& & H B ft 60—1
(1991. 12.12)

waty MERMBEORKEIMEKIC L 5 MK

FI3UTF 4y Fuvly—- S B
W E i gz

¥) BEREH¥RE MERIZR

) BREIEREEM¥FR BRI¥EH) HWSRA

A S IP (Application Specific Integrated Processor: B EH R E LR ukLyv V) OGSy b+ 7
—FFIFrBLIVCCPUT TV FvE2RETHIHA. SXohAFy7ER (FREBXY-MR) B &
UHEBED M T I2HWEHODL T, AR AT 204y P2 ERTIVDEN LS. ARLTRASE
v bEIRFEE (Instruction Set Selection Problem:ISSP) 2 B HFHEME L L TERILL. PEEEXRICD L
TLTNVITYVXLERET S, COTVIVX LA CEETER LERET R >R, BEShAE7YIYX
LAEZISSPEHERCEIZENAL LA,

An Integer Programming Approach to

Instruction Set Selection Problem in ASIP Design

. kkk
Alauddin ALOMARY”, Masaharu IMATY, Jun $ATO™, and Nobuyoki HIKICHT

* Toyohashi University of Technology
Department of Information and Computer Sciences

** Tsuruoka National College of Technqlogy

*¥¥% Software Research Associates, Inc.

This paper proposes an algorithm for Instruction Set Selection Problem (ISSP) in
ASIP design. This problem is to be solved 1in the instruction set architecture and
CPU core architecture designs. First, the ISSP is formalized as an integer
programming problem, which is to maximize the performance of the CPU under the
constraints of chip area and power consumption. Then, a branch-and-bound
algorithm to solve ISSP is described. Finally, some experimental results are
illustrated. The experimental results show that the proposed algorithm is quite
effective and efficient in solving the ISSP.

Keyphrases: ASIP, high-level synthesis, Instruction Set Selection Problem (Issp),
integer programming problem, branch-and-bound method.

1. Introduction

Due to the advance of VLSI technolo-
gies, it is now possible to design a
very large scale ASIP (Application
Specific Integrated Processor). Through-
out this paper, we define the term
"ASIP" as an application specific micro-
processor which contains a CPU core,
memory, and peripheral circuits. ASIPs
can be very effective when applied to
specific applications such as digital
‘signal processing, servo motor control,
ete. [SaKi90].

High-level synthesis will be one
of the most effective methods to
design ASIPs, as mentioned in the refer-—
ence [RaWa91)]. However, there are still
some features to be enhanced to design a
large scale ASIP. One is to assist the
designs of instruction set architecture
and CPU core architecture. And the
other is to assist the realization of
application program development environ-
ment, such as compiler and simulator
[Salm91].

This paper proposes an algorithm
for Instruction Set Selection Problem
(ISSP) in ASIP design. This problem is
to be solved in the instruction set
architecture and CPU core architecture
designs. First, the ISSP is formalized
as an integer programming problem,
which is to maximize the performance of
the CPU under the constraints of
chip area and paower consumption. Then,
a branch-and-bound algorithm to solve
ISSP is described. Finally, some expe-
rimental results are illustrated. The
experimental results show that the
proposed algorithm is quite effective
and efficient to solve the ISSP.

2. Previous Work
A number of high-level synthesis systems

have been proposed and are being
used to design VLSI chips [DeNe87],

[ThDi88], [CoRo89], [Phil89], [IkTa$0],
[RaWa91], [Salm91]. High-level synthesis
will be one of the most effective
methods to design ASIPs. While high-
level synthesis is quite effective,
there are still some features to be
enhanced. One is to assist the
designs of instruction set architecture
and CPU core architecture. And the
other is to assist the realization of

application program development environ-
ment, such as compiler and simulator.

In order to solve these problems,
an integrated design environment for
ASIPs named PEAS(Practical Environment
for ASIP development) was proposed by
the authors [SaIm91], which makes it
possible to generate an ASIP hardware as
well as application program develop-
ment tools. The PEAS system consists
of following four subsystems: Appli—

cation Program Analyzer, Architecture
Information Generator, cPu Core
Generator, and Application Program
Development Tool Generator, as shown

in Pigure 1. The outline of these sub-
systems are as follows:

(1) Application Program Analyzer

Application Program Analyzer (APA)
statically and dynamically profiles a
given set of application programs with
corresponding data set. The output of
APA includes: data types and their
access methods, execution counts of
operators and functions, etc., used in
the application programs.

(2) Architecture Information Generator

Architecture Information Generator (AIG)
is to receive the profiled results from
APA, and to decide the "optimum" inst-
ruction set and hardware architectures
of the ASIP under the constraints of
chip area and power consumption. This
task is performed by turning the
instruction set and CPU core architec-
ture, so that the performance of the
ASIP could be statistically maximized
regarding the given application programs
and associated data set.

(3) CPU Core Generator

CPU Core Generator (CCG) will generate
the CPU Core design in the form of an
HDL, according to the architecture
information generated by AIG. Then the

actual CPU core design can be synthe-
sized by a high-level synthesis system.
(4) Application Program Development

Tool Generator

Application Program Development Tool
Generator (DTG) will produce a set of
software tools, such as a compiler, a
debugger including instruction-level
simulator, an assembler, a run-time
library, etc. Some of these tools are
generated by taking advantage of GNU
software tools [stal90]. The GNU
related software includes the C com-
piler and the source-level debugger.

3. Instruction Set Architeclure Model
3.1 Outline

The Architecture Information Generator
(AIG) is supposed to select the "opti-

mum" instruction set and hardware
architecture. This task is performed
by turning the instruction set and CPU
core architecture, so that the perfor-

mance of the yielded ASIP design could
be statistically maximized under the
constraints of chip area and power
consumption. This optimization problem
needs a solution that balances the
implementation of operations and func-
tions among hardware, software, and
microprogram.

#2_

Throughout this paper, we assume
that the instruction set of a generated
ASIP mainly includes a subset of the
instruction set that can be generated
by the GNU C compiler. The reason
behind this assumption is as follows.
Suppose that an ASIP has an efficient

instruction but the
generate a code using
Then, this instruction
redundant because
will never be used
program.

compiler does not
that instruction.

is absolutely
this instruction

by any application

3.2 Classification of and

Functions

Operalors

In the C language, operators and func-
tions are treated appearently distingui-
shed. In the design of the Architecture
Information Generator, we need to
establish a new concept to treat them
uniformly. In the following description,
the term “functionality"™ is introduced.
"Functionality" is defined as any one of
the operators or the functions indepen-
dently of their implementation.

The instruction set for ASIP
generated by the PEAS system is sup-
posed to include a subset of the inst-
ruction set that can be generated by
GNU C compiler [Stal 91]. The compiler-

generatable instruction set can be
divided into two subsets: operators and
functions. The reason is as follows:
(1) It is easier for a C compiler to
generate instructions corresponding to
operators than to generate ones cor-
responding to functions. (2) While the

set of operators can be defined clearly,
the set of functions, including user-
defined ones, cannot be given a priori.

We
operators

further divide the set of
into two subsets: primitive
operators and basic operators. The set
of primitive operators is chosen so
that any basic operators or functions
can be realized by a series of primi-
tive operators. Thus, we divide the
instruction set into three classes as
follows.

(1) Primitive Instruction Set
The Primitive Instruction Set (PIS) can

be realized by a minimal hardware com-
ponent as ALU and shifter. The instruc-

tion set of the ASIP includes all inst-
ructions in PIS.

(2) Basic Instruction Set

The Basic Instruction Set (BIS) inc-
ludes the set of operators used in C
language except those included in PIS.
Instructions included in BIS can be
implemented by hardware modules or
microprogram.

(3) Extended Instruction Set

The Extended Instruction Set (XIS)
includes 1instructions which correspond
to library functions or user-defined

The instructions in XIS
could be implemented by using complex
hardware modules, such as coprocessor,
or microprogram.

functions.

3.3 Hardware Archilecture Model

The
ASIP

generated CPU architecture of an

is based on the GCC’s abstract
machine model [Stal 91]. The intermedi-
ate language of GCC is called "RTL"
(Register Transfer Language). Most inst-
ructions in RTL are included in
either PIS or BIS. Then the inter-
mediate instructions are classified into
primitive RTL (PRTL), Basic RTL (BRTL)
and Extended RTL (XRTL), corresponding
to the PIS, BIS and XIS classification.
The instructions included in PRTL, BRTL,
and XRTL are shown in Table 1.

ASIP will include
which correspond te
all of the PRTL. But only a part of BRTL
and XRTL will be implemented by hard-
ware. The decision, which element in
BRTL and XRTL should be implemented by
which method, is made by AIG.Implement-
ing the functionalities included in BRTL
and XRTL by hardware modules will
improve the chip performance. But
this choice will increase the physical
chip area. On the contrary, implementing
most of BRTL and XRTL by microprogram or
software will use more memory space and
degrade the execution time.

The generated
hardware modules

to maximize the effici-
ency of the generated ASIP, such a
salution is required that balances the
implementation of the instruction set
among hardware choices, microprogram,
and software, under the constraints of
chip area and power consumption., This
solution “will give a statistically
minimum execution time for the given
application program.

Therefore,

4. Formalization

The ASIP instructions shown in Table 3
can be implemented by different methods.
In order to maximize the performance
of designed ASIP chip, a set of instruc-

tions with their implementation methods
which wminimize Lhe average execution
time for the given application should
be chosen., In the rest of this paper,
following definitions and notations
are used.

(1) "n" denotes the number of function-

alities.
(2) "Ni" denotes the number of possible

implementation methods for func-

tionality #i.
Yy denotes an
method of functionality #i.

w

(3)

implementation

({1), "fi" denotes the execution fre-
quency count of functionality #i,
which.can be delivered by Lhe APA.

(5) “"a;(%;)" denotes the area required

for functionality #i when imple-
mented by method X

(6) "pi(xi)" denotes. the power consump-
tion of functionality #i when
implemented by method X

(7) "ti(xi)" denotes the execution
time of functionality #i when

implemented by method X;

denotes the available chip

(8) "A_max"

area for computing modules.

(9) "P_max" denotes the upper limit of
the chip power consumption.

The instruction execution frequency
of each Iinstruction can be obtained
from the static and dynamic analysis of
the application programs done by APA.

Suppose that the wupper bounds of chip
area and power consumption are provided,

the ISSP can be formalized as an
integer programming problem shown in
Figure 2.

According to the experience, about
40 to 60% of the total chip area is
used for wiring. Therefore, the para-
meter A_max denotes the rest (40 to

60%) of the total chip area, which can
be used for computational modules and
memories, This constraint is effctive
when a cell-based technology is used for
fabrication., In the case where a gate-

array or an SOG (Sea of Gate) technology
is used, it would be more reasonable
and effective to use the following

constraint C1’ instead of Constraint C1
in Figure 2.

n

Constraint C1': % g;(x;) £ G _max

i=1
Where, gi(xi) denotes the number of
gates {(or basic cells) needed to imple-

ment the instruction i by method Xie And
G_max denotes the number of available
gates (or basic cells).

the number of
can be more than
microprogram and
instructions, there

Note also that
implementation methods
three, i.e., hardware,
software. For some
could exist several hardware choices.
For example, "mul"” (multiply) instruc-
tion can be implemented by the "sequen-
tial add-shift multiplier,” “modular
array multiplier,” or "bit-pair re-
cording multiplier.™ In this case, the
total number of implementation methods
for instruction "mul" will be five.

5. ISSP Solver

5.1 Method

The 1I8SSP, described in the previous
section, is NP-hard, which means that
the worst case computation time would be
exponential to the size of input (the
number of functionalities to be
considered). Therefore, an efficient
approach should be used to solve
ISSP in reasonable computation time. The
branch~and-bound method is known as
one of the most effective methods to
solve such an intractable problem.

The effectiveness of the branch-

and-bound methods has been investigated

by many researchers [FiTo89]. Because
the branch-and-bound method is simple
and cost effective, it was chosen to
solve the ISSP.

5.2 lnpﬁt and Output
The input of the algorithwm includes the
following values:

(1) s for i = L, ., m,

(2) parameter A_max, and

(3) parameter P_max.

The output of the algorithm is the

implementation method for each function-
ality. The chosen implementation method
is optimum in the sense that the solu-
tion will yield the minimum execution
time of the given application programs
under the given constrainlts. Regarding
the constraints, there are two cases to
be considered.

(1) If there exists any feasible solu-
tion which satisfies the given const-
raints, the algorithm decides the
implementation methods for the function-
alities.

(2) When the constraints are so tight
that no feasible solution exists, no
implementation method would be assigned
to any functionality.

5.3 Description

The task of finding the optimal instruc-
tion set is viewed by Lhe algorithm as
finding a node in a search tree. Each
node in the search tree represents a
partial solution or a complete solution
if it is a leaf node. Each node corres-
ponds to particular implementation
methods for part of functionality. The
number of branches for the node depends

on the number of possible implementation

methods for an instruction. Bach node

can be identified by the following at-

tributes:

(1) Node cost (Cost): partial’ sum of
the objective function f; 3* ti(xi)
for a particular node.

(2) The power gain (P_gain): partial sum
of the power consumption of the

hardware modules for a particular

node.

(3) The area gain (A_gain): prartial sum
of the area of the of the hardware
modules for a particular node.

(4) Currently selected instructions
(Sol): The functionalities and
their chosen implementation methods
included in for a particular node.

(5) Depth index (d): The depth where
instruction i is under
consideration. (L, 2, ... , d-2,
d-1: already considered, d+1, ..,
n : not yet considered)

(6) Lower_bound (Lowb): The lower bound
of the current node which is equal

to :
n
3 & .ok i .) . .
node cost + fJ mlrl{tJ(xJ).xJ NJ}
J=i+1
The description of the branch-and-

bound algorithm is shown in Appendix
A. The procedure "Reorder" sorts the

variables (functionalities) in a des-
cending order according to a heuristic
function h. This process is essential

to improve the efficiency of the algo-
rithm by reducing the search space in
the whole search tree.

The procedure "Search" locks for an
optimum solution of the given problem.
This procedure'is based on the depth-
first strategy, which visits the node in
the search tree according to the
depth-first manner in the "for" loop in
this procedure. Bach time a node is
generated, an functionality #i imple~-
mented by method X is added to the
solution list. Then "the cost, A_gain,
P_gain and Lower bound are calculated
according to the newly added function-
ality. If the lower bound exceeds the
cost of the currently best solution
(C_opt), then the subproblem (node) is
pruned. Every time a leaf naode is
reached, the cost of the current solu-
tion is compared with the best solution
so far found. If the current solution is
better than that so far found, current
solution is updated. Procedure
"Lower_bound" calculate the lower bound
for each subproblem.

5.4 Heuristic Functions

Several heuristic functions have been
counsidered and examined to choose the
most suitable one to be used in the
system. Three reasonable heuristic func-
lions among others are as follows:

hy(i) = fp*Fmax { 50G) 1 12J< N; }

hz(i) = fi,* min { ti<J') Pl Ni }

max { £(j) 1 1 < NG}

hg(i) = f; *
max { 2;(j) § 1 < <N}

These heuristic functions will try
to improve following instructions:

(1) hy will try to implement first such
functionality by hardware that
takes the longest computation time
when it is implemented by software
library.

(2) h will try to implement first
the functionality by hardware that
takes the shortest computation time
when it is implemented by the fast-
est hardware.

(3) hg will try to implement first the
functionality by hardware which
will be the most cost-effective
when it is implemented by software
library.

6. Experiments and Resulls
6.1 ISSP solver Implementation:

A prototype of the algorithm was written
in C language and runs on Sun-3/60 work-
station (about 3 MIPS as fast).

6.2 Database

The data of the functionality implemen-
tation to be fed to the program was
generated using the Structured Function
description Language (SFL). The SFL is
the HDL used in a high-~level synthesis
system called PARTHENON [RaWa81].

Various hardware modules were
designed and evaluated using -PARTHENON
to generate the database of the ASIP
functionalities. The database contains
18 PRTL functionalities and 24 BRTL
functionalities with a total implemen-
tations of 50., The whole search tree
consist of 3.35*107 nodes.

6.3 Sample Application Programs
The instruction set selection method
adopted in this paper is tested using

four application program samples:

(1) Servo-motor current Pl control prog-
ram,

(2) The solution of tan(x) = x using the
Newton method.

(3) The integral of X% * exp(—xa) using
the Simpson method.

(4) Multiple virtual terminal program.

6.4 Heuristic Consideration

A good heuristic function should be
effective and stable for a large class

of problems, which means that it should
reduce the search space effectively

5

even if the size of given problem
changes in a wide range. It was known
froom the experimental results that heu-
ristic function hl(i) is much more
effective and stable compared to other
heuristic functions h2(i) and h3(i).

6.5 Designed ASIP example

In this experiment, the ISSP solver was
applied to design the functionalities of
a hypothetical ASIP chip. The informa-
tion obtained from analysis of the four
application programs mentioned in sec-
tion 6.3 were fed to the ISSP solver,
which selects the optimal implementa-
tions for these application programs.
This design method will automate a comp-
lex part of the ASIP chip design and
enable the designer to estimate the
performance of the hypothetical ASIP
design chip.

FPigure 3 shows the optimal
functionality execution speed measured
in Million Functionality Per Second
(MFPS) versus the area constraint (in
gates) for the four application prog-
rams. From this figure, it is known that
when the area is small, MFPS is small.
This is because all the functionalities
(except the PRTL) 1is implewmented by
software. As the area increases, MIFPS
increases drastically since more inst-
ructions are implemented by hardware.
A saturation condition is reached when
all the functionalities are implemented
by hardware.

Because we assume that the system
clock is 10 MHz, the maximum MFPS is 10,
which should be obtained if all func-
tionalities are implemented by hardware.
However, since the fastest hardware
divider in the database needs 17 clocks,
the maximum case can not be reached in
the applications that uses divider.
These are PI controller, Newton and
Simpson. The figure shows the effective-
ness of the ISSP scolver in obtaining the
optimal set of functionalities that
maximize the performance of ASIP for the
four application programs under Lhe
constraint of chip area.

The PI control program uses heavi-
ly the divider modules, therefore it has
the smallest MFSP among the four
samples. On the contrary, the virtual
terminal program doesn’t use the divider
module, therefore the maximum MFPS is
reached in this case.

The ISSP solver investigated a
small search space cowmpared with the
total search space {(about 1/10° in aver-
age) of the problem. Also -the 1SSP sol-
ver gives the optimal solution of the
problem in less than 1 second. This is
the result of the good heuristic func-
tion and the 1implemented tight Ilower
bound.

7. Conclusion

This paper formalizes the instruction
set implementation method selection
problem (IssP) for ASIP design. Then,
a branch-and-bound algorithm was pro-
posed to solve the problem. Several
heuristic functions were tested to find
a effective and stable one. Finally,
the efficiency of the proposed algorithm
has been investigated. According to the
experimental results, the proposed algo-
rithm was found to be able to solve
ISSP in a reasonable computation time.
The algorithm will be used as a part of
the architecture information generaltor
(AIG) of the integrated design environ-
ment for ASIPs.

Acknowledgments

Authors would like to express their
thanks to the members of VLSI Design
Laboratory of Toyohashi University of
Technology, especially Chan Namkue,
Takeharu Nakata, and Yoshimichi Honma
for their helpful comments.

References

[CoR0o89] Composano, R., and Rosenstiel,

W.:"Synthesizing Circuits from
Behavioral Descriptions,” IEEE,
Trans. on CAD, Vol. 8, No.2,

pp. 171-180, Feb. 1988.

[DeNe87] Devadas, S., and Newton, A.R.:
"Algorithms for Hardware Allocation
in Datapath Synthesis", IEEE,
Trans. on CAD, Vol. 8, No. 7,
pp.768-781, Jul. 1987.

[FiTo89] Fischetti, M., and Toth, P.:
"An additive Bounding Procedure
for Combinatorial Optimization
Problems," Operations Research,
Vol. 37, No.2, March-April 1989.

[IkTa80] Ikenaga, T., Takezawa, T., and
EvaluationShirai, K.: "Design
and of Special Purpose Procesor

Executing Multiple Algorithms,"
Proc. of IPSJ (Information
Processing Society of Japah)
40th National Convention, PP,
1283-1284, Mar. 1990, (in
Japanese).

[Phil89] Philipson, Ly et al.: YA
Seven-Week Microprocessor Design
Project Based on High-Level
‘Tools,"” Proc. of the 1989
Decennial Caltech Conference,

pp. 209-226, 1989.

[RaWa81l] Raul, C., and Wayne, W.:
High-Level VLSI Synlhesis, Kluwer
Academic Publishers, 1991.

[SaFu89] Sato, Ty Fukuda, K., and
Imai, M.: "Study on an Applicaion
Specific CPU Core Synthesis
Method,” IBICE Tech. Rep.,
VLD89-70, pp. 1-8, 1989, (in

Japanese).

[SaKi%0] Sato, J., Kimura, 7T., Imai,
M., et al.: "The Architecture of a
Flexible Servo Motor Control
Processor: FSP-3," Trans. of

IEICE, Vol. E73, No. 4, pp. 513-
515, Apr. 199C.

Hakata

[SaIm91] Sato, Ju, Tmai, M.,
T., Alomary, A, and Hikichi,
N.: "An Integrated Design Environ-
ment for Application Specific Inte-
grated Processor," Proc. of
ICCD'91, pp. 414-417, Oct., 1991,

[Stal91] Stallman, R.: Using and

Porting GNU CC, Free Software foun-
dation, Version 1.4, 1991.

[Step89] Stephen, B.: VLSI RISC
Architecture and Organization

Marcel Dekker. Inc., 1989,

{ThDi88] Thomas, D.E., Dirkes, E.M., et
al.: "The System Architect’'s work-
bench™ Proc. of 25th DAC,
pp. 337-343, June 1988.

Appilcation
Programs

Data

Application Program Annlyzarvl

1

Architecture Into. Genemlor1

Architectura
information

Application Prog. Dev.

Tool Generator
- S T
CPU Core Compil

Fig. 1 PEAS System Configuration

CPU Core Generator

Table 1: PEAS Functionalities

class category instruction

PRTL | arithmetic | add sub and ior xor
one.cmpl neg

ashl ashr Ishl Ishr
transler mov

control jmp beq nop

BRTL] arithmetic | mul umul div mod
udiv umod

cmp cmpstr tst

trunc extend
zero_extend

float floatuns ftrunc fix
fixuns fix_trunc
flxuns_trunc

movsirict movstr (mov]
call call_value return
bne bgt bgtu blt

bitu bge bgeu ble bleu
casesi tablejump
others extv etxzv Insv

seq sne sgt sgtu sit
sltu sge sgeu sle sleu
XRTL abs sqrt IIs

sin cos tan etc.
user-defined functions

transfer
conirol

Find a solution veclor
X=(xl,x2,....,xn)

which minimizes the objective [unclion:
n
T(X) = Ii*l.i(xi)
1=1
subject Lo
n

Conalraint Ci: L. a-{x:) < A_max
" ithis = 0 ’
i=1
and
n

Constraint C2: Z pi{x;) £ P_max,

where 1 < X; SNy, for i =1, 2, .. ,n.

Figure 2 - The Formalizalion of 188p.

Speed
(MFPS) Virtual terminal
10} .
Simpson
g ———— +
8t ,
Newton
gl /»——+ +
4r PI controller
2| a7
0:'/
108 104 10°
Amax (gates)
Fig.3

Appendix A (ISSP_Solver)

prodecure ISSP_Solver ({ find an optimum solution for ISSP }

{ input }
fi : array [1l..n] of real; { execution frequencies }
ai : array [l..n, 1..Ni_Max] of real; { area for module }
pi ¢ array [l..n, 1..Ni_Max] of real; { power consumption }
Ni : array [l..n] of integer; { # of implementations }
A_max, P_max : real; { constraints for area and power }
{ output }
var Opt_sol : array [l..n] of integer; { optimum solution }
var C_opt : real); { cost of the optimum sclution }
const
INFINITY = 999999; { very big number }
NULL = Q; { no method selected }
var

Sol : array [1..n] of integer; { current sclution }

procedure Search ({ depth-first search }
i ¢ integer; { instruction under consideration }
A_gain : real; { current area }
P_gain : real; { current power }
cost : real); { current cost }
lowb : real); { lower bound }
var
j, m : integer; { loop control variable }
begin
if (A_gain <= A_max) and (P_gain <= P_max)} and
(lowb < C_opt) then
{ constraints satisfied, promissing status }
if (i=mn) then { leaf node }
begin { better solution is found }
C_opt := cost; { update optimum solution }
for j =1 ton do
Opt_sol[j] := Sol[j]
end { then }
else { non-leaf node, expand }
for m := 1 to Ni[i] do begin
new_cost := cost + fi¥ ti[i][m]
Sol [i] := m; { choose m-th method }
{ depth-first search }
Search (1 + 1, A_gain + ai[i,m],
P_gain + pi[i,m],
new_cost, lower_bound (new_cost, i))
end { for m }
else; { the status violates constraints }
{ or not promising, prune this node }
end; { procedure Search }

begin { procedure ISSP_solver }
C_opt := INFINITY; { initialization }
for i := 1 to n do
Opt_sol [i] := NULL;
Reorder{)
Search (1, 0.0, 0.0, 0.0, 0.0)
end; { procedure ISSP_solver }

