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Abstract: Routability with the number of nonplanar connections (jumpers in single-layered design or
nets connecting different layers thorough vias in multi-layered one) kept small is one of basic requirements
in layout design of printed wiring boards. The subject of the paper is to propose a method of reducing
nonplanar connections in extracting a spanning subgraph from the graph model of a given circuit. It
is based on transforming the graph model without changing connection requirements of the circuit.
Experimental results are provided to show its capability.
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1 Introduction and Motivation

The paper proposes a method of reducing non-
planar connection (jumpers in single-layered design
or nets connecting different layers thorough vias
in multi-layered one) in layout design of printed
wiring boards.

We have developing MULTI-PRIDE (MULTI-
layered PRInted wiring DEsign system), a support
system for designing multi-layered printed wiring
boards [17, 18]. Here, a multi-layered printed wiring
boards means one printed wiring board consisting
of n layers for n> 1 (see Fig.1), where if n > 3 then
the first and last layers are called outside layers and
any other layer is called an inside layer. (In case of
n = 2, the first layer is called an outside layer, and
the last layer is called an inside one.) Elements
are placed on one or both of the outside layers and
routing is executed on outside layers and/or in-
side layers. Inside layers will be provided if any
connection requirement remains unconnected after
routing on outside layers: additional inside layers
may be inserted one by one until all connection
requirements are connected.

The designing flow of MULTI-PRIDE consists
of (i) circuit bipartition, (ii) placement and routing
on each outside layer (often followed by moving
some elements to specified positions), (iii) routing
on inside layers, (iv) modification of wiring and
compaction. This paper is concerned with (i) and
(ii), the latter of which is based on planar subgraph
extraction and rectangular dualization.

Increase in the number of nonplanar connec-
tions causes deterioration in the quality of boards,
a rise in manufacturing cost, and so on. Therefore,
from practical points of view, sufficient routabil-
ity with the number of nonplanar connections kept
small is required as basic capability for printed
wiring board design system.

There are some known algorithms that extract
a spanning planar subgraph with maximal or al-
most maximal number of edges. See [2] for pla-
narity testing and embedding, and [3, 6, 9, 10,
14] for planar subgraph extraction. Unfortunately
they are unlikely to be useful in practical design
process due to lack of capability of handling phys-
ical conditions specific to design of printed wiring
boards. Therefore MULTI-PRIDE uses the algo-
rithm PLAN-PWB or PLAN-MW. PLAN-PWB,
proposed in (5], is one of vertex addition algorithms
and uses PQR-trees [9] for finding a planar span-
ning subgraph of a given graph and for handling
such physical conditions. PLAN-MW is based on
the path addition algorithm and is proposed in
{12, 13] for the similar purpose. It has capabil-
ity of placing some elements to specified locations
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Figure 1: An example of one printed wiring board
consisting of four layers (shown as if they were sep-
arated).

of a board. However those nonplanar edges, which
are deleted from a given graph by these two al-
gorithms, do not necessarily correspond to actual
nonplanar connections.

The subject of the paper is to propose a method
of reducing actual nonplanar connections in ex-
tracting a spanning planar subgraph from the graph
model of a given circuit. It is based on transform-
ing the graph model without changing connection
requirements of the circuit. Experimental results
provided show capability of the proposed method.

2 Preliminaries
2.1 Physical Conditions

Placement and routing on outside layers are
considered under the following physical conditions
1-5.

1. There are three kinds of elements; linear ele-
ments (Fig.2), up-sided elements (Fig.3 (a)),
each having a specified side which has to be
faced to the board in actual mounting, and
free elements (Fig.3 (b)) that have no such
constraints. Usually a free element with just
two terminals is represented as a linear one.

2. Each element is to be placed on one outside
layer of a board, and each up-sided element
must be placed as it should be.

3. Wires connecting different layers pass through
vias. Wires on outside layers are called out-
side wires and those on inside layers are called
inside wires.

4. No two wires on any one layer can cross each
other.

5. Routing through element-areas (an area on
the board to be occupied by an element) is
prohibited. (We add this condition for sim-
plicity of discussion, since this problem itself
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Figure 2: Representation of a linear element.
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Figure 3: Representation of elements: (a) an up-
sided element as a clockwise directed cycle; (b) a
free element as a wheel graph.

contains an NP-complete problem [8], mak-
ing the discussion too complicated. This re-
striction may be removed by incorporating
postprocessing. Routing without this con-
straint is under investigation.)

2.2  Graph Models

We use a graph model called a terminal-vertez
graph Gp = (Vr,Er). Suppose that a circuit is
given by net lists. A maximal set of terminals re-
quiring electrical connection among them is called
a net, where distinct nets should have no electrical
contact. If we are given a circuit (as in Fig.4) then
we represent it as a graph Gr (as in Fig.5).

Gr is defined as follows. Represent each two-
terminal element by an edge, and other elements
by graphs as shown in Fig.2 for linear elements
or in Fig.3 (a) for up-sided ones or (b) for free
ones. These vertices are called terminal vertices,
and we call these edges non-removable edges, which
have to be included in any planar subgraph to be
extracted. Each two-terminal nets is represented
as a simple edge, and each of other multi-terminal
nets is represented by a star-shaped steiner tree
(defined by a new vertex, called the net verter,
and the edges connecting the net vertex and each
of its terminal vertices). We call those edges for
representing nets net edges.

In general, a multi-terminal net can be repre-
sented by a complete graph or a spanning tree. In
case of representation by a complete graph, how-
ever, the number of nonplanar edges tends to in-
crease in the subsequent planar subgraph extrac-
tion. If we adopt representation by a spanning
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Figure 4: An example of a circuit and the set of
net lists.

tree, the number of nonplanar edges greatly varies,
depending upon the structure of the created tree
for each net. Therefore we represent each multi-
terminal net as a star-shaped steiner tree. The net
vertex for each net represents routing area for the
net, as will be shown by rectangular dualization in
2.3.

In this paper, without loss of generality, we as-
sume that Gr is a connected graph. For a con-
nected graph G and a cutpoint v of G, let V1, ..., V;
denote the vertex sets of connected components of
G —v. The subgraph of G induced by each V; U {v}
(or, for simplicity, its vertex set itself) is called a
v — block.

2.3 Rectangular Duals

Given any circuit, we first partition it into two
subcircuits by an existing bipartitioning algorithm
(16], and construct Gy for each subcircuit. Then
we extract a spanning planar subgraph from each
graph model Gr. Some of nonplanar edges may
correspond to actual nonplanar connections: oth-
ers may be created because of representation of
nets. Connection requirements represented by this
planar subgraph are to be embedded without vi-
olating physical conditions. In order to handle
placement simultaneously with routing, this planar
subgraph is rectangular-dualized by adding some
new vertices and edges so that the resulting graph
may have a rectangular dual (such a planar graph
is called a PTP graph: see [7, 18]).



Figure 5: The terminal-vertex graph Gr =
(Vr, ET) for the circuit in Fig.4.

A rectangular dual R(G) (see (1, 4, 7] for ex-
ample) of a connected planar graph G correspond
to a dissection of a whole rectangle into a set of
subrectangles each of which represents a vertex of
G, and two subrectangles share a side if and only
if corresponding two vertices are adjacent in G.
It has capability of controlling placement: mak-
ing two subrectangles adjacent is done by adding
an edge between corresponding vertices in G, and
conversely placing two subrectangles apart can be
realized by creating a path of appropriate length
between corresponding two vertices of G, where
addition of new vertices or edges may be required.

3 Reducing Nonplanar Connections

In this section, without loss of generality, we
consider only single-layered design, since each out-
side layer design can be considered as single-layered
one.

3.1 Basic Idea

Nonplanar edges found by planar subgraph ex-
traction are net edges representing two-terminal
or multi-terminal nets. In constructing the graph
model of a given circuit, a multi-terminal net is rep-
resented by a star-shaped steiner tree where the net
vertex is a steiner point. However, as mentioned in
2.2, multi-terminal nets do not have to be so repre-
sented. As long as connection requirements are in-
corporated, any representation of a multi-terminal
net will do.
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Figure 6: Representation of a multi-terminal net
(vertices 1 through 5 are the terminal vertices and
the vertex 6 is the net vertex): (a) a star-shaped
steiner tree; the edges (3,6) and (4,6) are nonplanar
edges corresponding to virtual nonplanar connec-
tions; (b) after transformation, (3,6) is a nonplanar
edge corresponding to an actual nonplanar connec-
tion.

\

In the example of Fig.6 (a), we assume that
edges (3,6) and (4,6) are removed by planar sub-
graph extraction as nonplanar connections. If we
can transform (a) to (b), then one nonplanar con-
nection will be excluded without changing connec-
tion requirement, leaving (3,6) as the only non-
planar connection. This is the basic idea of the
method to be proposed. In other words, if some
nonplanar edges are found, then we consider them
as virtual nonplanar connections. Actual nonpla-
nar connections (actually processed as nonplanar
connections) will be fixed by transforming repre-
sentation of multi-terminal nets with connection
requirements kept unchanged. This is how we re-
duce the number of nonplanar connections.

We try to detect possibility of such transforma-
tion by processing faces in a plane graph one by
one. A face of a plane graph is a maximal region
of the plane such that, for every two points z and
y in it, there is a continuous line from z to y which
does not contain any point in the outside. If there
is any face whose contour contains at least two ter-
minal vertices belonging to the same net then we
can add planar connections among them. There-
fore we can increase planar connections, leading to
reduction of nonplanar connections.

We call a net npc-reducible (with respect to the
current plane graph) if and only if there is any
face whose contour contains at least two terminal
vertices of the net. A face f is called npc-decreasing
if and only if there is a net N with Vp(N) # ¢.

For example, suppose that the multi-terminal
net of Fig.6 (a) is located as in Fig.7 (a). In Fig.7
(a), we can exclude one nonplanar connection by
means of the transformation from (a) to (b) of
TFig.6: by adding a planar edge between terminal
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Figure 7: Detection of vnpc-reducibility of the
multi-terminal net of Fig.6 (a): (a) npc-reducible;
(b) npc-irreducible case.

vertices 3 and 4 and by deleting the edge (4,6).
On the other hand, since terminal vertices 3 and 4
exist in the contours of the different faces in Fig.7
(b), we cannot add a planar edge between them
and, therefore, the number of nonplanar connec-
tions cannot be reduced.

In the following section, we explain details of
procedure MNC for reducing nonplanar connec-

tions by finding npc-reducible nets and npc-decreasing

faces.

3.2 Procedure MNC

We fix any terminal-vertex graph G = (Vr, Er).
Let V,, or V; denote the set of net vertices or that of
terminal vertices, respectively, where Vpr = V,,UV,.
Let E,, denote any set of nonplanar edges found
by planar subgraph extraction from Gr. Let E,
denote the set of net edges, and let Gplanar =
(Va UV, Er — E,p) denote the resulting spanning
planar subgraph of Gr. Let us fix any plane em-
bedding of Gpianar. For any face f of Gplanar and
any net N C V;, let V¢(V) denote the set of ter-
minal vertices contained in the contour a(f) of f,

and let
Vi=J Vy(NV) .
N

A face f is adjacent to another one f if and only if
a(f) shares at least one vertex with a(f’). For any
face f, a(f) consists of one cycle 7(f), called the
main cycle of a(f), and several w-blocks for some
cutpoints w contained in a(f). Here w-blocks are
called attachments of 7(f) at w. Let f’ be any
face adjacent to f, and suppose that there is any
attachment B,, of 7(f’) at w contained in 7(f’)
and 7(f). The subcontour of a(f’) enclosing B,,
(as if it were the contour of the external face of B,,)
is denoted by B,,(f’; f) and is called an attaching
subcontour (of a(f’) at w).

Figure 8: Ilustration of step3. (Each black vertex
shows that it satisfies the condition (a) or (b) in
step2.)

First we find V; for each face f except those
whose contours are directed cycles representing up-
sided elements of Gpianer- This is done by setting
6 — a(f) initially and then by executing the fol-
lowing steps 1-4 at each terminal vertex v of §. If
0 = a(f) then we proceed 8 clockwise.

stepl. Set V; « ¢.

step2. If v is a cutpoint then goto step3. Else if v
satisfies one of the following two conditions
(a) and (b), then set Vy — Vy U {v}.

(a) a nonplanar edge is incident upon .

(b) v is a terminal vertex upon which ex-
actly two non-removable edges of a lin-
ear element having at least three termi-
nals are incident.

step3. For any face f' (# f) adjacent to f, exe-
cute step2 by setting 6 « B,,(f’; f) for each
cutpoint w contained in a(f’) and 8, where
if @ # a(f) then we proceed 6 counterclock-
wise. (This may create recursive calls to the
step as shown by bold lines of Fig.8. Re-
versing the direction is required in order to
properly handle directed cycles representing
up-sided elements.)

/% If V; = ¢ then f is not npc-decreasing. */

step4. If V; # ¢ then delete any terminal vertex
satisfying one of the following two conditions
from Vy:

(i) vis aterminal vertex with V¢(N) = {v}
for some net N;
(i) v is a terminal vertex of a net N such

that V¢(N) includes only vertices satis-
fying the condition (b) of step2.

—101—-



Figure 9: Fixing actual nonplanar connections.
(Broken lines marked with X represent edges ex-
cluded from E, and bold lines represent edges in
E,44. The open vertex represents a net vertex.)

/* Consequently if Vy = ¢ then f is not npc-
decreasing. */

Any vertex v of Vy is included in a(f) or in an
attachment of 7(f’) at some cutpoint w’ contained
in 7(f') and 7(f), where f’ is adjacent to f (see
Fig.g8).

Define the cost cs(v) of any vertex v of V¢ by
the following (1)-(3).

(1) Ifvy,..., vy, are terminal vertices added to Vy
during the search in any one attachment of
7(f) at a cutpoint w contained in 7(f) and

* if v is equal to some v; then we set cf(v) =
m.

(2) If v is contained in 7(f) then we set ¢f(v) =
0.

(3) If vy, ..., v, are terminal vertices added to V}
during the search in any one attachment of
7(f') at a cutpoint w’ in 7(f’) and 7(f), and
if v is equal to some v; then we set cf(v) =
n.

Secondly, if V5 # ¢ then we number vertices
of V5 in the order of their addition into V; dur-
ing the search along a(f). Now we will find one
or more sets E}’) of edges satisfying the following
three conditions (i)-(iii).

(i) Each edge in E}i) is a planar edge between
terminal vertices of V;(IN) C V; for some net
N.

(it) G = (Vo UV, {En — Enp} U E}i)) is a simple
graph, where E,, is the set of net edges of
Gr.

(iii) No cycles exist in G.

Let V;;Zi( f) denote the set of endvertices of
edges in EJ(,') and let

Zoevi )

_cost(f; E;i)) = :
1B

Let E; be any edge set chosen as follows:
cost(f; Ef) is minimum among those cost(f; E(;))

with |Ey] being maximum among |EYY|. We can
find such Ey by extending the algorithm which is
proposed in [15] for finding a maximum indepen-
dent set of a circle graph, based on the dynamic
programming.

Thirdly we construct an edge set E,4q4 based
on cost(f; Ef). Edges of Faq4q are to be added to
Gplaner Without violating planarity. We set Eqaq =
¢, and find a face, having the smallest cost among
those npc-decreasing faces not yet processed, as the
target face f for which the following operation is
executed:

Eodd — Eqqa U Ey,
Gplanar At Gplanar + Ef1
and update faces and cutpoints of Gpianar-

These operations are repeated until no npc-decreasing
faces exist.

After executing the above operations, G = (V,U
Vi, {En — Enp} U Eqqq) is necessarily a forest F' =
{T\,Tz,...,Tm}. For each tree T;, we execute the
following operation starting from an arbitrary ver-
tex of T;.

o If T; contains any net vertex then delete from
Eyp all edges incident upon vertices in T;.
Otherwise select an arbitrary vertex v in T}
and delete from E.,, every edge incident upon
any vertex except v of T; (Fig.9).

We can reduce nonplanar connections by the
number of edges in Eyq4q finally obtained. Edges
left in E,,, are to be actual nonplanar connections
(Fig.9).

3.3 Application to Circuit Bipartitioning

A circuit-bipartitioning algorithm that tries to
minimize the number of vias of multi-layered printed
wiring board design is proposed in [16]. MULTI-
PRIDE uses this algorithm. The main point of
this algorithm is that a bipartition having small
number of nonplanar connections is obtained. This
is because reducing the number of nonplanar con-
nections, even if it may result in increase in the
number of cutnets, has possibility of leading to a
layout with smaller number of vias. This algorithm

-102—



first obtains an initial bipartition of a given circuit
and then improves this partition by moving ver-
tices from one block to the other and by extracting
a spanning planar subgraph. Improving an initial
bipartition uses a measure in order to prevent in-
crease in the number of nonplanar edges. The idea
behind this is that reducing the number of nonpla-
nar edges leads to decreasing the number of non-
planar connections and, therefore, the number of
vias.

This algorithm considers every nonplanar edge
to be an actual nonplanar connection. However a
nonplanar edge found by planar subgraph extrac-
tion does not necessarily correspond to an actual
nonplanar connection. In other words, ”nonplanar
connections” in this algorithm should be consid-
ered as virtual nonplanar connections in procedure
MNC. Since this procedure reduces nonplanar con-
nections, we may obtain a desired bipartition hav-
ing smaller number of vias, by executing procedure
MNC after planar subgraph extraction.

4 Experimental Results

The proposed method have been implemented
on a personal computer GATEWAY2000 (CPU:
Pentium/120MHz, OS: FreeBSD 2.1) with the C
programming code. We use actual circuits and
randomly generated ones as input data. Actual
circuits data (given by net lists) are taken from
audio circuits.

For each actual circuit, Table 1 shows the num-
ber of virtual nonplanar connections by PLAN-
PWB and actual ones by procedure MNC in the .
columns "V_NC” and " A_NC”, respectively, where
the numbers of vertices and edges of the graph
models are given in the column ”#node” and
" #fedge”, respectively. The column "CPU(s)” shows
the computation time (in second) spent by proce-
dure MNC.

For each randomly generated circuit, Table 2
shows the average number of virtual nonplanar con-
nections by PLAN-PWB and actual ones by pro-
cedure MNC in the column "V.NC” and "A_NC”,
respectively, over 30 input data (15 input data in
the casel and 15 input data in the case2), where
the graph models have the number of vertices in
the intervals given in the column ”#node”. The
column "ratio” shows the ratio A NC / V.NC. The
column ”casel” (”case2”, respectively) shows that
the number of terminals in each net is no more
than 10 (no more than 50).

For each input data, Table 3 shows the number
of cutnets and of actual nonplanar connections in
the column "CN” and "NC”, respectively, where
input data have the number of terminals and of

Table 1: Experimental results for actual circuits.

#nodeg#edgd V.NC | ANC | CPU(s)
datal| 113 | 83 9 9 0.04
data2} 141 | 104 6 6 0.05
data3| 229 | 176 9 9 0.11
datad| 242 | 188 21 20 0.23
datad| 233 | 173 21 20 0.27
data6| 285 | 216 24 22 0.39
data7| 146 | 108 17 14 0.14
data8| 142 | 114 14 14 0.07
data9| 357 | 285 28 27 0.38
datal(y 276 | 212 41 23 0.96

Table 2: Experimental results for randomly gener-
ated circuits.

casel case2
#node [V.INCAN( ratio [V .NCAN( ratio
1-100 (12.4(11.8| 0.95 {11.4(10.6| 0.93
101-150 | 21.8{20.4| 0.94 [19.6|18.2| 0.93
151-200 {27.6126.2| 0.95 | 33.8|30.2| 0.89
201-250 | 40.8|37.8| 0.93 | 45.0|41.4| 0.92
251-300 | 57.2(51.8| 0.91 |52.4|44.8| 0.85
301-350 | 88.0|81.2| 0.92 |83.2|71.6| 0.86
351-400 (99.2 | 89.6 | 0.90 [108.2|87.8( 0.81

nets given in the column ” #terminal” and ” #net”,
respectively. The column "UW” or "UW-MNC”
shows the results by the UW method or those by
the UW method followed by procedure MNC.

For datal0 of Table 1, the large number of
nonplanar connections excluded. The circuit of
datalO has two nets such that 9 out of 12 non-
planar edges in the first net and 4 out of 8 ones
in the second net are excluded by the proposed
method. Table 2 shows that as the number of ver-
tices or that of terminals of one net becomes larger
then greater number of nonplanar connections are
excluded. Therefore it seems that procedure MNC
is effective if many nonplanar edges are included
in one net. Table 3 shows that better bipartitions
can be obtained if input data have many nonplanar
connections. These experimental results show that
the proposed method has high capability to reduce
nonplanar connections. Also observed is that its
application to circuit bipartitioning can improve
quality of bipartition.

5 Concluding Remarks

This paper has proposed a method of reduc-
ing actual nonplanar connections in extracting a
spanning planar subgraph from the graph model
of a given circuit, based on transforming the graph
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Table 3: Experimental results on circuit biparti-
tioning.

uw UW-MNC

#terminal#nett CN | NC | CN | NC

actuall 240 64 | 21 15 | 21 14
actual2 117 28 | 19 6 19 6
randoml] 140 10| 8 15 8 14
random2 170 27 | 22 25 23 22
random3 220 31| 19 | 55 | 17 50
random4 205 54 25 | 38 | 24 35
randomy 315 591 38 | 565 | 35 53
andom@i, 275 43 1 19 29 19 29

model without changing connection requirements
of the circuit. Experimental results provided show
capability of the proposed method.

Some problems left for future research are as
follows:

e improving the proposed method so as to re-
duce more nonplanar connections;

e providing a better measure for the searching
order of faces in a plane graph.

Acknowledgments

The research of T.Watanabe is partly supported by
the Grant in Aid for Scientific Research of the Min-
istry of Education, Science and Culture of Japan:
under (C) 08680371 and (A) 07308028.

References

[1] Bhasker, J. and Sahni, S., ”A linear algorithm to
find a rectangular dual of a planar triangulated
graph”, Technical Report TR 85-26, Computer
Science Dept., University of Minnesota, Min-
neapolis, 1985. Also appeared in Proc.23th Design
Automation Conference, pp. 108-114, 1986.

[2] Booth, K. S. and Lueker, G. S., "Testing for

the consecutive ones property, interval graphs,

and graph planarity using PQ-tree algorithms”,

J. Comput. & Syst. Sci., 13, pp. 335-379, 1976.

Chiba, N., Nishizeki, T., Abe, S. and Ozawa, T.,

? Embedding Planar Graphs Using PQ-Tree Algo-

rithms”, Trans. IEICE Vol.J67-A No.2, pp. 87-94,

1984. (in Japanese)

[4] He, X., "On finding the rectangular duals of

planar triangulated graphs”, SIAM J. Comput.,

22(6), pp. 1218-1226, 1993.

Iwamoto, K., Watanabe, T., Araki, T. and On-

aga, K., "Finding Jumpers in Printed Wiring

Board Design for Analog Circuits”, Proc.1991

IEEE Iut. symposium on Circuits and Systems,

pp. 2854-2857, 1991.

[6] Jayakumar, R., Thulasiraman, K., and Swamy,
M.N.S., ”O(n2) Algorithms for Graph Planariza-
tion”, IEEE Trans. Computer-Aided Design,

3

5

=

9

10]

{11

(12]

13]

(14]

(18]

(16]

(17

(18]

—104 -

Vol.8, No.3, 1989.

Kzominski, K. A. and Edwin, K., "Rectangular
Dualization and Rectangular Dissections”, IEEE
Transactions on Circuits and Systems, Vol.15,
pp- 1401-1416, 1988.

Masuda, S., Kashiwabara, T. and Fujisawa, T.,
”On Single Layer Routing under the Condition
that Routing is Allowed in the Are a Occupied
by the Module”, Tech. Rep. of IEICE of Japan,
CAS82-114, pp. 35-40, 1982. (in Japanese)
Masuda, S., Kashiwabara, T. and Fujisawa, T.,
” A Wiring Problem on Single Layer Printed Cir-
cuit Board without Mounting Modules Upside-
Down”, IEICE Trans. Vol.J66-A NO.3, pp. 235—
242, 1983. (in Japanese)

Matsumoto, A., Yamaguchi, K., Kashiwabara,
T., Masuda, S., and Taki, M., A Planariza-
tion Algorithm in the Layout Design of Single
Layer Printed Circuit Board”, Tech. Rep. of IE-
ICE of Japan, COMP91-21, pp. 79-88, 1991. (in
Japanese)

Mizuguchi, Y. and Watanabe, T., " Application of
the Path-Addition Planarity Testing Algorithm to
Layout Design of Printed Wiring Boards”, Tech.
Rep. of IEICE of Japan COMP94-87, pp. 103—
112, 1995.

Mizuguchi, Y., ”A Study on Placing Elements at
Specified Positions in Layout Design of Printed
Wiring Boards”, Master’s thesis of Information
Engineering Major, Graduate School of Engineer-
ing, Hiroshima Univ., 1995.

Mizuno, K. and Watanabe, T., "A Method of
Reducing Jumpers in Layout Design of Printed
Wiring Boards”, Proc. of the 46th Joint Con-
vention at the Chuugoku Branch of Electrical 5-
Societies of IEICE of Japan, pp. 394-395, 1996.
(in Japanese)

Ozawa, T. and Takahashi, H., "A graph-
planarization algorithm and its application to ran-
dom graphs”, in Graph Theory and Algorithms,
Lecture Notes in Computer Science, Vol.108,
Springer-Verlag, pp. 95-107, 1981.

Supowit, K. J., "Finding a Maximum Planar Sub-
set of a Set of Nets in a Channel”, IEEE Trans-
actions on Computer-Aided Design, vol. CAD-6,
No.1, pp. 93-94, 1987.

Une, Y., Mizuguchi, Y. and Watanabe, T., "A
Circuit-Bipartitioning for Multi-Layred Printed
Wiring Board Design”, IPSJ, SIG Notes, IPS of
Japan 94-DA-70, pp. 47-54, 1994. (in Japanese)
Yasui, T., "A Support System MULTI-PRIDE
for Designing Multi-Layered Printed Wiring
Boards”, Master’s thesis of Information Engineer-
ing Major, Graduate School of Engineering, Hi-
roshima Univ., 1993.

Yasui, T., Toyama, N., Une, Y., Watanabe, T.
and Onaga, K., "MULTI-PRIDE: A Support Sys-
tem for Designing Multi-Layered Printed Wiring
Board Layouts of Analog Circuits”, Proc. DA
Symposium’92, IPS of Japan, pp. 137-140, 1992.
(in Japanese)



