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An Exact Minimization of AND-EXOR Expressions
Using Encoded MRCF
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In this paper, an exact-minimization method for an AND-EXOR expressions (ESOP) based
on an EMRCF is proposed. Sasao proposed an MRCF-based method for ESOP minimization
as an improvement of the method based on a Helliwell function, and EMRCF is an MRCF
applying a novel encoding so that size of BDDs for MRCF is reduced.

The proposed algorithm is implemented and evaluated on Sun -SPARC station 10 with
192MB main memory. From experimental results, it is shown that required space is reduced
to 1/3 in the best case compared with the conventional method based on MRCF.



.1 Introduction

Utilizing ezclusive-OR (EXOR) gates, logic networks
can be implemented with fewer number of gates and
interconnections compared with AND-OR networks.
For example, arithmetic, telecommunication, and er-
ror correcting circuits are realized efficiently by uti-
lizing EXOR gates. To enable efficient EXOR-based
design, development of CAD tools that utilize EXOR
gates is indispensable.

Arbitrary product terms combined by EXORs is
called an ezclusive-or sum-of-products ezpression (ESOP).
Various studies have been made for exact- and quasi-
minimization of number of product terms of an ESOP
for a given Boolean function, including [1]. Recently,
Perkowski et al. [2] formulated the problem by us-
ing a Helliwell equation. Let n be the number of
input variables of a given Boolean function, a Helli-
well equation is an equation of 3® Boolean variables,
and a minimum ESOP for the given Boolean function
corresponds to a solutions of the Helliwell equation
with minimum number of 1’s. Sasao [3] proposed a
method based on a reduced covering function (RCF),
a generalization of the Helliwell function, to solve
greater problems by assuming that exact minimum

FSOPS for r-variable Boolean functions are known
or a small constant r, e. g., 1, 2, 3, and 4. To 1m-

plement the algorithm efficiently using binary deci-
sion diagrams (BDDs) [4], a modified reduced cover-
ing function (MRCF) was also developed.

In this paper an encoded modified reduced cover-
ing function (EMRCF) is proposed to solve greater
problems by reducing the required space to generate
a BDD for MRCF. From experimental results, 6-, 7-,
8-, and 9-variable Boolean functions of up to respec-
tively 10, 9, 8, and 8 product terms in ESOP are
minimized within 192 MB main memory, and shown
that required space is reduced compared with the
conventional method based on MRCF.

2 Preliminary
2.1 Reduced Covering Function (RCF)

Def. 1 Let r be a non-negative integer constant, r =
(2n,...,21) be Boolean variables, and f(z) be an n-
variable Boolean function (n > r).

Def. 2 Let a = (@n,...,ar41). Let ' (r+1 <
i < n) be literals Z;, z;, and 1, if ¢; are 0, 1, and 2,
respectively.

Let us consider the following ternary expansion

of f
@= ¥

a€{0,1,2}n-r

(zgr A A A

Ja(Zry ... 21)), (1)

where g, (a € {0,1,2}""7) is an r-variable Boolean
function.

Def. 3 Let p = (pn,...,pr41), and b = (b,,...,b;).
Let g = (ga(2r,...,71) | @ € {0,1,2}*"7) be a tu-
ple of 3"~ r-variable Boolean functions. A Reduced
Covering Function (RCF)[3] R(g) is a Boolean func-
tion of g defined as follows :

R(g) =

A A

p€{0,1}n-r be{0,1}"

fehe ¥ ga(b)) ,
ac P,
(2
where P, = {a € {0,1,2})" " [r+ 1< Vi< n(a =
2Va; = p,)}

Intuitively, P, represents a set of cubes that cover
a cube represented by p.

Proposition 1 Equation (1) holds for all possible
combinations of values for z € {0,1}", iff a tuple ¢
of r-variable Boolean functions satisfy an equation
R(g)=1.

Example 1 When r = 0, R(g) is equivalent to the
Helliwell function {2].

Def. 4 Let ¢(gs) be a minimum ESOP for an r-
variable Boolean function g4, and 7(g4) be the num-
ber of product terms of ¢(gq). Let

rs(g) = Z

a€{0,1,2)n-"

7(9a)-

It is possible to generate a complete look-up table
to obtain a ¢(g;) and 7(gs) for 7 up to 4. From
Proposition (1), an ESOP for f is associated for every
solution of the equation R(g) = 1 as follows :

E (z3r A ATl A

a€{0,1,2}n=r
¢(gd(zf) s 11"1)))7

and the number of product terms of the above ESOP
is mx(g).

Therefore, a minimum ESOP for f is derived by
finding a solution of the equation R(g) = 1 that min-
imizes 1x.

To solve the problem exhaustively using Binary

Decision Diagrams (BDDs) [4], Sasao introduced 37727

Boolean variables, say gap (¢ € {0,1,2}"" 7, b €
{0,1}"), defined as follows :

9ab = ga(b) (a € {0,1,2}""", b e {0,1}") (3)

Example 2 When n = 3 and 7 = 1, R(g) is as
follows :

R(g)

(m D goo,0 D go2,0 D g20,0 B gzz,o)
(m D g00,1 D goz2,1 D 920,10 B gzz,:)
(WEB go1,0 D goz,0 D g21,0 B 922,0)
(m@gom @ goz,1 D g21,1 EByzz,n)
(m@gm,o D g12,0 D g20,0 ® yzz,o)
(m@ g10,1 @ g12,1 D g20,1 D 922,1)
(T(T.T.O—) D 11,0 D g12,0 Dga1,0 D yn,o)
A (T(I.Tl)fou,x D 9121 D g211 D 922,1)

A minimum ESOP for a given Boolean function
f is derived by generating a BDD for R(g) and then
finding least cost path from the root node to the ‘1’
leaf node of the BDD (the cost criteria is Ts.)

BDD size for an RCF R(g) become smaller if
greater value for r is chosen, because the number
of BDD variable 3" 72" become smaller. Therefore,
it is better to choose greater value for r as long as
evaluation of 7y is not too complex.

> > > > > >



Figure 1: Ug for n = 5, when r = 4 (25,052 nodes)

2.2 Modified Reduced Covering Func-
tion (MRCF)

If we try generating a BDD for an RCF, the size of
the BDD become so large that we cannot generate
it within main memory of our computer, unless n is
very small. Sasao proposed to generate a BDD for a
modified reduced covering function (MRCF) instead
of an RCF.

Def. 5 A modified reduced covering function (MRCF) (3]

is defined as Ugogg)/\R(g), where R(g) is an RCF, to
is the number of product terms of a near-minimum
ESOP for f, and upper bound function (UBF) U, (g)
is a Boolean function defined as follows :

_f1 ifrglg) <t
U‘°(g)_{ 0 otherwise °

to is assumed to be derived by a “preprocessor”
such as EXMIN2 [1].

Sasao also reported [3] that 0-suppressed BDDs
(ZBDDs) [5] are more efficient than conventional BDDs
to solve the problem in this way.

ZBDD size for an RCF R(g) become smaller if
greater value is chosen for r, however, peak size of
ZBDDs (maximum required space during generating

a ZBDD) for an MRCF Uy, (g)AR(g) is larger in most

cases when 7 = 4 is chosen than when » = 2 or 3 is
chosen. This seems because of the UBF Uy (g) whose
ZBDD become more and more complex as r and n
and to become greater and greater. When » = 0, a
UBF is a symmetric threshold function and its BDD
size is small. When r = 1, a UBF is not a threshold
function, but a unate function. However, UBFs be-
come more complex functions as r become greater.
Fig. 1 shows the ZBDD for Us for n = 5 by choos-
ing r = 4 (variable ordering is similar to [3].) To
solve “greater” problems, it seems better to develop

? new meth%d to reduce the size of ZBDD for UBF
or r =3 and r = 4.

3 ESOP Minimization Based on
EMRCF

3.1 Encoded Modified Reduced Cov-
ering Function (EMRCF)

Equation (3) provides a straight forward way to rep-
resent an r-variable Boolean function g, by a se-
quence of 27 truth values {gqs | b € {0,1}7). In
this section, an encoding method for representing g,
is proposed, which reduces drastically the size of ZB-
DDs for UBF when 7 = 3 and r = 4.



Table 1: Qrdered list of all 2-variable Boolean func-
tions and 1ts encoding

Boolean Sorting keys Encoding
function {[ ferms | Truth values || s in binary
0 U 00 0010 0 00
T2 1 0 0 0 1§00 0 0 1
Tz 1 0 0 1 0JJ0 0 1 O
I 1 0 0 1 1)0 0 1 1
oI 1 0 1 0 00 1 0 O
I 1 01 0 1106 1 0 1
zo2 1 1 0 0 0fJ0 1 1 O
z 1 1 0 1 0fj0 1 1 1
zy 1 1 1 0 01 0 0 O
1 1 1 1 1 11 0 O 1
To® ) 2 o 1 1 o1 0 1t O
1® zy2y 2 0 1 1 1)1 0 1 1
o@D Iy 2 16 0 141 1 0 O
1D 2.7, 2 1t 0 1 1h1 1 0 1
10 z22; 2 1 1 0 141 1 1 O
1 293 2 1 1 1 ofj1 1 1 1

Def. 6 Number vs(e) for an element € of an ordered

set S is defined as the number of elements which
precedes e in S; vg(e) = 0, if e is the first element of

Def. 7 Let Sy and S be ordered sets (S; NSy = ¢.)
S = 5,#8S, is a concatenation of ordered sets S; and
So; let ey € Sy and ea € Sa, vs(e1) = vs,(e;) and
vs(e2) = vs,(e2) + |S1]-

Def. 8 Let 7" be the maximum number of prod-
uct terms of exact-minimum ESOPs of all r-variable
Boolean functions (e. g, ' = 1, 12 = 2, 3 = 3,
7% = 6.) Let G} be an ordered set of r-variable
Boolean functions whose number of product terms
of exact-minimum ESOPs are #, and assume that r-
variable Boolean functions are ordered in G} by lex-
lcographlcal order of their truth values (€ {0,1}?".)

An Oﬂdel;fd sf% ? of all r-variable Boolean functions
1s define ollow!

= GS#GI#"'#G:'

Example 3 Table 1 shows all the 2-variable Boolean
functions sorted by the minimum number of prod-
uct terms of ESOPs and the lexicographical order of
truth values. This table also shows the value of vg2
for every 2-variable Boolean function.

Let us consider to use vgr(g,) to represent g,
instead of truth values of g,.

Def. 9 Let ys = vg-(ga) (a € {0,1,2}*77), and let
y= (¥ | a €{0,1,2}"77). Uy (y) A R(y) is called
an encoded modified reduced covering function (EM-
RCF), where Uy,(y) and R(y) are defined as follows

Usy(v) Uty ((vG+ (va) | @ € {0,1,2}77))
R(y) R((vg+(va) | a € {0,1,2}"""))

To solve the equation Uy, (y) A R(y) = 1 exhaus-
tively using ZBDDs, let us introduce 3"~72" Boolean
variables, say yap (a € {o, 1,2}"77, 0 < b < 27), de-
fined as the b-th digit of y, in binary.

Clearly from the definition of vgr, U, (y) is a
unate (negative) function of y, and the BDD size

Table 2: Comparison of ZBDD size for Uy, and Uy,

[ n I to I ZBDD size for U, ZBDD size for U,

r=2 r=14 r=2 r=4|

2 [ 1,210 25,052 934 333

7 1,425 29,554 | 1,107 463

ol il merl
816 [ 3856 108,002 | 2.086  I,72T|

7 4,611 139,498 | 3,591 2,239

8 5,360 170,990 4,189 2,745

9 6,095 202,408 4,778 3,227

10 6,824 232,802 5,360 3 682

71 6 11,794 356,852 9,142 5,735

7 | 14169  469.330 | 11,043 7/567

8 16,538 581, 1804 12,937 9,387

9 21, 1242 805, '580 | 16,700 12,952

for Uy, (y) is expected to be small. Fig. 2 shows the

ZBDD for Ug for n = 5, r = 4. Compared with
Fig. 1, structure of ZBDD is drastically simplified.
Table 2 shows the ZBDD size for several cases. From
this table, ZBDD size for Uy, () is much smaller than
Ut,(g9). This fact enables us to choose r = 3orr = 4.

After the ZBDD for Uy, (y) is generated, a ZBDD
for U, (y) A R(y) is generated. This step is a lit-
tle more complicated than the case of conventional
MRCF because of VE;‘,‘. For example, from table 1,

vgs is derived as ga11 = Ya3¥a1 V Ya2Va1, a0 =
Ya3 ® (Ya2¥a1), Jao1 = Ya3yao V (Ja2z V Ya0)¥a1, Javo =
Ya3Ya2Tao V (Fa2 V Ja1)Vao. Size of ZBDDs which rep-
resent g,y by variables y, is smaller for greater b.
From this fact, it is efficient to generate EMRCF by
evaluating gas ‘of greater b prior.

After ZBDD for Uy, (y) A R(y) is generated, a
solution, say y, is obtamed by finding a path from
the root node to the ‘1’ leaf node of %le graph, and
g is decoded from y by UG,. To make sure that
it is the minimum solution, generate a ZBDD for
(U,n(y) A R(y)) AUy, _1(y) and check that it is false,
i. e., there is no ESOP of product terms less than
to — 1. In fact, ZBDDs for U.(y) (0 < i < 1) are

easily obtained as byproducts of U,o(y)

3.2 Efficient Implementation

Using a transformation ¥; Ags = 1 A(1® ) ® 92)
repeatedly to the right side of Equation (2), we have

R(g) =

A A (m@ Ega(b)),

g€{0,2}"-7 be{0,1}7 G€Q,
4)

where @, = {a € {0,1,2}* " |r+1<Vi<n.((g; =
2= aq; #2)A(a, =2Va; _q,))} and f(...,2,...)
denotes f(.. e f(..

Intultlvely, Qq represents a. set of cubes that cover
exactly one combination of values that is also covered
by a cube represented by q. This transformation is
a generalization of a transformation which is origi-
nally developed for exact-minimization of generalized
Reed-Muller expressions [6]
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Figure 2: Encoded Ug for n = 5, r = 4 (383 nodes)

Example 4 When n = 3 and » = 1, R(g) is as
follows :

R(g)

(f(O. 0,0) @ goo,0 D go2,0 D g20,0 D yzz,o)
(f(O'O, 1) @ goo,1 D go2,1 D g20,1 D gzz,l)
(f(0.2. 0) D goo,0 D go1,0 D ga0,0 D 921,0)
(m@ goo,1 D go1,1 ® g20,1 & yzn,:)
(72.0,0) @ go0,0 ® g02,0 ® g10,0 ® 912,0)
(me goo,1 D go2,1 D g10,1 D ynz,n)
(F2:2,0) @ g00.0 ® gor,0 B g10,0 B 911,0)
(M@ goo,1 D go1,1 D gi0,1 ® gll,l)

> > > > > > >

Using R(y) of the form based on Equation (4)
and employing the variable ordering of ZBDD illus-
trated in the following example, peak size of ZBDDs
is reduced.

Example 5 The employed variable ordering for n =
3,r=11s as follows :

Y22,1 > Y22,0 > :

Ya1,1 > Y21,0 > Y20,1 > Y20,0 >
V12,1 > V12,0 > Yo2,1 > Yoz,0 >
Yi1,1 > Y11,0 > Y10,1 > Y10,0 >
Yo1,1 > Yo1,0 > Yoo,1 > Yoo,0

4 TImplementation and Evalua-
tion
4.1 Implementation

A program based on the proposed algorithm is devel-
oped and evaluated on Sun SPARC station 10 with
192MB main memory. The employed 0-suppressed
BDD package requires about 25 bytes per a node.
For comparison, another version based on the con-
ventional MRCF method is also implemented. Vari-
able ordering for the latter version is the same as [3)].

Both EMRCF version and MRCF version pro-
gram include a preprocessor to obtain a quasi-minimum
ESOP for the given Boolean function to set the pa-
rameter {o for the main routine. This preprocessor

is based on EXMIN2 [1].

4.2 Experimental Results

Table 3 shows the time and space required for gen-
erating exact-minimum ESOP for several randomly
generated Boolean functions. For all these sample
Boolean functions, the preprocessor generated exact-
minimum solutions, therefore, this table represents
the required resources for the preprocessor plus those
for the main routine which guaranteed that there is



Table 3: Experimental results

[Function J| EMRCF I MRCF 1 I
[ [t ]| r] #Fnode(Peak) A | time (scc.) || r [ #node(Peak) B T time {sec.) i B/A
5 613 6,538 T332 9,684 1.81 1.48
713 19,818 2.76 | 2 31,372 3.50 1.58
8| 4 32,790 9.64 || 3 93,160 13.67 2.84
914 81,821 17.69 }| 4 153,746 20.79 1.88
6 63 20,378 3924 2 37,294 6.61 1.83
73 55,858 10.71 | 2 112,742 16.43 2.02
8 4 239,328 90.50 || 2 408,044 83.37 1.70
9114 7,88 25829 || 1 1,713,586 62.6 1.85
10 | 4 3,562,054 1,037.82 | 2 6,565,711 1,528.84 1.84
ke [ IR 45,345 1466 || 1 86,715 27.34 1.91
714 149,600 190.41 | 1 419,499 99.89 2.80
81 4 568,133 328.79 || 2 1,184,208 242.68 2.08
914 2,695,316 828.31 || 2 4,954,085 964.17 1.84
8 6 3 187,284 T6008 [f [ 257,173 264.41 T.37
T4 415,605 143146 || 1 872,179 473.56 2.10
813 2,155,435 1,069.54 || 3 5,985,686 2,084.39 2.78
9 [ 126,147 10,560.13 || 1 942,630 2,606.26 130§
714 1,067,834 10,382.22 i 2 3,373,383 2,586.07 3.16
8 113 6,431,434 5,465.67 || * > 8M) — —
n : Number of input variables of the given Boolean function .
t : Number of product terms of an exact-minimum ESOP for the given

Boolean function .
EMRCF, MRCF : Results on programs based on proposed EMRCF and conventional
MRCF, respectively (best r is chosen among 1, 2, 3, and 4 to reduce

#node(Peak))
#node(Peak) : Maximum number of nodes required during computation
time : Elapsed (real) time for computation on Sun SPARC station 10 with

192 MB main memory

not any better solution than one obtained by the
preprocessor. For each samples, this table shows the
result among 1, 2, 3, and 4 for the parameter r that
require smallest space for ZBDD.

From this table, a 7-variable Boolean function
st fIBhE irerhy BREE Lhion
while 419,499 nodes of ZBDD space are required by
MRCF version. In case of a sample Boolean func-
tions of (n,t)=(9,7), required space is reduced to
1/3.16. Within 192 MB main memory, 6-, 7-, 8-, and
9-variable Boolean functions of up to respectively 10,

of ZBDD space, while 419,499 nodes of ZBDD space
is required by the conventional MRCF-based method.
Within 192 MB main memory, 6-, 7-, 8-, and 9-
variable Boolean functions of up to respectively 10,
9, 8 and 8 product terms in ESOP are minimized,
and in all cases, required space is reduced compared
wnkl‘fxléedg(\)'gﬁs‘é nmaélt%%(ijsl? egg%%%eﬁ‘%ghgg ‘used for
EXOR-based design, e. g., technology mapping and
FPGA design, and evaluation of the quasi-minimization
algorithms for deriving ESOPs.

9, 8 and 8 product terms in ESOP are minimized, and

in all cases, required space for the EMRCF version References

is smaller Hlan the MRCF version. . {11 T. Sasao : “EXMIN2: A simplification algorithm
rom these experiments, r = 4 seems an optimal

choice to reduce space, and r = 3 seems an optimal

choice to reduce tinle for the ED@R(%F ver{sion in mos
cases. For example, sample Boolean functions o
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r=2orr = 1seems an optimal choice for the MRCF
version.

5 Conclusion

In this paper, we have discussed on the exact-minimization

of ESOP for a given Boolean function, and introduc-
ing a novel encoding method to reduce the size of
BDDs, a new algorithm based on an EMRCF, an
improvement of the MRCF (3], is proposed.
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