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PRIDE: A Printed Wiring Board Designing System
for Analog Circuits
by Graph-Planarization and Rectangular-Dualization
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Faculty of Engineering, Hiroshima University
4-1, Kagamiyama 1-chome, Higashi-Hiroshima, 724 Japan

The purpose of this paper is to outline a printed wiring board designing system for analog circuits,
PRIDE(PRInted wiring board DEsign system). The main point is that placement and routing are based on
graph-planarization and rectangular-dualization. Only single-layered board design is considered. Given a set of
net lists of an analog circuit, a graph representing not only connection requirements but also some physical
conditions is constructed from the net lists. Then we find a planar spanning subgraph as well as a set of
jumpers. Connection requirements repi‘esenled by this planar subgraph will be embedded without violating
physical conditions or increasing total wire length. In order to consider a placement together with connection
requirements, this planar subgraph is rectangular-dualized by adding some new edges and vertices so that the
resulting graph may have a rectangular-dual (a partition of a whole rectangle into some subrectangles).
Rectangles are provided for parts, terminals, and areas for wiring. Actual sizes of subrectangles are determined
by means of a linear programming. In PRIDE, compaction is incorparated in this step. The detailed routing is
separated into two stages: interconnection among terminal-rectangles of distinct parts; connection between every
pair of an actua! terminal and its terminal-rectangle within each part-rectangle. The latter may require some part-
rectangles to be enlarged by repeating a linear programming.
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1. Introduction and Motivation

The purpose of this paper is to outline
PRIDE(PRInted wiring board DEsign system), a
printed wiring board designing system for analog
circuits. The main point is that placement and
routing are based on graph-planarization and
rectangular-dualization. :

The motivation of this research is as follows.
Designing printed wiring boards for digital circuits
has been well investigated, while for analog circuits
it seems that there is still much room to be developed.
There may be various reasons why automatically
designing analog circuits faces more difficulty than
in the design of digital circuits. One of the main
reasons is that functionality of circuits is sensitively
affected by layouts. Layout designers have to
consider carefully how placement and routing affect
circuit functionality. Although a knowledge-based
system may manipulate almost all conditions
required in designing analog circuits, it seems too
slow to be practical. It is a much faster method that i
required  in practical designing processes. ‘

There are so many constraints to be considered in
designing boards for analog circuits, and some of
them are hard to be handled algorithmically.
select some of main constraints to be handled by
PRIDE and leave others to decision done by
designers. PRIDE utilizes designers’
interactively so that desired printed wiring boards
can be produced in’ reasonable computation time.
This requires that each automatically executable part

(or each algorithmic process) in PRIDE to output
optimum or near-optimum subsolutions as soon as
possible. Although multi-layered (two to four

layered) boards are currently available, we consider
here single-layered ones. This is because placements

and routing on multilayers are based on those on
single layers and because devising good algorithms
to single-layered cases may ‘be. very helpful in

designing multi-layered ones.

The designing flow is almost the same as that of
VLSI. Each steps, however, has some differences
from the counterpart in designing VLSI: they appear
in (1) graph modeling, (2) finding planar
subgraphs, (3) placement and (4) routing.

(1) Graph modeling. Since sizes of parts are fixed
in an analog circuit, a graph model is required to
handle explicitly not only a part but also its
terminals, where they are to be attached to the part
in a specified order.

(2) Finding spanning planar subgraphs.
Each of many parts has a specified side to be faced to
the board in actual mounting. These physical

conditions have to be handled in finding a spanning
planar subgraph of a given graph model. There have
been existing some algorithms for finding a
spanning planar subgraph with maximal or almost
maximal number of edges [4, 5, 11, 14, 19, 20].
Unfortunately they are unlikely to be useful in the
practical design processes due to lack of such
preservability. This motivate us to provide a new
algorithm PLAN-PWB in [2] for finding a planar
spanning subgraph of a given graph G and for
handling such parts.

(3) Placement. Connection requirements
represented by this planar subgraph are be
embedded without violating physical conditions or
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increasing total wire length. In order to consider a
placement together with connection requirements,
this planar subgraph is rectangular-dualized by
adding some new edges and vertices so that the
resulting graph may have a rectangular-dual,
producing a desired placement.

A rectangular-dual R(G) of a connected plane
graph G corresponds to a dissection of a whole
rectangle into a set of subrectangles each of which
represents a vertex of G, and two subrectangles
adjoin if and only if corresponding two vertices are
adjacent in G. Rectangular duals have been used for
floor-planning in VLSI design [10, 12, 15, 23, 24}, and
their graph-theoretical properties and related
algorithms. are investigated in [3, 13, 21, 22, 25].
Making two rectangles adjacent is done by adding
edges between corresponding vertices in G, and
conversely placing two . subrectangles apart can be
realized by creating a path of appropriate length
between corresponding vertices of G (addition of
new vertices or edges may be required). Rectangles
are given for parts and their terminals, and they are
called part-rectangles and terminal-ones,
respectively. Each of length and width of a part-
rectangle has to be layer that those of the
and a terminal-one must be
the width of the connecting wire.
Similarly we can provide space for wires as
subrectangles (called wire-rectangles) that are wide
enough for all required ones to pass through. This
capability of controlling placement is very useful to
our purpose. Actual sizes of subrectangles are
determined by means of a linear programming with
constraints on sizes of rectangles. This means that a
kind of compaction is done in this stage: if another
placement is required then we change

(i) a rectangular dual R(G),

(ii) selection of corner rectangles (rectangles to be
placed at corners of a board), or
‘(iii) constraints on length and width of rectangles
(corresponding to 90° rotations), followed by
execution of a linear programming

(4) Routing. The detailed routing is separated into
two stages: interconnection among terminal-
rectangles (a rectangle representing a terminal) of
distinct parts, and inside each part-rectangle(a
rectangle representing a part). The former is rather
easy because wire-rectangles (rectangles for wires
to pass through) are provided and they are placed
adjacent to terminal-rectangles to be connected. The
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latter may require repeating a linear programming:
if any mounting of an actual part into the
corresponding part-rectangle fails to obtain a
desired wiring then this part-rectangle has to be
enlarged. This is done by changing constraints
concerning sizes of the rectangle of a linear
programming to be repeated.
2. Physical Conditions and Graph Models

2.1. Physical conditions

Placement and routing are considered under the

following conditions:

Cl. There are two kinds of parts; up-sided ones
(each having a specified side which has to be faced
to the board in actual mounting) and free ones
(otherwise).

C2. parts are to be placed on one side of the board
and up-sided parts should be placed as specified.



C3. Non-jumpers are assigned on one side of the
board and any two of them can cross each other only
at specified terminals.

C4. Routing through part areas (an area on the
board to be occupied by one part) is prohibited. (We
add this condition in order to simplify the discussion.
There exist some parts which allow such routing.
However the problem of finding a routing
allowing passage through parts areas without
violating capacity constraints has been shown NP-
complete in [17]. Hence solving both problems
simultaneously is too hard, and we handle such one
by means of post-processing.)

C5. Each terminal is represented as a rectangle in
placement, where overlapping of two rectangles
are prohibited.

2.2. Graph models :

Jumpers are determined by finding a spanning
planar subgraph of the following graph G(C). Given
a circuit C represented by a set of net lists (see Fig.
1), we construct a graph G(C)=(V,E) as follows, where
E=E|UE2UE3. A set of terminals requiring electrical
connection among them is called a ner, where
distinct nets have no electrical contact.

1° Place one vertex for each terminal. Connection
requirements among terminals in each net are
represented by simple edges, and there may be some
other edges determined by the graph model
mentioned later.

2° Represent each of two-terminal parts and free
parts as a wheel: the terminals in such a part are
connected as a cycle having a new vertex inside
which is adjacent to all other vertices. (In a single-
layered board, we may assume that any part with at
least three terminals is an up-sided one and,
therefore, free parts are excluded in Section 4.)

3° Represent each of up-sided parts as a clockwise-
directed cycle containing all the terminals, which
are placed in the same order as we see them
clockwise from above.

4° Let V be the set of vertices introduced in these
steps. Let E;, E2 or E3 denote the set of edges
introduced in 1°, 2° or 3° respectively, where every
edge of Ej3 is directed and no edges in E2UE3 can be
removed (they are called non-removable ones)-

PRIDE adopts a graph modelling called the star-
shaped spanning tree modelling: for each net
having at least three terminals, add a new vertex and
connect this vertex to each. of these -terminals. In
this graph model, nonplanar edges to be found are
actual jumpers. (See Fig. 2. For example, the vertex 56
is an inserted vertex for the multi-terminal net {46,
14, 12, 16, 18, 24}.)

3. Finding a Planar Spanning Subgraph
and Jumpers

Jumpers are determined by finding a planar
spanning subgraph of G(C). This is done by means of
PQR-trees. The subject of this section is stated graph-
theoretically as follows:

"Find a spanning planar subgraph M(C)=(V,E') of
G(C) satisfying (a) E' ¢ E{. and (b) there exists a
plane embedding M'(C) of M(C) such that every
directed cycle is drawn clockwise without edges
existing inside.”

In a graph constructed from the net lists of Fig. 1,

directed cycles are used to force up-sided parts to be
placed as specified. Maintaining clockwise
directedness is done by R-nodes of PQR-trees to be
introduced. Routing through part-areas are
prohibited by the introduction of wheels and by
avoiding edges inside directed cycles: the latter is
handled during the reduction process of PQR-trees.
G(C) is denoted by G for simplicity.

3.1. PQR-trees
A PQR-tree, introduced in [16], is a direcied ordered

" rooted tree consisting of four kinds of nodes: P-

nodes, Q-nodes, R-nodes and leaves. It is a variation
of the well known PQ-tree of [4]. All nodes except R-
nodes are elements of PQ-trees. Two PQR-trees T and
T' are equivalent (denoted by T=T') if and only if T'
is obtained from T by repeating any one the
following two transformations: (i) changing the
order of children of a P-node arbitrarily, and (ii)
reversing the order of children of a Q-node. Note
that the order of children of any R-node cannot be
changed. Let F(T) denote a sequence defined by
concatenating leaves of a PQR-tree T from left to
right. F(T) is called a frontier of T and represents a
permutation. Let con(T)={F(T)IT'=T). A set S
consisting of (not necessarily all). leaves of T is
called a leaf set of T. Given a certain leaf set S of T, a
reduction of T for S is a.procedure to construct a
PQR-tree T' such that T'=T and all elements of S
appear in F(T') consecutively.

If no reduction is possible then the current
subgraph is nonplanar, and we search the present
PQR-tree for a "minimum" set of edges whose
deletion recover planarity. Our searching method is
based on the one proposed by Ozawa and Takahashi
in [19,20] for PQ-trees, and some adaptations are
incorporated in order to handle R-nodes. A reduction
is done by one of template matchings similarly to
those for PQ-trees.

3.2. An algorithm PLAN-PWB

A new algorithm PLAN-PWB for finding. a
spanning planar subgraph of a given graph was
proposed in [2] and its refinement was reported in [7,
8, 91.

The main point of PLAN-PWB is that we can
determine in O (IVI+IEl) time a "minimum"” set of
nonplanar edges (jumpers) whenever the reduction
of the PQR-tree becomes impossible. This procedure
will be repeated at most O(IVl) times and, therefore,
a set of jumpers can be obtained in O(IVHEI) time by
the union of such "minimum" sets. Although
minimality of a solution by PLAN-PWB is not
guaranteed theoretically, we can expect it in almost
cases, because the experimental evaluation given in
[20] for planarization by PQ-trees shows that non-
minimality rarely exists and that optimum solution
are found in more than 75% cases. On the other hand
[16] proposed an O (IVI) algorithm for a planarity
testing by means of PQR-trees. A minimal set of
jumpers can be determined by repeating addition of
an edge followed by this planarity testing. We call
this algorithm REPEAT-PLAN, and its time complexity
is also O(IVIIEl). Experimental evaluation through
practical data (audio circuits) shows many cases
where PLAN_PWB produces smaller solutions than
REPEAT-PLAN and the former computation time is

(3



much less than the latter [2,7,8]. Recently [18]
proposed an o(/v/?) algorithm for finding a minimal
set of nonplanar edges. Its capability, however, is
unknown, since no experimental or theoretical
evaluation is given: minimality dose not imply a good
approximate solution.

In this section we assume that G is a 2-connected

graph with a vertex set V={1, -, n}, and outline
PLAN-PWB based on [7,8].
<PLAN-PWB>

Step 1. Apply the st-numbering algorithm [6] to G.
For simplicity, we consider the vertex ie V is the i-
th st-numbered one. Construct a PQR-tree T
consisting of only the vertex 1. N« 1.

Step 2. (1)Construct a PQR-tree Ty for the vertex N,

where directed edges are handled carefully to
avoid edges to be placed inside directed cycles.
{Leaves of Ty correspond to vertices adjacent to N
in G.}

(2)Delete all copies of the vertex N appearing as
leaves of T, and add Ty into T by making the root of
Ty as a child of the node to which those deleted

copies were adjacent. Let T denote the resulting
PQR-tree.

(3)Assign a number Ky for each node v of Ty such
that x is the parent of y if and only if Kx < Ky.
(4)Ne—N+1.

Step 3. Let S be the set of those leaves of T
corresponding to the vertex N of G. If a reduction
of T for S can be done then goto Step 5.

Step 4. Find a minimum set of leaves of T such that,
after edges that are incident upon those leaves are
deleted from T, we can resume a reduction of the
resulting PQR-tree for S.

Step 5. In the PQR-tree obtained after one reduction
of Step 4, coalesce all elements of S, which appears
consecutively, into one leaf (this leaf corresponds
to the vertex N}, and let T denote the resulting PQR-
tree. If N=n then halt else goto Step 2.

Fig. 2 show a planar spanning subgraph found by
PLAN-PWB for the graph of the circuit of Fig. 1. The
correctness of PLAN-PWB is omitted due to shortage
of space: see [2,8] for the detailed proof and the
detailed explanations of Step 4.

The most time-consuming part of PLAN-PWB is the
computation of the minimum number of leaves to be
deleted. This part takes time proportional to the
number of nodes in a PQR-tree T, and at most
O (IVI+iE!) nodes exist in any PQR-tree. Since there is
O (V1) repetitions, time complexity of PLAN-PWB is
OUVIUVI+IED).

3.3. Placing specified parts on the
boundary of a board

There are various situations where some specific
parts are required be mounted on the boundary of a
printed wiring board under consideration. This
constraint can easily be handled in PLAN-PWB. If we
are given the ordering of terminals of parts to be
placed on the boundary, then we add special edges to
a graph model G(C) so that these terminals form a
cycle in which they appear as specified. We first set
all special edges as non-removable ones (that is, they
cannot be jumpers) in finding a spanning planar
subgraph, and then choose the two vertices =s,¢

(4>

from this newly defined cycle, where s and t are
the first and the last vertex of the s-t numbering.
PLAN-PWB finds a spanning planar subgraph
having a plane embedding. in which the added cycle
form the boundary of the exterior face. Clearly this
embedding is a desired one. These additional steps do
not increase time complexity of PLAN-PWB.

4. Rectangular-Dualization

Rectangular-dualization of a planar graph M(C)
obtained in Section 3 is considered in this section. It
is shown that rectangular-duals are very useful in
designing printed wiring boards, especially for
analog . circuits, in the sense that terminals and their
adjacency to corresponding parts can be handled
explicitly.

4.1. Rectangular-duals

Let G be a plane graph (a plane embedding). A
dissection of a rectangle into some subrectangles is
called a rectangular . dual of G if and only if it
satisfies (1) and (2):

(1) there is a one-to-one correspondence between
vertices of G and subrectangles of the dissection,
(2) two vertices of G are adjacent if and only if the .
corresponding subrectangles adjoin.
Every plane graph does not always have a
rectangular-dual, and even if it exists, more than
one rectangular-dual of a plane graph G may be
possible. A graph G is called a properly triangulated
planar (PTP) graph if G has a plane embedding
satisfying the following[13]:

P1. Every internal face is a triangle.

P2. Any cycle that is not a boundary of any face

has length=4. :

Note that any internal vertex (a vertex not on the
boundary of the external face) of a PTP graph has
degree24 [3].

A necessary and sufficient conditions for a given
plane graph G to have a rectangular-dual is given in
[13]. Before stating it we need some definitions. If v
is a cutvertex of G then the total number of
connected components after the deletion of v from G
is called the separation degree of v. A biconnected
component of a graph G is a maximal subgraph
having no cutvertices. If G has a cutvertex then a
biconnected component containing exactly one
cutvertex of G is called a pendant. Let H be any
biconnected component of a plane graph G. For a
(u,v)-path P that is a subgraph of the boundary of
the external face of H, an edge (u,v)e E(G)-E(P) is
called a shortcut. If no vertex of P except u and v
has an incident shortcut then P is called a corner
implying path of H. A critical corner implying
path of H is the one not containing a cutvertex of G.
Now we state the following theorem.

Theorem -5 [13]. A connected plane graph G has a
rectangular-dual if and only if the following holds.

(1) G is a PTP graph.

(2) One of the following (i) and (ii) holds:

(i) G is biconnected and has at most four corner
implying paths.

(ii) G has a cutvertex, the separation degree of
every cutvertex is equal to two, each pendant has at
most two critical corner implying paths, and any
non-pendant does not contain a critical corner
implying path.

[3] proposed an O (IVi) algorithm to determine if a



given planar graph G has a rectangular dual and to
obtain a rectangular-dual if it exists. [22] proposed
an O (IVIHRI) algorithm for obtaining all
rectangular-duals of G, where IR! is the total number
of rectangular duals of G.

4.2. Rectangular-dualization of M(C)

We describe how to construct a plane graph M"(C)
having a rectangular-dual from a planar graph M(C)
obtained - in Section. 3. This is done by adding new
vertices and edges. Note that addition of a vertex
corresponds to inserting a subrectangle and that
adding an edge forces two rectangles representing
its endvertices to adjoin.

First we construct a planar graph M'(C) from M(C)
by the following procedure (1). Note that any part
with at least three terminals are assumed to be an
up-sided one.

(1) For each up-sided part with at least three
terminals, add a new vertex inside the directed cycle
and connect this vertex and each vertex on the cycle
by an edge.

A triangulation is to make every face of a planar
graph a triangle by adding appropriate number of
edges without violating planarity., Note that every
cycle representing a set of all terminals of one part
has been triangulated in M'(C). The remaining task
is to construct plane graph M"(C) from M'(C) by the
following procedures (2)-(6).

(2) Find all faces of M'(C) by means of any plane
embedding algorithm (for example, see [5]).

(3) If there is any face of Ilength24 then
triangulate it, where we try to avoid adding an edge
between terminals of two parts that should be
mounted apart.

(4) If there is a cycle of length 3 that is not a face
then remove it by inserting a new vertex on the
cycle (and by adding some incident edges if
necessary). .

(5) If there are any two parts that should be
mounted apart then choose one terminal from each
part and add a path of appropriate length
connecting the vertices that represent these
terminals, where planarity has to be kept.

(6) If there is any cutvertex with the separation
degree>3 then add one edge (to each cutvertex) so
that the separation degree may be equal to 2.

Let M"(C) denote the resulting graph. M"(C) is a
PTP graph and satisfies the conditions of Theorem 5:
M"(C) has a rectangular-dual. Fig. 3 shows M"(C)
constracted from M(C). There are several algorithms
for obtaining a rectangular-dual (or all ones if
necessary) (see [3,13,15,21,22,23,24]), where directed
edges can be treated as undirected ones in executing
any such algorithm.

4.3. Incorporating physical conditions

The last step that we are going to do is to

incorporate physical conditions, such as length and

width of rectangles, into M"(C). Each rectangle

represents one of the following:

(1) terminals of a part (terminal-rectangles),

(2) a virtual vertex added within a directed cycle
(part-rectangles),

(3) a virtual vertex added as the inner vertex of a
star-shaped spanning tree (wire-rectangles),

(4) a virtual vertex inserted at the middle of an

(5)

edge on a cycle of length 3 that was not the
boundary of any face (wire-rectangles if the
edge represents a connection requirement;
virtual-rectangles otherwise).

(5) a virtual vertex existing on those path added to
" make some parts to be mounted apart.

The next constraints (1)'-(6)' are put in determining
actual sizes of rectangles.

(1)" If the corresponding part has exactly two (at
least three, respectively) actual terminals then one
of rectangle (each rectangle) satisfies lower bounds
of the length and width of the part (each terminal) .

(2)' Each part-rectangle satisfies lower bounds of
the length and width of this part.

(3)' The length and width of each wire-rectangle is
proportional to the total sum of width of wires to be
placed so that a sufficient routing area may be
assured.

(4)' Any virtual-rectangle has nonnegative lower
bound of the length or width.

(5)' For each edge representing a connection
requirement, the shared line of the two rectangles
representing the endvertices has length no less
than the total width of the corresponding wire.

(6)' If there is any part-rectangle having the two

terminal-ones that are adjacent to each other at its
corner (see Fig. 4) then, for the length x (y,
respectively) of the line. shared by the part-
rectangle and one of the terminal-rectangle (12).
(the part-rectangle and the other (11)), either (x2a
and y2a+b) or (x2a+b and y2b) holds, where a (b,
respectively) is the total width of the wire to be
connected to the former (12) (to the latter (11)). We
choose one of them arbitrarily as a constraint.
. We determine the length and width of all
rectangles so that the sum of length and width of the
whole rectangle may be minimized: this is done by
repeating a linear programming with constraints
(1)'-(6)'. A linear programming is also used in
[15,21,23,24].

Fig. 5 shows a placement, with actual sizes of
rectangles, given by a linear programming. There
are at least three ways for reducing the sum of
length and width of the whole rectangle.

(i) to change the choice of vertices NW,NE,S W
and SE corresponding to four corner-rectangles:
rectangular-duals depend upon choice of such
vertices;

(ii) to change the roles of widths and lengths of
some part rectangles: this is done by replacing the
corresponding constraints with each other (this
replacement means 90° rotation of an actual) part,
and

(iii) to change the roles of part rectangles for two-
terminal parts: each of such parts are represented as
a pair of terminal-rectangles, one of which possesses
the size of the corresponding part and plays the role
of the part-rectangle. (This is done by changing the
size constraints of the corresponding rectangles.)

Repeating a linear programming with these
changes incorporated is very likely to produce a
placement on a smaller rectangle. The placement
show in Fig.4 is produced by the combination of
these three methods.

4.4. Mounting parts and routing
Actual parts can be put into corresponding
subrectangles determined so far, where we try to



mount them so that routing among the actual
terminals and corresponding terminal-rectangles
can be done as much as possible within each part-
rectangle. Routing is separated into two stages:
interconnection ~ among terminal-rectangles  of
. distinct parts, and connection inside each part-
rectangle. The former is rather easy because wire-
rectangles are provided and they are placed adjacent
to terminal-rectangles to be connected. The latter
may require repeating a linear programming: if any
mounting of an actual part into the corresponding
part-rectangle fails to obtained a desired routing
then this part-rectangle has to be enlarged. This is
done by changing constraints concerning (1)' of a
linear programming to be repeated.

5. Experimental Results
PRIDE has been implemented in C programming
language and runs on a workstation NEC EWS-
4800/30. MINOS (Ver. S5.1), a linear programming
developed by Stanford University, CA, U.S.A., is used
in PRIDE. Table 1 shows some of our experimental
results. Fig. 1 shows an actual circuit DATA 1 and the
net lists. In Fig. 5, which is a result given for DATA 1,
parts and wires are denoted by halftone rectangles
and solid bold lines with a unit width, respectively.
Solid fine lines denote rectangles of the
rectangular-dual. Small open circles denote actual

terminals as well as their locations.

6. Concluding Remarks

We can conclude that one deficiency found in the
previous prototype of PRIDE [1] is overcome by
incorporating placement and routing  through
graph-planarization and rectangular-dualization. Its
implementation has been finished. Some problems
left for future research are as follows:

(1) Refinement of the current PRIDE. This includes
incorporating  capability  of handling more
constraints specific to analog circuit design.

(2) Handling of multi-layered designing of printed
wiring boards.
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Fig.2. The graph G(C) representing DATA | of Table I,
NET_LIST jumpers are denoted by halftone lines.
RIZR R22R R32R R42R where jump y
12 23 34 27
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Fig.1. An example of a circuit and its net lists(DATA 1
in Table 1), where only connection requirements
are given.

Fig.3. The graph M"(C) constructed from the planar
subgraph M(C), where M(C) is given by deleting
jumpers from G(C) of Fig. 2.
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Fig.5. A placement with actual sizes of rectangles
routing is also shown,
where every wire has a unit width.

incorporated.

Tablel. Some of experimental results by PRIDE on a
workstation NEC EWS 4800/30 (CPU:68030 S50MHz).

Detailed

Data #Parts |#Terminals | VI | IEI | # Jumpers | # Time (s) (E‘(:nari S:I:)
DATAL 22 46 56 70 1 2.699 57 x 96
DATA2 31 71 85 101 0 8.249 118 x 228
DATA3 42 100 116 | 140 7 12.316 134 x 278
DATA4 28 64 103 | 157 2 7916 135 x 108
DATAS 24 95 94 94 2 12.399 265 x 88
DATAG6 16 80 100 | 124 4 10.432 139 x 89
DATA7 54 115 141 173 6 19.765 168 x 104
DATAS 92 202 235 | 297 9 53.614 331 x 174
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