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We propose a new method. of the single transition-time(STT) assignments
for asynchronous sequential circuits, in which the propositional calculus, or:
Boolean algebra is adopted. Exact minimum solutions of the STT assignments
are obtained by our method. In order to handle huge propositional formulas,
the shared binary decision diagrams(SBDD’s) are used as an internal repre-
sentation of the formulas which denote the STT assignment for a given norma,l
flow table. Moreover, as an application of the minimum-algorithm, a mini-
mum algorithm for the constrained encoding problems are also proposed, for
which so far only heuristic algorithms are known for solvmg Iarge and practlcal
problems. However, our method always guarantees minimum solutions to be -
obtained. Expeérimental results show that our methods are eﬁ’ectlve to obtain
minimum solutions at significantly reduced computation cost. ‘
- key words: unicode STT, state assignment, minimum, asynchronous, se-
quential circuits, propositional calculus, dichotomies, SBDD’s '
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1 Introduction

While every state assignment, which has a unique binary vector for every internal state
of a synchronous sequential circuit, may yield a correct circuit realization, it is not a
sufficient condition for asynchronous sequential circuit realizations. The state assignment
for asynchronous sequential circuits must ensure that no critical races exist among the
state variables. We are concerned with the state assignment for asynchronous sequential
circuits in this paper.

As state assignments of asynchronous sequential circuits, many methods have been
proposed, including a class of the single transition-time(STT) assignments. In order to
obtain minimum solutions of the STT assignment problems, we have to conquest an
NP-complete component of the problems, which is the covering problem, so that it is
said to be difficult to calculate a minimum STT assignment for problems of large and
practical size. In this paper, we propose a minimum algorithm for the STT assignments,
especially the unicode ones. Propositional calculus is employed for expressing the unicode
STT assignments with introduced Boolean variables here, and the shared binary decision
diagrams(SBDD’s)[1] are used as an internal representation of propositional formulas
denoting the state assignments, so that minimum solutions are obtained efficiently for
large and practical problems.

Besides, as an application of the conception that for obtaining the minimum unicode
STT assignments, dichotomies of a given flow table are denoted by propositional formulas
by means of newly introduced Boolean variables, we also propose a minimum algorithm
for the constrained encoding problems[2] whose importance has grown with the recent
advances in the synthesis of sequential machines, where [2] proposed ‘a heuristic algorithm
with no guarantee of its results being minimum. :

We have implemented the minimum unicode STT assignment and the minimum con-
strained encoding, and conducted experiments to evaluate the performance. The results
show that our methods are very effective to obtain minimum solutions at the significantly
reduced computation time and memory. The STT assignments are said to be very practi-
cal so that our newly proposed method is useful at the design of asynchronous sequential
circuits.

The rest of the paper is organized as follows. Section 2 covers the unicode STT
assignments. The minimum unicode STT assignment is described in section 3. In section
4, the minimum constrained encoding is proposed, and we present in section 5 the results
of our experiments. Finally, we have concluding remarks and point to directions for future
work. ’ ’

2 Unicode STT assignments

We consider a class of single transition-time(STT) assignments[3]. State assignments
for which a single transition time is always sufficient for any transition are called STT
assignments in which transitions may occur by means of noncritical races among all of the
state variables distinguishing the internal and final states. Speed of operation is often an
important consideration in the design of switching circuits, and it is not unusual to pay for
it with significant increases in the number of components used. A key factor influencing
the speed of operation of asynchronous sequential circuits is the maximum number of



transition times required for an interstate transition. Only normal flow tables are treated
here, and the assignment are restricted to those with one binary vector composed of state
variables per state of machines, which refer to as unicode STT assignments.

The fundamental conception of the STT assignments is the one of dichotomies. Letting
U and V be disjoint subsets of states of flow tables, we define a dichotomy as the unordered
pair (U; V). Given a pair of transitions ¢ — j and k — m, where i and j are each different
from k and m, we say that the dichotomy is (U;V), where U = {7,j} and V = {k,m}.
This dichotomy is generally written as (:j; km). In cases in which one of the transitions
is degenerate (say ¢ = j), we obtain a dichotomy such as (i; km), and if both transitions
are degenerate, the dichotomy reduces to (3; k). A state variable y; in a particular state
assignment is said to cover a dichotomy (U; V) if y; = 0 for every state in U and y; = 1
for every state of V' (or vice versa). Using the above notion, we can now state a basxc
theorem for the STT assignments as follows:

THEOREM]{3| A state eassignment for a normal flow table is a valid unicode |
STT assignment iff, for every pair of transitionsi — j and k — m that appear
in the same column and such that j # m, the dichotomy (ij; km) is covered
by at least one state variable of the state assignment. 0o

The procedure finding minimal unicode STT assxgnments for a normal flow table is
simply summarized as follows.

1. For each column, form a dichotomy (4j; km) for every pa,xr of transitions ¢ — j and
k — m where 7 # m.

2. Find maximal compatibles correspending to the dichotomies.
3. Find a minimal set of the maximal compatibles that covers every dichotomy.

The procedure contains some components so that it is said to be difficult to obtain mini-
mumn solutions for large and practical problems. The components are that the number of
maximal compatibles may be exponential in the number of states, and the covering prob-
lem is NP-complete. Thus efficient solving methods have been expected and have been

proposed so far. Here, we propose a minimum and effective algorithm for the unicode
STT assignments.

3 Minimum unicode STT assignment using SBDD

We propose a minimum unicode STT assignment algorithm in this chapter. we represent
the unicode STT assignment as propositional formulas which are specified with SBDD’s
as internal representations. Minimum solutions are obtained by searching the SBDD’s
in time linear in the number of Boolean variables appeared in the SBDD’s. We call this
method a minimum unicode STT assignment using SBDD.

3.1 Introduction of Boolean variables

We introduce some Boolean variables which are used for denoting the unicode STT as-
signment problem with the propositional calculus.



We will let:

S = a set of n states
B = a set of binary vectors (bo---b;--- bk_l),bi‘e {0,1}

When a codeword b(bo - - - b; - - - bx—1) € B) is assigned to a state X € S we introduce
a Boolean variable D{f € {0,1} in the following:

1 if the codeword bg- -« b; - - - br_; is assigned to the state X € S
DY = and ;=1

0 otherwise.

For example, if a codeword 101(b0b1b2) is assxgned to a state s,, then by is 1, b, is 0
and b, is 1 so that Dy is 1, D;; is 0 and Dy’ is 1. Using these Boolean va.na.bles, we can
denote that a dichotomy is covered by a state variable. Namely, if we have a propositional
formula Q given as follows, then @ =1 denotes that ¢ A dlchotomy (z3; km) is covered
by a state variable by”.

Q = Dj Dj D,,OD,,°+D DI D Dp.

3.2 Propositional representations of the umcode STT ass;gn—
ment

We represent a method called propositional representation of the unicode STT assign-
ments, which denotes the assignment with proposxtlona,l formulas based on the Boolean
va11a,ble<: introduced above.

In order that the unicode STT assignment of a given flow table is expressed by the
propositional calculus, we have to calculate necessary dichotomies for the assignment of
the given flow table. For a normal flow table we can derive a set of dichotomies with ease.
we show' an example in the following. we assume that a normal flow table is given and
three state variables Yo, Y1 and y, are used for the assignmeht of the flow table, where
each variable is binary. For building propositional formulas denoting the unicode STT
assignment of the flow table Suppose that we obtain the followmg dichotomies from the
flow table.

(505'1; 5455)7 (5455; 53)') (51 Sa; 5354), (5254; 5153), (5254; 5355)
Then, a proposition that “ The dichotomy "(5051,3455) is ‘covered by at least one state

variable among yp,y; and y,” is denoted by D(m as) =1, where the proposxtlonal formula,
Doy; 45) is glven as follows

: 'D(OI ) = Dbo D,,‘Df; D -+ D D Df‘D + Df;’D D b‘f_
+DF DY DS DS + D,, DS DF D + DF DI DD
Similarly, for the dichotomy (.5'45'5, .5'3) we ha.ve the followmg formula.s D(45 3):
) D(45;3) = borDlisD + D + ‘Db lisD

+D§* D D +Db‘D,,s"D D_f;Bﬁ?Df;



For all the dichotomies (U; V'), we make propositional formulas D(y;v) like above, and let
D be the product of all the formulas D(y,v) :

D= ]I Dww
all(U;V)

Then, the unicode STT state assignment is denoted by D. A minimum solution having
the minimal number of state variables is obtained when the D that is not contradiction
is acquired for the first time, while the number of state variables is increased one by one
each step, and the minimum solution is associated with a product term which is involved
in the D when the D = 1. _

Good representation of propositional formulas is a key to efficient implementation. In
our implementation we use shared binary decision diagrams(SBDD’s)[1] as an internal
representation of the D in order to handle huge propositional formulas, The SBDD’s,
improved binary decision diagrams, are graph representations of Boolean functions, and
have the following desirable properties;

e Many functions are represented compactly and mmultaneously by sharing isomor-
phic sub-graphs.

e Logic operatlons between functions can be carried out much eﬂimently

These two advantages are very much suited to our purpose. Since in our- rnethod we
need to represent many propositional formulas to express a set of dichotomies, the former
property is very favorable. The latter one is also favorable for making an SBDD denoting-
the STT assignments. The propositional formulas appearing in our method are produced
by logical operations. We can expect efficient 1mplementat10n because SBDD’s are known
to have good affinity for the operations.

When the D is represented by an.SBDD, A minimum solution of the unicode STT
assignment for the flow table is associated thh a path which is involved in the. SBDD
when the path goes to node “1”(the “1” leaf). Thus there are a lot of minimum solutions
in the SBDD. Namely, by Searching out all the paths going to the “1” leaf, we can have
all minimum ones. A minimum solution, or path going to the leaf is searched out in time
linear in the number of Boolean variables appeared in the SBDD. The number of Boolean
variables B is-B = n X k if using the Boolean variables introduced in this paper, where. n
is the number of states and k the number of state variables allowed to the assignments.
Using coded Boolean variables, it can be expected that the ﬁgure is decreased. See (4)
for details.

The algorithm is summarized as follows.

Algorithm[STTBDD]

(Inputs)

A directed graph G consists of n vertices.

k state variables allowed to the unicode STT assignment. .
(Output)

If a solution exists, a minimum solution.

(Algorithm)

stepl D:=TRUFE ;



step2 while(all dichotomies)
begin :
Make a next propositional formula Dwivy ;
D:=D-Dywy;
If D is a contradiction, then FAIL ;
~end

step 3 Search a minimum solution and output it ; o 0

4 An application: Constrained Encoding Problems

We propose a minimum algorithm for constrained encoding problems as an application
of the minimum unicode STT assignment described in the previous chapter, in which
dichotomies are expressed by propositional formulas using introduced Boolean variables.

Given a set S = {sq,51,"*,5n-1} of n states, dichotomy-based constrained encoding|2]
aims at finding an assignment m of S into a set {m(so),m(s1),-+,m(s,-1)} of n binary
k-tuples (bit vectors), in such a way that k is minimized and a set of dichotomy constraints
are satisfied. A dichotomy constraint DC on S is a pair DC = (S*; S7) of disjoint subsets
of S; to satisfy such a constraint the encoding must have at least one state variable that
has the value 1 for all the states in S* and 0 for all the states in S—, or vice versa.

The importance of minimum constrained encoding has grown with the recent advances
in the synthesis of synchronous sequential machines. It is now accepted as a general Tule
that, in order to find an economic logic realization, it is desirable to assign certain groups of.
states to groups of neighboring vertices in the hype1 cube. In particular, if a programmable
logic array(PLA) is used to implement the combinational part of the circuit, such groups
of states can be identified by a technique called symbolic minimization. Each group
is to be embedded into a face in the hyper cube; such constraints are therefore called
face-embedding constraints. They can also be reformulated as dichotomy constraints[2].

For the constrained encoding problem, [2] proposed a heuristic algorithm. However,
the algorithm basically consists of the greedy step so that, in general, minimum solutions
are not guaranteed. We propose here a minimum algorlthm of the constrained encoding
problem , by which for practical and large problems, minimum solutions are always calcu-
lated. We deﬁne the minimum constrained encoding problem as follows: - We assume that
asetS of n states, and a set DC of d nontrivial constrainis on S are given. The mini-
mum constrained encoding problem is to find an encoding m of S so that all constraints
of DC are covered by k state variables, where k is a minimum integer. 4

For obtaining minimum constrained encoding, as making propositional formulas for
calculated dichotomies in chapter 3, it is sufficient to build them for all given con-
straints. Then by representing the propositional formulas denoting all given constraints
with SBDD’s, we may obtain minimum solutions at significantly reduced computation
time and memory cost. Other steps of the algorithm for the constrained encoding prob-
lems are similar with them of that for the unicode STT assignments. '



5 Experlmental results

We implemented the minimum. one-shot state as&gnment algorlthm on UNIX operating
system in C language on the basis of the method described in the preceding sections. This
implementation was linked with an SBDD manipulator{l]. We conducted experiments to
evaluate its performance on SUN SPARC station 2 workstation (64MByte). We assigned
several normal flow tables by giving them a number “k” which is the number of state
variables allowed to the state assignment. The results are shown in Table 1. The first
column shows the names of the flow tables; for example, S04D05 specifies a normal flow
table which has 4 states and 5 dichotomies. The column #m sv shows the minimal
number of state variables.

Table l:Experiinental results.

| name | #m sv | #M nodes | CPUlsec] |

504D05 3 43 25
505D05 3 65 2.6
[SosD12 4 522 X
506D16 5 2922 | 32
507D20 4 3678 3.7 |

The column #M nodes contains the number of nodes of SBDD’s used for representing
the flow tables (maximum values). The last column shows CPU times for initialization
of SBDD’s and the state assignment per flow table in seconds. The number of nodes’
of SBDD’s was limited to 1,000,000(2%°), and the implementation (including the SBDD
manipulator) used approximately 20MByte storage at most. It is clear from Table 1 that
the minimum unicode STT assignment algorithm is very efficient in a point of view of
computational time.

6 Conclusion and Future work

We have proposed a new method of the unicode STT assignments which leads to ex-
actly minimum solutions. In the proposed method, dichotomies of normal flow tables are
denoted by propositional formulas which are written with Boolean variables introduced
here. By the use of an SBDD as an internal representation of the propositional formu-
las, we can reduce the storage requirement required for representing the formulas. With
experiments, the new method may proves efficient. The STT assignments are said to be
very practical so that our newly proposed method is useful at the design of asynchronous

sequential circuits. In parallel, we showed an application of the proposed method to the
minimum constrained encoding problems.

Our future work includes:

1. More sophisticated algorithm which reduces the size of nodes of SBDD’s representing
the minimum unicode STT assignment.

2. New method which introduces Boolean variables used for propositional formulas
should be found out in order to handle more lager sequential circuits.



Besides, when we have an SBDD which is not contradiction and denotes the minimum
unicode STT assignment for a flow table, there are a lot of minimum solutions in the
SBDD. Though our method now output any one among them as a minimum solution, it
is worth considering for example that a minimum solution which is associated with what

we call the simplest state transition functions, is searched out. This is another our future
work.
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