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Random Generation of Test Instances for Evaluating
Logic Optimizers

Kensuke Hino, Kazuo Iwama

Department of Computer Science and Communication Engineering
Kyushu University

The attempt of using random test circuits for evaluating the performance of logic
optimizers like SIS is apparently new. To generate “reasonable” random circuits, we propose
the random applications of several transformation rules to an initial circuit instead of the
obvious method, random placement of connections. Experimental results on SIS’s responses

against such random circuits arve presented. which suggests the significance of this project.
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1. Introduction

There have been millions of papers on logic optimizers and also have been even more papers on generating
test-cases for detecting faults of logic circuits. However, there have been few papers on how to generate
test-cases for evaluating the performance of algorithms for logic optimizers. In this paper, we present a new
way of providing those test-cases, a random generation of test circuits, for logic optimizers such as MIS [1],
SIS [6] and Transduction Method [4].

Since it is little meaningful for this kind of algorithms to use the worst-case upper bound such as
O(n2“(1+°)), we are forced to depend on so-called the empirical performance-evaluation. To do so, there has
been virtually no other way than using benchmarks; for example, MCNCI[8] is the most standard benchmark
set that includes more than 70 combinational multi-level circuits (and also other types of circuits). Those
benchmark circuits are carefully selected with a wide variety and appear to have been accepted in the
field. Even so, it is still true that we cannot give reasonable answers to the following naive question: Is
the algorithm that is good for the benchmarks good for every circuit? It is also hard to figure out the
general tendency of the performance when the size of instances increases. Moreover, we cannot even deny
the possibility of cheating, or unnatural tune-ups of the algorithms only for benchmarks, in theory.

In these circumstances, it is quite reasonable to use random instances as well as benchmarks. That
is actually very common in many graph problems [7] and in the satisfiability problem for CNF predicates
(SAT) [3, 5]. In the case of (multi-level) logic circuits, however, there is no obvious way of generating random
circuits. Consider, for example, the following way motivated by the standard generation of random graphs:
(i) We first introduce some number of logic gates, (ii) and then between each pair of the input of one gate and
the output of another, a connection is drawn with some probability. Unfortunately, it is questionable if such
“circuits” can be accepted as logic circuits in the usual sense. Furthermore, if we provide logic optimizers
with such random circuits, we have very little information about what kind of (simplified) circuits should
be output by the optimizers.

Our answer to those questions is as follows: Our generator does not make random connections between
gates but applies a sequence of random transformations into an initial circuit. Each single transformation
should not change the logic function realized by the circuit and it should be computed quickly. In more
detail: (i) Circuits are described by strings in a usual way. (ii) The equivalent transformation is given as
a rewriting rule over the strings, which can be applied in polynomial time. (iii) A complete set of these
transformations (rules) is developed, where “complete” means that from any circuit to any (other) equivalent
circuit there exits at least one sequence of transformations. (iv) A test circuit is obtained from an initial
circuit by applying the rules (principally) at random. Many test circuits of different sizes can be obtained
from the single initial circuits. The initial circuit can be good information on “correct” answers of the
optimizer. These details will be give in Sections 2-4.

The first version of the generator has been implemented. A symmetric function is chosen as the initial
circuit, from which five test circuits were generated, which were in turn given to the common optimizer,
SIS. The result suggests that our motivation and goal are correct and the project will have the promising

future.



2. Definition of Circuits

Within this paper we restrict ourselves to logic circuits using only NAND gates of unlimited fan-in and
unlimited fan-out. Circuits of AND, OR and NOT gates have been also discussed under the same frame-
work [2]. Restriction of fan-in and fan-out will be an important future research. A (NAND) circuit is given

as a set of equations, e.g., as follows:
glo] = (¢[010],(g[011],(23)))
g[010] (g[o11])
glo1l] = (21, (x2),24)

Namely, a circuit is divided into one or more subcircuits such as g[01], g[010] and g[011]. This circuit is
illustrated as follows using conventional diagrams.

Xy

{010}
X7 !

Xq
® D

Definition 1. A partial circuit (p-circuit) is a string over alphabets {0,1,0,1,2,g,(,),[,],,} defined

recursively as follows:
(1) 0 and 1 are p-circuits.
(2) z[] is a p-circuit where £ is a string over {0,1}, i.e., £ € {0,1}*.
(3) g[€] is a p-circuit where ¢ € {0,1}*.
(4) Suppose that 51,55, , 5, (m > 1) are p-circuits. Then (Sy, Sz, - ,9m) is also a p-circuit.

0 and 1 denote logical false and true, respectively. To avoid confusion, we use different symbols 0 and
1 for binary strings used in (2) and (3). 2[(] is an input variable. Again for simplicity we assume that if n
variables are needed then those are x[1],2[10],2[11],---,2[B,] (B, is the binary number for n). z[B;] may
be denoted by z; if no confusion occurs. ¢[¢] is called a label. For two labels g[¢;] and g[€s], g[t1] is said
to be earlier than g[(;], denoted by g[(1] > g[C3], if string ¢, is lexicographically earlier than £,. g[0] is the
earliest label.
Definition 2. A circuit is a set {Wy, Wy, - W}, where cach W; is a string of the form
g[€] =p-circuit,
which is called the definition of p-circuit g[(].
Definition 3. A circuit is said to be proper if the following conditions are met:
(i) If a label g[(1] appears in the left-hand side of the definition of p-circuit g[¢s], then g[fy] >
glta]-
(ii) If a label g[f] appears in some p-circuit, then definition of p-circuit g[¢] must exist.

(iii) The definition of p-circuit g[f] must be unique for each p-circuit.

In this paper all circuits are proper, so proper circuits are simply called circuits. Suppose that a circuit C
has 7 inputs and m outputs. Then €' includes vy, -, 2, and, without loss of generality, g{Bo], g[B1],- - -, g[Brm]
as C’s outputs. (Namely, g[0] must exist if ¢ is a circuit of single output under this rule.) Restriction (i)

above assures that the circuit does not include any feedback loop. The meaning of (ii) and (iii) is obvious.



3. Transformation Rules

A transformation rule, or simply a rule, is denoted by ¢ == h. The following set of rules are denoted by R.

(1HA)<e=o0 (2) (0) == 1
(3) (z,2) = (2) , (4) (2,(2)) == 1
(5) z,((y,2)) == 2,y,2 (6) 2,y <=y,
(7) (2,1) &= (2) (3) ((2)) == 2

(9) (2,(v,2)) £= (2. (), (2:(2))))

(10) If g[€] = [ is the definition of p-circuit g[f] then g[f] < f.

(11) If g[¢] is neither an output of the circuit nor does not appear in right-hand side
of the definition of any p-circuit, then the definition of g[¢] is removed. (This rule
is called a deletion.

(12) If the definition of label g[¢] does not exist in the right-hand side of any definition,
then g[f] = C is added, where C' can be any p-circuit whose length is bounded

polynomially. This rule is called a creation.

f <= g stands for f == g and ¢ = f. [ (and ¢ also) is a string (not necessarily a p-circuit, see e.g.,
rule (5)) including special symbols 2,y and z. Suppose that we wish to transform a circuit C; to Cq by
applying a rules f ==> g. Then we seek a substring s of (' that “matches” f. In this pattern matching the
special symbol z (y,z also) matches any substring s; of Cy if $; meets the condition of p-circuits (such s
is called a subcircuit of Cy). Circuit Cy is obtained by replacing s of Cy by the right-hand side of the rule,
i.e., by g. The formal definition of this transformation is omitted but the following example will be helpful:

Example. Suppose that we wish to apply rule
v, ((y,2)) == 2,y,2

to p-circuit C; that is
((.1'1),((.1‘2,(g[Ol],((x4,$1))))),w3)

Since 2,y and z can match any subcircuit of *y, there are two different possibilities. The first possibility is -
to set

x=(ay), y=ay, z= (9[01]7((3547"”1)))3

which transforms Cy into Cy; that is
(1), 22, (9[01], (24, 21))), 23)

The other possibility is to set

z=g[01], y = 2q, 2 = 24,
and then we obtain a different C'y such as
((z1),{(22,(g[01], 24, 1)), wa).

Rule (10) is so-called a substitution and its converse. 1f label g[¢] appears in a p-circuit, it can be replaced

by the right-hand side of the definition of g[¢]. Conversely, if some subcircuit s; of p-circuits coincides with



the right-hand side of some definition, say g[¢] = s1, then the whole s; can be replaced by g[¢]. Note that if
the definition g[f] = s; does not exists, it can be created by rule (12).

More formally, the transformation from a circuit Cy is defined by a function T(Cy,r,k). Here, ris a
rule and k is an integer. Recall that there may be two or more possibilities for applying rule r to C;. The
integer k is for selecting one of such possibilities, namely, the kth one. (Exactly speaking, we have to define
some order for these possibilities.) T(Cy,r, k) returns a (unique) circuit Co or nilif there are no possibilities
for the application of rule r.

Theorem 1. For any circuit C of size n, T(C,r,k) can be computed in time polynomial in n.

Proof. Consider for example rule 7: z,((y,z)) == ®,y,2z. Then a straightforward way of computing
T(C,r,k) is as follows: (i) Regarding circuit C' as a string, we decompose C using substrings sy, 8, - -, 85
such that C = sys9,((53,54))s5 (each s; may be the null string). One can see that the number of different
such decompositions is polynomial in the size u of C. (ii) Then we check if all of s,, s3 and s4 are subcircuits.
If so, we say that the decomposition is proper. Again it is not hard to see that this can be done in polynomial
time. (iii) Now we select the kth one out of the proper decompositions (if any). The argument is similar for
other rules. As for rule (12), note that we imposed the restriction that the created p-circuit be of polynomial
size. 0O

We next show that the set ® of transformation rules is complete. Two circuits Cy and Cj are said to be
equivalent if (i) the number of inputs and outputs is the same in both circuits and the corresponding two
outputs, g[{] in Cy and g[{] in C, realize the same logic function.

Theorem 2. Let C; and 7 be any equivalent circuits. Then there exists a sequence of rules, each of
them in R, which transforms C; into .

Remark 1. The theorem only claims the existence of such a sequence. According to the following proof,
its length (the number of primary transformations) can easily be exponential. To find an essentially shorter
sequence is hard even if there are some.

Proof of Theorem 2. We assume that the circuit has only one output. Extension to the multi-output
case is straightforward.

So-called DNF is used as a normal form of circuits: A circuit of n variables is said to be in DNF if it is
given as g[0] = f where f = (p1,p2, - ,pm). Bach p; must be (yi,y2,-,yn) where y; = ¢; or (;). For any
J, pj must be lexicographically earlier than pj;;, namely, the binary number obtained by replacing each z;
((24), respectively) of p; by 1 (0, respectively) must be smaller than the similar number for Pi+1-

Then it turns out that for any circuit C, there is a sequence of rules, each in R, that transforms C into
the normal form. Note that this is enough to claim the theorem by the following reason: Let C; and Cs be
equivalent circuits. Then for each C;, there is a sequence r;;7ig - -- 7y, of transformations. Note that these
two sequences transform both ¢’} and Cy into exactly the same string, since the normal form is unique for
any logic function. Now consider the sequence S = r{1ryg - - - ™11, Tat; =+ - T22 T21, where T is the opposite of r,
namely, if 7 is f = g then Tis ¢ = [ for rules (1)~(10) and if r is (11) then T is (12).

The algorithm for getting the sequence riyry - -1y, is fairly complicated. We have to omit it, but the
following example for reducing the level of circuits (from four to three) would be helpful.

(21, (22, (23. (24))))
L) ety 2) == (e () (2,(2)))
(1, (((22, (23)), (22, ((24)) 1))



l (4) ((J 7)) == 2.y, 2

(9«‘1,(1‘2,(9:3))’(4?2»-1'4)) o

4. Random Circuit Generator

Application of the complete set  will be wide. A natural possibility is to use it for simplifying circuits,
since it is guaranteed that there is a path from a given circuit to any simpler one. Of course, however, very
careful choice of rules should be needed for this purpose, which is far from easy. Then what happens if we
chose rules carelessly? The circuit is probably not simplified but is complicated. That meets our present

good!

Generator RC-GEN.

Input: A circuit C,

Output: A circuit Cy that is equivalent to (*; and is probably more complicated than Cy.
Stepl: C «— 4

Step2: Select a rule » at random from .

Step3: Apply r to C to get (. If there are two or more possibilities, select one of them at
random.

Step4: C — C’ and repeat Step2-Stepd some specified times.

Step5: Cy — C

This basic structure of RC-GEN needs appropriate modification for actual implementation. Suppose,
for example, that

(2, 23), ({23, ) 24),((22),23))

is chosen as the initial circuit C. Now our experiment shows that if all rules are applied with the same

probability then such a circuit as follows is generated after 50-time execution of the main loop.

(CCCCCCx1,x3))),((((x3,00))))H((((x4,x4) )DL (((x2,(( ( ((((x1,x3))),((x3,1))),
((((x1,x3))))), 1,(((((x1,x3)) L((((x:ﬂ))))>,((((x4,x4,x4 )((((x1,x3))),( (x4,
x4)))MNH((((((x1,1,x3)) ,(((x:s,(o)))),(u(m.xu))),u((x4)>))))))))))),x3))))

One can easily feel that the circuit does not make much sense as a usual logic circuit. Our consideration for
the implementation is as follows:

(1) Clearly there are too many parentheses, which can be removed by applying the == direction of rule
(5) more frequently. The current setting is 30 times as high as the normal probability.

(2) The <= direction of (3) and (4) makes the string (circuit) longer. However, it is simply a repetition
of exactly the same thing. What is desirable is that after the application of these rules, a lot of other rules
are applied to the same subcircuits and these arce changed into different ones. We decided to restrict the
number of applications of these rules into only twice during the whole course of the generation.

(3) The most important rule for modifying circuits is probably (8). We set the probability of both
directions of (8) three times as high as the normal probability.

(4) As for rule (10), there are less problems for the substitution (the <= direction) but are several

difficulties for the opposite direction. First of all, there is almost no possibility of the rule’s being actually



applied, since even if we wish to replace a subcircuit s by g¢[¢], the definition g[f] = s probably does not
exist. Hence, we need to combine this rule with the creation of g[f] = s, ie., rule (12). To emphasize its
objective (management of multiple fan-out), it may be more appropriate that the rule can be applied only
if we can find two or more subcircuits s; and s such that s; = s2. Then both subcircuits can be replaced
by the same label, say g{(].

After these considerations, the circuit given at the beginning was transformed into the following circuit

(by 500-time repetition) that appears much “better” than before:

(CCCCU0Gx2,(x3,x1)((x3),%4)),((x4,(x3),1),(x1,x3),1),(0)),(x1)),((((x3),0),((x3,

x1),((((x3),%4),x2),(x3),x4)),(0,(x1))),(x3))).x3),(((((((x2,(0),(x1,x3),((x3) x4,
(0))),x4,(x3)),(x1),(({x1,(x2)),(x1,{(x1,x3))),(x1,(((x3),x4,1)))),x3,1)),((1),(x1,
x3)),(((x3),(x2,((x3),x4)),x4),(x1,x3))),( (((x2,(x1,x3),((x3),1,x4,(0))),x4,(x3)),
(x1)5(x1,5(x2,(x1,%3),((x3),x4)),1,%3)),x3)),(0)),(x4))),x2),((x1,(0),x3),((((x3),

x4),%x2),(x3),x4),(x3,1)}))

5. Experiments

The present version of the implementation, say RC-1, does not include rules from (10) to (12). Namely,
RC-T accepts only a single-fan-out circuit as its input and also produces the same type of circuit. Including
these rules is now under development and will he worked out soon.

For the first experiment, we selected the majority function of six variables, namely

((x1,x2,x3),(x1,x2,x4) (x1,x2,x5),(x1.x2.X6),(x | ,x3,x4),(x1,x3,x5),(x1,x3,x6),(x1,
x4,%5),(x1,%4,%6),(x1,x5.x6),(x2,x3.x4 ) (x2.%3.x5),(x2,x3,%6),(x2,%4,%5),(x2,%4,%6 ),
(%2,x5,%6),(x3,x4,x5),(x3,x4.x6 ) ( x3,x5,x6).(x4,X5,x6))

From this initial circuit, we generated five circuits by applying rules 2000 times. (Since there are cases when
the selected rule cannot be applied, the actual number is one half or one third of 2000.) Those circuits are
then given to SIS, which outputs the following results

(1) CPUTIME = 17.9 sec. (SUN SPARC Station 2).
Source: 1894 gates, 3650 connections, 24 levels
Result: 23 gates, 46 connections, & levels
Here, “Source” is the data of the test circuit, namely, the test circuit, say No.1, that contains 1894 gates
and 3650 connections and its network level is 24. “Result” is the data of the circuit simplified by SIS. It
should be noted that the initial circuit itself was also given to SIS and we obtained the following data
(0) CPUTIME = 1.8 sec.
Source: 21 gates, 80 connections, 2 levels

Result: 20 gates. 39 connections, & levels
Thus SIS did a pretty good job against the test circuit No.1. We were really impressed by its ability

of reducing, for example. the number of gates into almost 1/100 very quickly. Did SIS show the same

remarkable performance against the rest of the test-cases? The answer is not yes:

(2) CPUTIME = 8.3 scc.
Somce. 732 gates, 1375 connections, 16 levels
Result: 39 gates, 21 connections, 9 levels



(3) CPUTIME = 28.6 sec.
Source: 1738 gates, 3132 connections, 20 levels
Result: 103 gates, 212 connections, 22 levels
(4) CPUTIME = 9.0 sec.
Source: 882 gates, 1657 connections, 15 levels
Result: 41 gates, 83 connections, 10 levels
(5) CPUTIME = 2.4 sec. ‘
Source: 146 gates, 283 connections, 13 levels

Result: 26 gates, 49 connections, 6 levels
Among others, the result against test circuit No.3 is relatively very bad although the size of the test

circuit is about the same as (1). Results in (2) and (4) are worse than (1) although the size of the source

circuits is about one half of (1). (5) is exceptionally good, even better than (0).

6. Concluding Remarks

The reason why random circuits have been seldom used for testing the performance of logic optimizers is
that we did not know now to generate the random circuits appropriately. The main contribution of this
paper is to propose the random transformation for that purpose, to establish its theoretical foundations and

to claim that the method is useful or at least is worth doing more research and development.
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