP) and 7 (G)=7 (FP).
Also, it is clear that 7 (F)=7 (FP) and 7 (G)=7 (GP).
Hence 7 (M=7 (6) and 7 (=7 (8). Q.E.D.)



Lemma 2.5b: Let X-HO®x-H1eb1-H2 be an ESOP repre-
senting a function f. Let the ESOP 1-HO@x-Hl®x-H2,
which is obtained by interchanging the literals X and
1 of the original ESOP, represent a function g.
Then 7 (f)=7 ().
(Proof) Let MESOPs for f and g be F=x-FO@x-F11-F2,
and G=x-G0®x-G1®1-G2, respectively.
Let the ESOPs which are obtained by interchanging the
literals X and 1 in F and G be FP=1-FO@®x-F1®Xx-F2,
and GP=1-G0®x-G1&x-G2, respectively.Then, we can
show that FP represents a function g.
Note that f= X-HO@x-Hl®1-H2=-X-FOBx-F1b1-F2.
By Lemma 2.4, HO@FO=HI®F1=H2&F2. Therefore,
g®FP=(1-H0®x-H1DX-H2) & (1-FO@x-F1DX-F2)

= 1- (HO®F0) ®x- (H1®F1) &x- (H2BF2)=0
In other words, FP represents g. Similarly, GP
represents f. Because F and G are MESOPs for f and g,
respectively,we have 7 (F)=7 (GP) and 7 (G) =7 (FP).
Also, it is clear that = (F)=7 (FP) and 7 (G)=7 (GP).
Hence 7 (=7 () and 7 (f)=7 (g). Q.E.D.)
Lemna 2.5¢: Let X-HO@x-H1eb1-H2 be an ESOP repre-
senting a function f. Let the ESOP x-HO&1-Hi®x-H2,
which is obtained by interchanging the literals x and
1 in the original ESOP, represents a function g.
Then = {f)=7 ().
(Proof) Similar to Lemma 2.5a. Q.E.D.)
Theorem 2.1: Let an ESOP for a function f be

T U

(Sl’ SZ’ ""Sn)
Consider an ESOP which is obtained by interchanging
some of literals (I, x;,X;), and let g be the function

represented by the ESOP. Thenz (f)=7 (g).

(Proof)By using Lemmas 2.3 to 2.5, iteratively. (.E.D.)
Theorem 2.2: Let a function f be represented as f=x-g
or f=X-g, where g is a function independent of the
variable x, then 7 (f)=7 (g).

(Proof) When f is represented as f=x-g:

Replace x with 1, and apply Theorem 2. 1.

When f is represented as f=x-g:

Replace X with 1, and apply Theorem 2.1.  (J.E.D.)
Theorem 2.3: Let a function f be represented as
f=xp@®g, f=xpdg, f=pdxg, or f=pdXg, where p is a
product term, g is a function and, both p and g do not
depend on the variable x.

Then 7 (f)=min{z (g), 7 (p®e)}+1.

(Proof) When f is represented as f=xpébg:

Note that f can be represented as f=xp@®g=xp® (pDg).
From Lemma 2.1, we have 7 (f)<1+7 (g) and

7 (f) =1+7 (p®g). Therefore,

7 (f) =nin{7 (8), 7 (p@g)}+1 )]
Next, let F be an MESOP for f. Because f depends on
the variable x, F contains at least one product
containing the literal x or x.

A) ¥When the product term contains the literal x.

In F, if we set x to 0, then that product term becomes
0, and it can be deleted from F. Because the resulting
ESOP represents the function g,

we have 7 (g) =7 (F)-1 -—-@.

B) Khen the product term contains the literal X.

In P, if we set X to 0, then that product term becomes
0, and it can be deleted from F. Because the resulting
ESOP represents the function pég,

we have (p@g) =7 (F)-1 -—-0®
From @ and ®, we have
7 (F) Zmin{z (g), 7 (p@g)}+1 @

From @ and @, we have 7 (f)=nin{z (g), = (p@g)}+1.
For other cases: We can show the same result by
Theorem 2.1 and the above result. (Q.E.D.)

Theorem 2.4: 7 (f)Smin{|f|, 2"-[f|+1}, where |fl
denotes the number of minterms in f.
(Proof) Let the minterm expansion of the function f be

T=m sz V"-mG . Because mi-mJ=0(i¢J). f is also

represented as f=m; @ng ®--®m . Therefore, we
have 7 (f)<|fl. Since f=F®1, we have 7 (f)< 7 P+l
by Lemma 2.1. Also note that 7 (F)=<I|Fl= 2°-If]. From

these we have 7 (f)=20-|f|+L. " (Q.E.D.)
Lemma 2.6: If a function f can be represented as an
ESOP without a minterm, then f contains an even number
of minternms.

(Proof) Suppose that the function f is represented by
an ESOP without a minterm. Now consider the map for f
and loops created by the ESOP. The number of cells
covered by a loop of the ESOP is either 2, 4, 8, -,

or 2%, Note that these numbers are all even. So, the
total number of cells covered by the loops of the ESOP
is even, if we count the cells with repetition.

Let n; be the number of cells which the loops cover

exactly i times. Where i=1,2,--,k. Assume that k is an
odd number, and ng may be 0. When we count the number

of cells with repetition, total number of cells
covered by the loops of the map is
A=n1+2n2+3n3+~-'+knk ,

=(nytngingte-iny ) +(2ngt2ngtan et (k=D _;)
Because k is an odd number, the sum of the latter part
is even number.

Because A is even number, nytngingtetny is also even.

In the ESOP, the minterms of f are cells covered by
odd number of loops. So the total number of minterms
in f is nytngtngtetny

Hence, the number of minterms of f is even. (Q.E.D.)
Theoren 2.5:1f the number of the minterms of f is odd,
then any ESOP for f contains a minterm.

(Proof) Suppose that an ESOP for f does not contain a
mintern. By Lemma 2.6, the number of minterms of f
must be even number. This contradicts the assumption
of the theorem. Hence the theorem. (Q.E.D.)

Example 2.1:Consider the 2-variable functionvf=x1Vx2.

Note that f has three minterms. ESOPs for this
function are: :

X1 Bxy Bx1Xy » X DX(Xy , Ag®X(Xy ., and 1@X Xy
Note that each ESOP contains a minterm. However, the

last ESOP contains a minterm which is not a minterm of
f. (End of Example)



Theorem 2.6: If the number of minterms of f is odd,
then

2n

n and

a
7 ()= min_{7 (f®m )}+1, where m=x11-x;2----~x
aeB”

a=(aj,a9,...,8y).

(Proof) By Theorem 2.5, an MESOP for f contains a
mintern. Let it be mg. The function other than the

mintern can be represented by fEBnIO. Hence the

Q.B.D.)

theorem.

M. Upper and Lower Bounds on the Number of Products

Theorem 3.1: 7 (f) =4,
where A=max[m?x{z' (£i0), = (fil), T (fi2)}],

f=xifi0@xifil, fi2=fi0®fil, and i=1,2,...,n.
(Proof) Let an MESOP of f be

Fn=xiFa®xiFb®Fc  -—- @
From @, we have
7 (f)=7 (Fa)+7 (Fb)+7 (Fc) = - ®

By setting xi to 0 in @ , we have

T (fi0)=< 7 (Fa) +7 Fe)= 7 (f) —— ®

because Fm(xi=0)=Fa®Fc represents the function fi0.

Similarly, by setting xi to 1 in @, we have

T(fiD<ST (D) +7 F)=S T (f) —— @

because Fm(xi=1)=Fb@Fc represents the function fil.

Next, consider the ESOP which is obtained by

interchanging the literals xi and 1:
Gm=xiFa®1-Fb&®xifc .  --——- ®

Let the function represented by Gm be g. Then by

Theorem 2.1, Gm is a MESOP for g By setting xi to 0

in ® , we have

T (fi2)S7 (Fa) +7 Fb)s 7 (g) — ®

because Gm(xi=0)=Fa@®Fb represents the function fi2.

Fromn @~®, and 7 (f)=7 (g), we have

nax{t (£i0), = (fil), 7 (FiD}I=< = (f)

This relation holds for all possible i, so we have the

theoren. (Q.E.D.)

Theoren 3.2: 7 (f) =B, where B=nin[ B; 1, where B;=

7 (fi0)+T (fil)+ (fiZ)—mz}x{‘c (£i0), = (fil), = (fi2)},

f=xifi0@xifil, fi2=fi0@®fil, and i=1,2,...,n.
(Proof) Because f can be represented as
f=fi0@xifi2= fil®xifi2

=xifi0@xifil, we have

T ()=t (Fi0)+T (i), T (D=7 i+ (fi2),
and 7 (f) = 7 (£10)+ 7 (fil). Therefore, 7 (f)=B;.

Because these relations hold for all possible i, we
have the theorenm. Q.E.D.)
Lemna 3. 1:Suppose that f is represented as f=xfO@xfl.
If 7 (f)=7 (f1), then an MESOP for f has a form
xFa@®Fb, where Fa and Fb are ESOPs not containing the
variable x.

(Proof) Suppose that an MESOP for f is represented in
the form:

xFa®Fb®xfc, = - D
where Fc#0. We have
T (P)=7 Fa)+7 (Fb)+7 (Fc) . - ®

Because 7 (Fc)>0, from @ we have

7 (£)> 7 (Fa)+ 7 (Fb) i ®

Let x be 1. Because @ represent fl, we have

T )= 7 (Fa)+7 (Fb) . @

From @ and @ we have 7 (f1)<z (f). However, this
contradicts the assumption of the lemma. In other
words, if we assume that the MESOP has the form @,
then we have the contradiction. Q.E.D.)
Lemma 3.2: For a given function f, let A and B be the
values defined in Theorems 3.1 and 3.2.

Then 7 (f)=A 2A=B.

(Proof for —) When 7 (f)=A, without loss of
generality, we can assume that 7 (fil)=A.

By Lemma 3.1, an MESOP for f has the form
xiFa@®Fb -—-@.
Because f can be represented as f=xifi2@fi0 ,

Fa represents a function fi2, and Fb represents a
function fil. Also note that both Fa and Fb are MESOPs
for fi2 and fi0, respectively. Because if not, @ is
not a MESOP. Therefore,

7 (Fa)=7 (fi2) and 7 (Fb)=7 (fi0).
So. we have 7 (f)=7 (Fa)+7 (Fb)=7 (fi2)+7 (fi0).
By the definition of B, we have 7 (fi2)+7 (fi0)=B.
Therefore, 7 (f)=B. On the other hand, by Theorem 3.2
we have 7 (f)<B. So 7 (f)=B. Hence A=B.

(Proof for <) When A=B. By Theorem 3.2 we have

7 (f) =A. By Theorem 3.2, we have 7 (f)<B.

Rence 7 (f)=A. Q.E.D.)
Theorem 3.3: For a given function f, let A and B be
values defined by Theorem 3.1 and 3.2. If A#B then
T (f) ZA+L

(Proof) By Lemma 3.2, if A#B then = (f)*A. By
Theoren 3.1, we have A< 7 (f). Therefore A<z (f).
Hence. the theorem. (Q.E.D.)
Example 3.1: Suppose that the table of MESOPs for
3-variable functions is available. Let’s prove that
the following ESOP is minimum:
f=x1x4®x1x2x3Dx1x2x3.

f can be represented as

£=34 (X1 ©X1x2x3@x1x2x3) Bx4 (X1x2x3Bx1x2x3)
=x4f0Dx4f1.

Note that f2=f1@f0=xl .

From the table of MESOPs, we have 7 (f0)=3, z (f1)=2
and T (f2)=1. So, we have max{7 (f0), = (f1),  (f2)}=3.
By Theorem 3.1, we have 7 (f) =3. Therefore, the given
ESOP is minimum. (End of Example)
Example 3.2 Suppose that the Table of MESOPs for 3-
variable functions is available. Let prove that the
following ESOP is minimum:

£=x1X3x4 @ x2x3X4 D x1x3x4 Dx1x2X3.

This function can be represented as

=34 (X1X3Dx2x3@x132x3) D x4 (x1x3Dx1x2x3 )

=x4f0 @ x4f1

Note that f2=fl1@f0=x1x3@x1x3dx2x3

By the table of MESOPs, we have t (f0)=3, 7 (f1)=2,
and 7 (f2)=3. In a similar way we have

A=ma11x[max{r (fi0), 7 (fil), = (fi2)}]1=3 and

B=7 (fi0)+7 (fil)+T (fiZ)-mfllx{z' (fi0), 7 (fil), = (fi2)}
=5.



By Theorem 3.3, we have 7 (f) =4 because A#B.

Hence, the given ESOP is minimum. (End of Example)
Example 3. 3:Suppose that the table of MESOPs for all
the 4-variable functions is available. Let prove that
the following ESOP is minimum:

F=x1X2x3x4xX5 D x1x2x3X4X5 D x 1 x2x3x4xX5 @ x 1 x2x3x4X5.

f can be expanded as

=x1 (x2x3x4x5@x2x3x4xX5) Dx1 (X2X3x4x6@ x2x3x4x5)
=x1f0@ x1f1 .

Also note that

12=F1 @ T0=x2x3x4%5 & x2x3X4X5 D x2x3x4x5 B x2x3x4%5

From the table of MESOPs, we have 7 (f0)=7 (f1)=2, and
7 (f2)=4. Note that Max{z (f0), 7 (f1), = (f2)}=4.

By Theorem 3.3, we have, z (f) 24. This shows that the
given ESOP is minimum. (End of Example)

N. Complexity of Some Classes of Functions

Experimental results show that ESOPs require
fewer products than SOPs to represent symmetric
functions and randomly generated functions[SAS 90a].
Also, an BSOP requires only n products to represent a
parity function of n variables while the SOP requires

Z"'1 products. However, this is not always the case.

There is a 2n variable function whose MESOP requires
a1l products while the MSOP requires n products.
Con,jecture 4.1:
7 (f)=2", where f= (21 @y - (xgByy) -+ (x, Byp).
Lemma 4.1: = (f)=7 (g)),
where g,=(1@x1y;) - (1@xgy,) -+ (1®xy,) -
(Proof) Replacing the literals as xj2 1 in g, and ve
have the function f;. By Theorem 2.1, 7 (f))=7 (g,)-
@Q.E.D.)

Lemma 4.2: h.=g, ® 1, where L 21 VXZyZV'"VXnyn'
(Proof) g, = (1ex1y1-)-(1eax2y2)----(1eaxnyn)

= W (XZ_yZ) .....(m) .
8 ®1 =gy = x1y1 Voyg V- Vapyy = by,
Lemna 4.3: = (b)) =201,

(Proof) Let H, be the expression defined as follows:

Q.E.D.)

Hp= 1@ %y (H ;@ 1) , where Hy= xqyy .
By applying distributive law repeatedly, we have the
ESOP with for H, with 2" -1 products. Also note that
1l Hy=H,_1&® Xy H n-19xy, @1
=1 Hn—l)'(l @ xnyn).

By replacing IGBHn_l recursively, we have

1 ®H =(1®x1y1)'(lﬂaxzyz)'-"-(leexnyn) .
Therefore, IGBHn represents the function &
By Lemma 4.2, Hn represents the function hn.

Q.E.D.)

Conjecture 4.2: = (b)) = 2n-1.

(Explanation supporting the conjecture)
By Conjecture 4.1, Lemmas 4.1 and 4.2, we have

7 ({@)=2" . By Lemma 2.3, Iz )-7 (B)I< 1.
h n n

Hence, 7 (h)= 2"-1. (End of explanation)

Note that an ESOP for h, requires 271 products,

while SOP's require only n products.
Definition 4.1: E(n,k) function is defined by an ESOP
which consists of product terms with exactly k true
variables out of n inputs:
E(n k)= P XXXy

1< j<e+<m
Note that the above expression has at most ( ﬂ )

products. Because MESOPs for E(n,k) are not so easy to
obtain, they are used as benchmark functions for ESQP
minimization algorithms [SAS 90al. )
Theorem 4.1: T(n,k)=T(n,n-k), where T(n,k)=7 (E(n,k)).
(Proof) Consider the ESOP '
E(n, k)= ' .2@, XjXjxy

i< j<+<m
Apply the transformations xqzz’l (9=1,2.+,n), and we
have the ESOP
2 X% Xl KXyl Xty 1 X gy
It is easy to see that this denotes the E(n,n-k)
function.
Example 4.1: Let E(4,1)=x1®x2Bx3@®x4. Apply the
transformation 12xi (i=1,2,3,4), and we have
x2x3x4@x1x3x4 D x1x2x4Dx1x2x=E (4, 3).
By Theorem 4.1, we have T(4,1)=T(4,3). (End of Example)

V. Minimization Algorithm

An algorithm for MESOPs of up to 5 variables

1. Obtain the lower bound on the number of products in

" ESOPs for the given function. Let it be LB.

2. Expand the given function into one of the following
forms:
f=xifi0@xifil, f=xifi2®fi0, or f=xifi2®fil,
where fi2=fi0@fil.

3. Obtain the MESOPs of subfunctions for fi0, fil, and
fi2 from the table of MESOPs for 4-variable
functions.

4. Obtain an ESOP for f by combining two MESOPs.

5. Simplify the ESOP by EXMIN [SAS 90bl. Let the
number of products be 7a.

6. If LB is equal to za, then the simplified ESOP is
the minimum. So stop the algorithm. Otherwise go to
step 2, and try another expansion. If all the
combinations are exhausted (15 possible expansions)
and still LB # 7a, then the minimality is not
proved. Let the solution be the ESOP with minimum
number of products.




/% Algorithn for Lower Bound */
for (all the variables ) {
=xifi0 @ xifil,
7i0 =7 (fi0)
Til =7 (fil) /% Table Look up of MESOPs */
7i2 =7 (fi2)
}

A = max { max(z i0, 7 il, 712)}
B= m}n {ri0+zil+7i2 - max(zi0, Til, 7i2)}

if (A==B)
LB=A

else
LB=A+1

endif

V. Experimental Results
6.1 Mininization of 4-variable functions [KOD 89]
We obtained MESOPs for all the 4-variable functions

by an exhaustive method. There are 216 =65536
functions of 4 variables. First, we made a table of
65536 entries each of which corresponds to a unique
function of 4 variables. Then, we marked the entry for
the function represented without a product, that is
the constant zero function. Next, we marked the
entries for the functions represented by one product.

There are 34=81 such functions. Next, we marked the
entries for the functions represented by two products.
We repeated the similar procedure for up to six
products. Because an arbitrary 4-variable function can
be represented by an ESOP with at most 6 products, we
can obtain the MESOP by this procedure.

Table 6.1 compares the numbers of functions
requiring given numbers of products in MESOPs and
MSOPs for n=4, where MSOPs were obtained by QM
algorithm [SAS 84]. Note that in SOPs, 8 products are
necessary to realize an arbitrary function, while in
ESOPs only 6 products are necessary. This result also
shows that BSOPs require fewer products than SOPs in
many cases.

6.2 Minimization of 5-variable functions [KOD 90]

In the case of 5 variable functions, we cannot
use the exhaustive method because the number of the
combinations to consider is too large.

The set of the n-variable functions can be partitioned

into 241 classes according to the number of minterms,
where the k-th class consists of the functions with

k minterms. (k=0,1,..., 2"). For each class, we
generated 1000 functions by using a random function
generator. We simplified the ESOPs and obtained the
number of products in ESOPs. Also, we obtained the
lower bounds on the number of products in MESOPs.
Table 6.2 shows the results. From this table, we can
see the following:
1. When the number of minterms is less than 7 or more
than 27, the algorithm proved the minimality of the
ESOPs for more than 99% of the functions.

9. For the functions with 19 minterms, the algorithm
proved the minimality for more than 27% of the
functions

VI. Conclusion

In this paper, we showed several properties of
MESOPs. Also, we derived upper and lower bounds on the
numbers of products in MESOPs for n-variable functions
when the numbers of products in MESOPs for (n-1)-
variable functions are available. We developed a
minimization algorithm for ESOPs for 5-variable
functions, which uses the table of MESOPs for 4~
variable functions. The features of the algorithm are
1)to obtain a lower bound and 2) to stop the algorithm
when the solutions is proved to be minimum. So the
solutions are more reliable than ones obtained by the
existing heuristic algorithms. This algorithm
simplified given ESOPs and proved their minimality
for about 30 percents of randomly generated functions
of 5 variables.

Although various minimization algorithms for
logical expressions have been developed, no algorithm
used the minimized results of all the functions with
fewer variables. By using the properties of MESOPs, we
proved that MESOPs require only 16 products to realize
an arbitrary function of 6-variables, while SOPs
require 32 products [KOD 91]. Theorem 2.1 can be
extended for the functions with multiple-valued inputs
[SAS 91] to derive MESOPs and near minimun ESOPs [BRA
90]. We conjecture that ESOPs require fewer products
than SOPs in most cases[SAS 90al. However, thexe exist

a 2n variable function whose MESOP requires 20-1
products while the MSOP requires only n products.
Logic minimization programs have been an indispensable
tools for the design and analysis of VLSI circuits.

A good ESOP minimization algorithm will help the
design of compact and easily testable VLSI circuits.
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Table 6.1 Number of functions requiring a certain
number of products in minimum expressions (n=4).

’Tfof # of

products | functions

MESOP | MSOP
0 1 1
1 81 81
2 2268 | 1804
3 21774 | 13472
4 37530 | 28904
5 3888 | 17032
6 24| 3704
7 0 512
8 0 26

Table 6.2 Average number of products, lower bounds,
and number of functions whose minimality are proved.

#nt | #pt LB Proof fimt | #pt LB Proof
2 1 1.847 |1.847 | 1000 17 |6.366 |5.536 282

3 |2.561 |2.561 | 1000 18 |6.310 |5.568 349

4 |3.173 |3.173 | 1000 19 |6.427 |5.588 270

5 |3.692 |3.690 998 20 |6.381 |5.592 300

6 |4.145 |4.138 993 21 |16.385 |5.589 286

7 | 4.565 |4.529 964 22 |6.240 |5.553 380

8 |4.873 |4.756 883 23 | 6.150 | 5.542 425

9 |5.179 |4.992 814 24 |5.868 |5.406 561
10 |5.339 |5.016 688 25 |5.549 |5.263 117
11 |5.655 |5.210 571 26 |5.131 |5.020 889
12 |5.758 |5.248 | 512 27 | 4.714 | 4.664 950
13 |5.972 |5.387 464 28 | 4.161 |4.161 | 1000
14 |5.998 |5.322 391 29 |3.556 |3.556 | 1000
15 |6.198 |5.445 353 30 |2.831 |2.831 1000
16 | 6.217 |5.457 315 31 |2.000 |2.000 { 1000

#mt nunber of minterms

fint average # of products in simplified ESOP's
LB average lower bounds
Proof = number of functions whose minimality are proved(1000 functions for each #mt)
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