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Abstract A generalized Reed-Muller expression (GRM) is obtained by negating some of the literals in a positive
polarity Reed-Muller expression (PPRM). There are at most 2°2° " different GRMs for an n-variable function.
A minimum GRM is one with the fewest products. This paper presents some properties and a minimization
algorithm for GRMs. The minimization algorithm is based on binary decision diagrams. Up to five variables, all
the representative functions of NP-equivalence class were generated, and minimized. A table compare the number
of products necessary to represent 5-variable functions for 7 classes of expressions: FPRMs, KROs, PSDRMs, PS-
DKROs, GRMs, ESOPs, and SOPs, We also show that GRMs require, on the average, fewer products than SOPs.
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1 Introduction

Conventional logic design is based on AND and OR
gates. However, exclusive-OR (EXOR) based designs
have certain advantages. The first is that arithmetic
and telecommunication circuits are efficiently realized
with EXOR gates [16]. Examples of such circuits are
adders and parity checkers. The second advantage is
that_the circuits can be made easily testable by us-
ing EXOR gates. Various classes exist in AND—E&OR

expressions [6, 9, 15]. Among them, positive polar-
ity Reed-Muller expressions (PPRMs) are well known:
a PPRM, an exclusive-OR sum-of-products with posi-
tive literals, uniquely represents an arbitrary logic func-
tion of n variables. Networks based on PPRMs are
easily testable [11, 12], but they require more prod-
ucts than ones based on other expressions. Generalized
Reed-Muller expressions (GRMs)[4] are gencralization
of PPRMs. They were studied many years ago (2], but
no Kractica.l applications have been shown. Recently,
we have developed easily testable realizations for GRMs
[18]. Because GRMs require many fewer products than
PPRMs and have very good testability, the optimiza-
tion of GRMs have practical importance. As for the
optimization of GRMs, only a few papers have been
published [3, 10]. This paper presents some properties
and an exact minimization algorithm for GRMs. GRM
based design is useful in field programmable gate arrays
(FPGAs), where ORs and EXORs have the same costs.

2 Definitions and Basic Properties

2.1 PPRM, FPRM, and GRM

Definition 2.1 An expression for f is said to be min-
imum if it has the least number of product terms.

The following Lemma is the basis of the EXOR-based
expansion:

Lemma 2.1 An arbitrary logic function
f(z1,22,...,2,) can be expanded as
f=afo®zhfi, (2.1
f=foDz1fs, (2.2)
f=henf, (2.3)

where fo = f(0, z2,... ,;r,,), fi = f(l,zg,...,2,), and
f2=fo® f1.
(2.1), (2.2), and (2.3) are called the Shannon ezpansion,
the positive Davio ezpansion, and the negative Davio
ezpansion, respectively. If we use (2.2) recursively to a
function f, then we have the following:
Lemma 2.2 .
An arbitrary n-variable function f(z1,zs, ..
be represented as
f=a®a171 Daza @ Dagzn
D 127172 @ 2137123 D - D An—1 nTr—-1Tn D
............... D A19..nT1T2T3 "+ Ty. (2.4)

(2.4) is called a positive polarity Reed-Muller ezpres-
sion (PPRM). For a given function f, the coefficients
ag,@1,0a2,...,012..., are uniquely determined. Thus, the
P%RII\,/I izs7 a c:;ml)flicr:‘il repres(elnta}t,ion. This unique rc’pre-
sentation is also the minimum. The number of products
in (2.4) is at most 2", and all the literals are positive
(uncomplemented).

In (2.4), for each variable z; (i = 1,2,...,n), if we
use either a positive literal (z;) throughout or a nega-
tive literal (Z;) throughout, then we have a fized polarity
Reed-Muller expression (FPRM). For each variable z;,
there are two ways of choosing the polarities: positive
(z;) or negative (Z;). Thus, 2" different set of polaritics
exist for an n-variable function. For a given function
and a given set of polarities, a unique set of coefficients
(ag,a1,...,012...,) exists. Thus, an FPRM is a canoni-
cal representation.

.,Zy) can

Figure 2.1: Representation of a logic function using pos-
itive Davio expansion.

In (2.4), if we can freely choose the polarity for each
literal, then we have a generalized Reed-Muller ezpres-
sion (GRM). Unlike FPRMs, both z; and Z; can appear

in a GRM. There are 2"~ literals in (2.4), so 272"
different set of polarities exist for an n-variable function.
or a given set of polarities, a unique set of coefficients
(ag,a1,...,a12...n) exists. Thus, a GRM is a canonical
representation for a logic function. Properties were an-
alyzed in [3] for GRMs and an exact minimization algo-
rithm was shown. However, this algorithm can simplify
functions with only a few input variables. In the next
section, we will develop a more efficient minimization
algorithm for GRMs.
2.2 KRO, PSDRM, PSDKRO and ESOP

Before studying the minimization method for GRMs,
it is convenient to define other classes of AND-EXOR
expressions.

Suppose that we are given a three-variable function
f(z1,29,23). When we expand f by using the positive
Davio expansion with respect to 1, we have

f=fo®zfo.
Next, when we exIlmnd fo and fo in the similar way with
respect to 2, we have
Jo = foo ®x2fo2, f2= fa0 @ w2 for.
Furthermore, when we use similar expansions with re-
spect to z3, we have
foo = fooo @ 3 foo2,  foz = fo2o ® x5 foza,
f20 = fa00 © x3fa02, S22 = faz0 @ 23 f220.
The expansion tree in Fig. 2.1 illustrates this process. A
path from the root node to a terminal node represents
a product of an expression, where a label of an edge
shows the literal for the corresponding variable. For
example, the path from the root node to fgoo represents
the product 1-1:1- foo0 = fogo, and the path to fose
represents Xy - Ty - T3 -+ fo23. ’f‘%us, the tree in Fig. 2.1
shows the Pf‘Rl\i:
I = fooo @ 23 fooz @ T2 foz0 B x223 fo22 ® 21 f200
® 2123 fa02  T1%2 fa20 D T12273 faze-
Each node has a label pD, which shows the positive
Davio expansion. In Fig. 2.1, only the positive Davio
expansions are used. However, if we use either the pos-
itive or the negative Davio expansion for each variable,
then we have a more general tree. Such a tree rep-
resents an FPRM. If we use either the positive or the
negative Davio expansion for each node, then we have a
more general tree. Such a tree represents a pseudo Reed-
Muller expression (PSDRM). For example, in Fig. 2.2,
f. fo, fo2, and fay use the positive Davio expansions,
while [s, ‘{00, and foy use the negative Davio expan-
sions. Nodes with label nD denotes the negative Davio
Scmsiou. Note that the tree in Fig. 2.2 shows the PS-

f = foor ® Z3 foo2 @ 2 fo20 @ 223 fo2z @ 1 far0
B 2123 fa12 © 2172 f221 @ 213233 foza.
There are 7 nodes in the tree, and each node represents
either the positive Davio (pD) or the negative Davio
(nD) expansion.
In the case of n-variable functions, trees for pseudo
Reed-Muller expansions have 2™ ~1 nodes. Because each
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Figure 2.2: Representation of a logic function using
pseudo Reed-Muller expansion.

node can represent either the positive or the negative

Davio expansion, there are 22" ~! different PSDRMs.
From the definitions, clearly FPRMs are the special class
(();f PSDRMs. Furthermore, PSDRMs are special class of

s.

In Fig. 2.1, if we can use either the Shannon, the
positive Davio or the negative Davio expansion for each
variable, then we have another class of trees. Such a tree
represents a Kronecker expression (KRQO). For each vari-
able, we can select one of the three expansions. Thus,
the number of the different KROs for an n-variable func-
tion is 3".

In Fig. 2.1, if we use either the Shannon, the positive
Davio, or the negative Davio expansion for each node,
then we have yet another class of trees. Such a tree
represents a pseudo Kronecker expression (PSDKRO).
In the tree of an n-variable function, there are 2" — 1
nodes. For each node, we can select one of the three ex-
pansions. Thus, the number of the different expansions
for n-variable functions is 32" ~!, By definitions, clearly
FPRMs form a special class of KROs, and KROs form
a special class of %SDKROS.

Arbitrary product terms combined by EXORs is
called an Ezclusive-or Sum-of-Products Ezpression
(ESOP). The ESOP is the most general AND-EXOR
expression.

Example 2.1
1. z1x223 ® 122 is a PPRM.
2. 12273 D x2Z3 15 an FPRM, but not a PPRM (x5
has negative literals).

. T1Z2%3 @ z3 18 a PSDRM, but not an FPRM (z3
has both positive and negative literals).

. T1 @ T2 @ Z1E is a GRM, but not a PSDRM (it
cannot be generated by an expansion tree for a PS-

DRM).
From the above arguments, we have the following:

Theorem 2.1 Suppose that PPRM, FPRM, PSDRM,
KRO, PSDKRO, GRM and ESOP denote the corre-
sponding set of exzpressions. Then, the following rela-
tions hold:
PPRM C FPRM C PSDRM C GRM C ESOP,
FPRM C KRO C PSDKRO C £ESOP,

PSDRM C PSDKRO.

Table 2.1 shows the number of 5-variable functions re-
uiring t products for seven classes of expressions, where
OP denotes sum-of-products exzpressions. On the aver-

age, GRMs require 6.230 products while SOPs require
7.463 products.

Definition 2.2 Let n(PPRM : n), n(GRM : n), and
7(SOP : n) denote the average number of product needed
in_the minimal representation of n-variable functions by

PPRMs, GRMs, and SOPs, respectively.

Theorem 2.2
n(PPRM : n) = 16.000- 2" 75,

7(GRM : n) £ 6.230-2"~% (n > 5),
7(SOP : n) < 7.463-2"7% (n > 5).

AN o

This theorem shows that GRMs require, on the av-
erage, less than a half of the products for BPRMs. Ta-
ble 2.1 also shows that GRMs require fewer products
than SOPs. Thus, we have the following:

Conjecture 2.1 5(GRM : n) < n(SOP : n).

3 Some Properties of GRMs

Definition 3.1 Letp be a product. The set of variables
in p is denoted by V(p) = {zi | z; or Z; appears in p}.
Example 3.1 V(z1Z9%4) = {1, %2, 24}

Definition 3.2 Let G be ¢ GRM. A product p is said
to have a maximal variable set if V(p) ¢ V(p'), for
all other products p’' in G.

Example 3.2 Let a GRM be G = z139 ® F123 &
T1Zox3 @ Z4. Then, V(z133) = {&1,22}, V(F123) =
{lel'i!}s V(.’L‘l.’i'2.’lt3) = {1?1,1‘2,333}, and V(‘i"i) = {$4}
Thus, x1%2x3 and T4 have mazimal variable sets.

Definition 3.3 Let z be a variable and o € {0,1,2}.
% is a literal of ¢ such that
Z if a=0,
z*=¢z if a=1,
1 if a=2.

Lemma 3.1 An arbitrary PPRM can be represented by
an erpression

Ty
where B = (41, PBa2y...,0n), Bi € {1,2}(i = 1,2,...,n),
and h(B) € {0,1}.

Example 3.3 Consider ¢ PPRM F = z) & 129 & z3.

It can be represented as F = zlz}z} & 212322 @ 2¥xdx].

Lemma 3.2 An arbitrary GRM can be represented by
an eTpression

G=28 glaj] ag? -2l
where a = (ar,az,...,an), &; € {0,1,2}(¢ =
1,2,...,n), and g(a) € {0,1}.

Example 3.4 Consider a GRM G = 5 ® 132D 33. It

can be represented as G = 23r3z} @ vi2dz} ® 2323ad.

Lemma 3.3 Let the PPRM for f be
F =35 h(B)a'af ol

where B = (81, B2,...,0n), Bi € {1,2}(i = 1,2,...,n),
and h(B) € {0,1}. Also let a GRM for f be

G= E gla)z zg? - zpm,
where a = (ay,0g,...,a,), ai € {0,1,2}(i =
1,2,...,n), and g(a) € {0,1}. If F has a product
p= xl‘mg’ -« 2B with a mazimal variable set, then G

has a product ¢ = 27'x5? - - 2%, where

Oorl i Bi=1,
= {09 5

and ¢ has the mazimal variable set in G.

Corollary 3.1 If all the products in the PPRM of a
function f have a mazimal variable set, then a minimum
}G)}I)ZI]é/I Afor f contains the same number of products as the

Corollary 3.2 The PPRM in Corollary 3.1 is also a
minimum GRM for f.

Example 3.5 Let the PPRM for a function f be F =
z1 @ xax3. Because both of the products have a mazimal
mrmb?e set, a minimum GRM has two products. Thus,
F is also a minimum GRM for f.
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Table 2.1: Number of 5-variable functions requiring ¢ products.

[t | FerM | KRO | PSDRM | PSDKRO | GRM | ESOP | sop |
) 1 1 1 1 1
1 243 243 24 243 2 243
2 532 948. 24252 24948 24252 24948 20676
3 7982 54780 1232740 1346220 1283820 1351836 818080
4 575930 508570 | 28573890 694566 36127630 | 39365190 6049780
5 | 3228162 | 12029418 | 274624058 | 414798570 | 489868278 | 546193342 | 154729080
6 | 14327120 | 56321704 | 1128518304 | 1525655736 | 2243146768 | 2398267764 | 698983656
7 | 49894224 | 187202664 | 1783419504 | 1827539820 | 1294589544 | 1299295404 | 1397400512
8 0 | 418020660 | 931834556 | 480633264 | 29183904 | 11460744 | 1254064246
9 912340 50520 | 133019772 01476 677056 71481616
10 707228 | 1006381476 28003! 1419120 65600 160200992
11 839192 | 1053603288 859480 276048 4140992

12 078352 03200 580 26136 6160176
13 | 803267168 | 195821712 1280 0 827120
14 93502216 630680 0 o 84800
15 | 130238200 256608 48 0 312
16 | “19114960 0 48 a8 1
17 | “1s1e640 7776

18 88032 0

19 3680 0

20 208 0

21 a8 48

av 11.566 10.066 6.877 6.541 6.230 6.162 7.463
av : average

Corollary 3.3 Let p1 be a product in the PPRM for f
which has a mazimal variable set. Then

1. Any GRM for f contains a product py such that
Vp2) = V(p1)-

2. Any GRM for f does not contain a product p3 such
that V(p3) > V(p1) and V(p3) # Vip1).

Example 3.6 Let the PPRM for  be F = a1 & za73.
GRMs for f are Gy = 11 & zaz3, Go = x1 @ 3 @ o3,
Gs = 1 DTy DT2T3, Gy = T DTy D3 D T2T3, ctc. Note
that, in the }_’PR]\ifor the products x1 and xox3 have
mazimal variable sets. Thus, all the GRMs for f contain
the products with the form z'l" and mg’ xg“. GRMs for f
do not contain the products with the form z9 252, 2% 25,
nor zﬁ‘ a:g’zga, where b’s are binary constants.

4 Basic Idea for Minimization

Definition 4.1 z° is called a literal of z, where a €
{0,1}.

a_JZT if a=0,
z _{z if a=1.
Lemma 4.1 Leta € {0,1}, then z® = zPadl = TGa,
and
2% = a 1f z =0,
a if z=1

Definition 4.2 Let f(z1,23,...,%,) be a function of n
variables. The Boolean difference of f with respect

to x; 18
d
d_;:i = f(zl’zZP .. ’xi—l’oa Titly--- vzn)
GBf(zl’z%' e Tin1, 1, Ty, - vxn)-
Lemma 4.2 For an arbitrary function
f(z1,22,. .., :1:,,) :
o _ 9 & _ 4
dz; - di‘," da:,-da:j - d.’b‘jdl’,’.
If g does not depend on z;, then
dg _ d(zig) _
d.’l,‘,' - 0, d.’l),' =9

. In order to obtain the minimum GRM of a given func-
tion, we have to solve a system of logic equations. Such
a system is given by

fi(ylay79'~~ayt) = gi(ylsy‘l,---ayl)v

where, 7 = 1,2,..., k. However, these equations are con-
verted into one equation as follows:

Lemma 4.3 f; = ¢; holds for all i (z =
GR =1, where GR = /\fzo(f,- Dg:d1).

4.1 A Naive Method for Optimization

An arbitrary two-variable function can be represented
by a GRM:

F(x1,22) = age @ ap1 22! & aral? @ ayzPalt, (4.1)
where the a’s and b’s are binary constants. By setting
(z1,a2) to (0,0),(0,1),(1,0) and (1,1) in (4.1), we have

0,...,k) iff

f(0,0) = ago P ﬂv0151 & amEg 2} a115354, (4.2)
£(0,1) = ago ® ap1b1 @ a1obs ® a11b3bs,  (4.3)
£(1,0) = ago ® ap1b1 @ arobs ® a11bsls, (4.4)
F(1,1) = ago D ap1b1 @ a10b2 B ar1bsbs.  (4.5)
From (4.2)~(4.5) and by Lemma 4.3, we have
GR(f) = ¥(0,0) - 4(0,1) - ¥(1,0) - (1,1) =1, (4.6)

where _ _ o
¥(0,0) = £(0,0) @ ago © ap1b1 @ arobs @ a11bsby @ 1,
$(0,1) = £(0,1) @ ago & ao1b1 @ arobz @ anbsbs & 1,
%(1,0) = £(1,0) & ago @ ap1b1 @ a10bs ® a11b3bs @ 1,
¥(1,1) = f(1,1) ® aoo © ao1b1 & a1obs B a11bsbs ® 1.

Thus, the assignment of a’s and b’s that satisfy GR(f) in

(4.6) also satisfies (4.1). The minimum GRM is one that

has the fewest products, i.e., a GRM with the sum of a’s

minimum. The number of ¥’s in (4.1) is four. Thus, a

minimum GRM can be found out of 2*(= 16) different

GRMs. However, the expression in (4.6) is very com-

plex, and it is not easy to obtain the minimum solution.

4.2 An Efficient Method of Optimization

This method is more complex than the previous
method, but it is more efficient. In (4.1), by obtaining

the Boolcan difference, and by setting (1, z2) = (0,0),

we have
d‘i’(:git)Q =a, t—i% = a10 © a11bs,
de = ap1 P an1bs. 4.7)
tiox(l):“ the other hand, consider the PPRM for the func-
f(21,22) = coo ® cn@2 ® c1o71 B 112122 (4.8)

By obtaining the Boolean difference of (4.8), and by
setting (21, z2) = (0,0), we have
adn _, 4

dzidzs i dz, =cor- (49)

d
= c10, d—;;
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From (4.7) and (4.9), we have
c11 = a1, ci1o = a0 Danbs, cor =agr Hanibs. (4.10)
In (4.1) and (4.8), by setting (z1,22) = (0,0), we have

oo = ago D ag1b1 @ a10bs ® a11b3bs (4.11)
From (4.10), (4.11) and Lemma 4.3, we have
GR(f) = ¢(0,0)- $(0,1) - $(1,0) - 4(1,1) =1, (4.12)

where

#(0,0) = cop D ago D ao1b1 D ar0by D a11b3bs B 1,
#(0,1) = co1 D agy Danbs; d1,
#(1,0) = c10 D azo Danbs B 1,

#(Ll)=cu@an @1
Note that ¢’s of (4.12) is simpler than ¥’s of (4.6): ¢’s
contain fewer EXOR and AND operators than ¢’s. In
Section 5, we will formulate a method to solve GR(f)
by generating its binary decision diagrams (BDDs)[1].
In that case, at first it would be necessary to compute
the BDDs of all the 3’s of (4.6) or all the ¢’s of (4.12).
Because ¢’s are simpler than 3’s, computation of BDDs
for GR(f) using (4.12) is more efficient than using (4.6).

4.3 Three-variable case
An arbitrary 3-variable function f can be represented
by a GRM:
f(@1,22,23) = aoo0 B a00125' B ag1os? & agyi 2y wh!
@ a10073® B 1012328 B ayroziowl
(4.13)

@ alllxl{wwguzgw’
where a’s and b’s are binary constants.
On the other hand, the PPRM for the function f is:

F(21,%2,23) = cooo ® coo1%3 S co10%2 B 10021
@ 117273 B c101T123 D C11071 72
D aanzzaxs, (4.14)
where c’s are binary constants.
Similarly to the two-variable case, we have
GR(f) = ¢(1a 1, 1) * ¢(17 1’ 0) ‘ ¢(11 0, 1) : ¢(07 1, 1)
‘ ¢(17 0, 0) : ¢(0a i, 0) ‘ ¢(05 Ov 1) * ¢(Ov 0, 0)
=1, (4.15)
where
(L, )= ®ann b1,
#(1,1,0) = c110 ® @110 D 2111012 B 1,
#(1,0,1) = cro1 ® ar01 D a111b11 B 1,
#(0,1,1) = co11 ® ag11 D a111b1o B 1,
#(1,0,0) = ci00 @ a100 ® a101b7 S a110by B a111b11b12 D1,
#(0,1,0) = coro @ ao1o P a110bs @ ao11by ® a111biod12 ® 1,
#(0,0,1) = coo1 @ agor B ao11bs & a10107 ® a111b19b1; B 1,
#(0,0,0) = cooo B ao00 D avo1b1 @ ag10b2 B ag11b3bs
® a100bs @ a10156b7 D a110bsbe D a111510b11512 © 1.
4.4 n-variable case
Similar to the two and three-variable cases, we can
make 2" different equations, and can get the expression
for GR(f) for an n-variable function. An assignment of
a’s and b’s that satisfies GR(f) corresponds to a GRM
for the given function f. For n-variable case, a GRM
similar to (4.1) contain 2" a’s and n2"~' b’s, thus, the
total number of variables in GR(f) is 2" + n2"~1 =
(n+2)2"~'. The minimum GRM corresponds to the

assignment of a’s and b’s that makes the sum of a’s
minimum.

$(1.1.1)

$(1.1.0) $(1.01) $0.1.1)
$(10.0) $(0.1.0) $(0.0.1)
$(0.0.0)

Figure 5.1: Computation of GR(f).

5 An Algorithm using BDDs
5.1 Minimization using BDDs

Consider the binary decision diagram (BDD) for
GR(f), where the edges for uncomplemented a’s have
distance one, and other edges (i.e., edges for @’s, b’s
and b’s) have distance zero. Then, each path in the
BDD from the root node to the terminal 1 corresponds
to an assignment of a’s and b’s satisfying (4.15). And
the shortest path from the root node to the terminal
1 corresponds to a minimum GRM. Theoretically, it is
possible to obtain a minimum GRM by using the BDD
for GR(f). However, a naive method using the BDD
often requires excessive memory and computation time.
To reduce the size of the BDDs and the computation
time, we use various techniques, which will be shown in
Section 5.2-5.5.
5.2 Threshold Function

GR(f) represents all possible GRMs for a given func-
tion. However, we need only one minimum GRM. Sup-
I)ose that we have a near minimal GRM for f, and let %
be the number of products in it. Then, we only need to
find a GRM for f that has less than #g products. If such
a GRM does not exist, then the near minimal GRM is
also an exact minimum GRM for f.

Definition 5.1 Let a; € {0,1} for i =0,1,...,2" — 1,

and t be a positive integer. A function
271
TH(ag,a1,...,a9n-1:t) = 14 ,E:O ai <t
0 otherwise.
TH(ag,ai,...,a2=_1 : t) is used to represent the set of
GRMs with less than ¢ products.
5.3 Computation of GR())

A naive method for computing GR(f) requires ex-
cessive memory and computation time. In the case of
three-variable tunctions, we use the following method:

6(1,1,1) — ¢(1,1,1) - TH(ag, a1, ..., a7 : t),
#(0,1, 1) « ¢(0,1, 1) : ¢(ls 1, 1)7
#(1,0,1) « ¢(1,0,1) - ¢(1,1,1),
#(1,1,0) — ¢(1,1,0) - ¢(1,1,1),

#(0,0,1) — ¢(07 0,1)- ¢(0,1, 1) - (1,0, 1),
¢(07 1, 0) - ¢(0ﬂ 170) . ¢(07 1, 1) : ¢(1$ 170)7
$(1,0,0) « ¢(1,0,0) - $(1,0,1) - $(1,1,0),
¢(Os 0’0) - ¢(09 090) ‘ d’(os 0, 1) : ¢(07 170) : ¢(1’ o, 0),

GR(f) — ¢(0,0,0).
This method drastically reduces the computation time
as well as the memory requirement for generating the
BDD for GR(f). Fig. 5.1 illustrates this multiplication
mctgod. Extension to the n-variable case is straightfor-
ward.
5.4 Variable Ordering in the BDDs

The ordering of the variables in the BDDs influences
the memory requirement as well as computation time.
In the case of GR(f) for three-variable functions (4.15),
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we use the following ordering: a111 < bjo < by1 < b2 <
a110 < bg < by < a101 < bg < g-( < agyn < La < by <
aro0 < b5 < agro < by < ago1 < b1 < aogo, Where ayyy is
the nearest to the root node. Extension to the n-variable
case is straightforward.

5.5 Maximal Variable Sets )

Corollary 3.3 shows the products that will never ap-
pear in the GRMs for a given function. In generating
BDDs for GR(f), we do not use the variables (a’s and
b’s) corresponding to such products.

5.6 Minimization Algorithms

Algorithm 5.1 (Ezact Minimum GRM)

1. Obtain a near minimal GRM by Algorithm 5.2, and
let ty be the number of products.

2. Construct the BDD for TH(ag,a1,...,09n—1 : tg).

3. Construct the BDD for TH(ag,a1,...,02+-1 : to) -
GR(f). ,

4. Find a shortest path to the terminal one for the

BDD computed in 3.
5. Obtain the corresponding GRM.

Algorithm 5.2 (Near minimal GRM)

1. Obtain a minimal PSDRM for f by the similar algo-
rithm to [15], and let t; be the number of products.

2. Decompose the function f into 2°~% sub-functions
as

f(zlvz29' .- ,zn) = E -T,?I xéh .t 'mfn__kkg(xn—k-i-l,

Tn—k+42y+0+3Tn :ﬁlsﬂ29---9ﬂn—k)s (5'1)
where B’s are 1 or 2, and g(Tn—k+1>Tn—k+2s
veesZn ¢ B1,B2,...,Pn_k) represents a k-variable
sub-function. For each sub-function, obtain_the

by using the table of exact mintmum GRMs
of k-variables (k = 3,4 or 5). Let ty be the number
of products in (5.1).
3. Obtain the GRM with min{ty,t2} products.

6 Experimental Results

We developed a_minimization program, which exten-
sively uses BDDs. The computation time of the program
d%)ends on the size of the BDDs, and the size of the
BDDs depends on the number of inputs and the num-
ber of the products in the near minimal GRMs obtained
from Algorithm 5.2. The program can minimize GRMs
for all the functions up to five variables, and some func-
tions with more inputs. We generated all the 1,228,158
representative functions for NP-equivalence classes of
five or fewer variables, and minimized each function. On
the average, a five-variable function could be minimized
in 25 seconds by an Hewlett Packard Model 715/50
workstation with 64 megabytes main memory. We also
developed minimization programs for FPRMs, KROs,
PSDRMs, PSDKROs, ESOPs and SOPs. Tables 2.1
shows the number of five-variable functions requiring ¢
products, respectively. For five-variable functions, on
the average, GRMs require 6.230 products while SOPs
require 7.463 products. Thus, we verified that Conjec-
ture 2.1 is correct for n = 4 and 5.

7 Conclusion and Comments

In this paper, we ]Eresented seven_classes of AND-
EXOR expressions: PPRM, FPRM, KRO, PSDRM, PS-
DKRO, GRM and ESOP. Among these classes, GRMs
have easily testable realizations and require fewer prod-
ucts than other classes of the expressions except for
ESOPs. Thus, the optimization problem for GRMs is
important, especially in FPGAs, where the EXORs have
the same costs as ORs. We presented some properties
of GRMs, and showed an exact minimization alforithm.
The minimization program can minimize GRMs for all
the functions up to five variables, and some functions
with more inputs. We have completed the table of min-
imum GRMs with up to five-variable functions. Thus,
the minimum GRMs with up to five variables can be
found in a table look-up method. The table of mini-
mum GRMs is also useful in a heuristic optimization
program for GRMs with six or more inputs.
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