1

H B & £ 85-19
(1997. 10. 29)

K

EykSUTIVINATSA4 T —2INIEH
—f @ EUKEE B2 OKM BEA BAL 1

R LA T R - B THH
T 152 HEHEHBXAMIL 2-12-1
Tel : 03-5734-2574

E-mail : isshiki@ss.titech.ac.jp

H5EL F v FHEORIBBREDT O AR OEHRO L LIZKE L BB IIoN0, BERESROFy 7H
BIZROLESIIAEKRE (RS, 512 FPGA OB GIE, BEREROEMY Y) a v ABEICS 2 508
ERBITREV, ABTIE, HAVEELAGERE Y b UTANAT T4 0T =9 RAFHY AT LI

DWTENT D, TOVAT LI, BREOHOTEHEVE Yy P2) 7 LVAEAREHEERTAZ LIZL T,
ERCETEL Ay EACERT LI EATRIZTS ZOVAT AL, THA AN LTEGH
BREY CH+SENOLTHBRL, 2OBROSLTIA YRR L AT Y P GRETXTHELEN T 5,
IHYAF AL 1T 100%0 R EEERASREEE s Oy ZHEEARIET S, 22T, By by
VT AILT T4 2 I2BT B EROKELEEIIIOWTOZEEZRNL

F—T—F ¥y bIYT N, N7 5148, FPGA

High-Performance Bit-Serial Pipeline Datapath Synthesis

Tsuyoshi Isshiki, Takenobu Shimizugashira, Akihisa Ohta,

and Hiroaki Kunieda,

Department of Electrical and Electronic Engineering, Tokyo Institute of Technology

2-12-1, O-okayama, Meguro-ku, Tokyo, 152 Japan
Tel : 03-5734-2574

E-mail : isshiki@ss.titech.ac.jp

Abstract As the circuit size inside the chip grows with the help of the advance of process technology,
the device area only for wiring signals becomes significantly large. Especially in the case of FPGAs, this
increase in the routing resource results in the decrease of silicon utilization, where the logic density if
already a factor of magnitude lower than the full custom chips. In this paper, we present our work on
the high-performance bit-serial pipeline datapath which addresses the problem of incorporating design
automation while guaranteeing a highly efficient routability of the circuit, therefore increasing the silicon
utilization and performance. Our system consists of algorithm-level design capture in terms of difference
equations using C++, pipeline synthesis and layout synthesis. Our system guarantees a near 100% logic
utilization and high speed clock operation. We also discuss the issues of resource sharing and resource
duplications for bit-serial pipeline synthesis.

key words bit--serial, pipeline synthesis, FPGA

- 129

1 Introduction

In recent years, we are witnessing a constant silicon
process technology improvement which will be reach-
ing 0.1p in a several years. As the circuit size in-
side the chip grows, the device area devoted only for
wiring signals becomes significantly large. Until now,
this nature of the routing difficulty is more or less
conceived as unavoidable for any useful circuits. Es-
pecially in the case of FPGAs, this increase in the
routing resource results in the decrease in the silicon
utilization of the actual user-logic resource, where the
logic density is already a factor of magnitude lower
than the full custom chips. By the many works on the
high-level synthesis community and layout CAD com-
munity, fully automated design systems from the be-
havioral synthesis to automatic placement and rout-
ing already exist. However, its effectiveness is still
questionable for its incapability to handle large prob-
lems and the quality of the produced results.

Our approach of using bit-serial circuits attempts
to address these difficult problems of incorporating
design automation while guaranteeing a highly effi-
cient routability of the circuit, therefore increasing
the silicon utilization and improving performance.
There have been studies on bit-serial synthesis in
the past [?] [?], however the efficiency of routability
of bit-serial circuits has not been well investigated.
In this paper, we present our work on the bit-serial
pipeline synthesis system, where the algorithm-level
design capture using difference equations is done on
C++ language, and bit-serial circuit synthesis and
layout synthesis is fully: automated, while guaran-
teeing a maximum logic utilization and high speed
clock operation. Our bit-serial pipeline synthesis sys-
tem have generated a number of applications which
present an unusually high routability, where 100%
routability can be empirically guaranteed for all de-
signs whose logic utilization reaches as high as 100%.

Also, we will also discuss some strategies in ex-
panding our synthesis system, currently only able to
produce a directly mapped pipeline datapath from
the specified difference equations, to provide a va-
riety of synthesis options by resource sharing or re-
source duplication. Although the fundamental prob-
lem formulation for resource sharing is identical to
the conventional high-level synthesis paradigm, our
optimization objectives, and as a result the approach
to this problem, need to be tuned adequately to take
advantage of the features of bit-serial circuits.

2 Bit-Serial Pipeline Synthesis
System

We have developed an application development plat-
form which targets FPGA-based configurable sys-

dina din2 dint ding dn a b c d a b c d
B B N . .
ey {0} {0} O} =a - ‘a0 al a2 a3 a0 af a2

hat1 ©6'0 0 1 o'c o

1 1

B&a‘ Pheies - - boior b2 bashoier

hbo 1 0 070 1 0 0

1]

Bhgl oo s w'aeieaio

heo o 1 00 ¢ 1 0

¥ \ .
d---—nnmdzau:

hdo 0 0 1 0 o0 0 1
) Paratlel=serial converter (h) Signal timing ol parallel-scrial converter

Figure 1: 4-input parallel-to-serial converter with 4-
bit data.

tems where the hardware is configured for a specific
application in order to accelerate the application nor-
mally running on software. The main goals of this
development platform are :

1. To simplify the design task so as to be accept-
able by software designers oriented towards the-
ory and application. This includes eliminating
the need for HDL coding, enabling simultane-
ous hardware/software design verification, and
fully automating the circuit synthesis and lay-
out tasks.

2. To guarantee accurate prediction of performance
and hardware resource utilization before the
lengthy layout synthesis. Totally eliminate the
need for low-level manual intervention which re-
quires not only expert digital system design skills
but also the deep understanding about the target
FPGA architecture.

2.1 Structure of Bit-Serial Circuits

In our bit-serial synthesis system, we provide num-
bers of bit-serial operators which are categorized by
the number of fanouts and circuit size as follows:

1. Parallel-serial interface circuits : We provide
parallel-to-serial and serial-to-parallel converters
for interfacing with external bit-parallel devices.
These circuits have some global signals whose
fanouts are equal to the data word size (Fig.1).

2. Adders, subtracters, rounders : For internal com-
putation, we provide double precision numbers
using two data lines mainly for output data
of multipliers which produces double precision
products. Also, in a situation where a large
number of accumulations occur and overflow is
unavoidable, we provide additional data line for
overflow prevention. For N-bit single precision
data, extended single precision data has 2N bits,
and extended double precision data has 3NNV bits.
There are a total of four types of adders and

- 130 —

full adder 01 102
in1_t
cout: cin
in2_{

ini_h

out_h out_h

in2_h

h_out h_int h_out

out_o out_o

s o
{a) Single precision adder
with overflow extention

= i
(b) Doubie precision adder
with overflow extention

Figure 2: Bit-serial adders. Hashed regions are the
overflow extension circuits.

yin b

xin b
hxin

in b

[B S

ta) |.SB multiplier cell (P01 ¢ht Taner multipticr cell (PE{iE = 1. 20 N-20 Ly MSB muluplicr okl (PN -1y
= a2 =1 8oz =

5.
Ls! inner inner

8
¥ w1 ¥2) ;
oy = e R e B e
vy [3hT]) [s@hT] v [sam
0| ICEII| 2)

(&) 2" complement hit—scrial multiplicr

Figure 3: Bit-serial multiplier. It has a linear array
structure.

subtracters for these different types of number
representations (Fig.2). Rounders (round-to-
nearest-integer, round-to-nearest-even) converts
(extended) double precision numbers into (ex-
tended) single precision numbers. These circuits
have a common circuit structure where the cir-
cuit size is independent of the data word size.
There are no global signal and therefore the num-
ber of fanout is independent of N.

3. Multipliers, saturater: Multipliers takes two sin-
gle precision inputs (or one input and a built-in
constant) and generates double precision prod-
uct. It consists of N multiplier cells for N-bit
data where one multiplier cell is about twice the
size as a double precision adder (Fig.3). Satu-
rater converts extended single precision data into
single precision data. It consists of one saturater
cell and a shift-register with length 2N. There
are no global signal and therefore the number of
fanout is independent of V.

In many of the applications we target, adders,
subtracters and multipliers dominate the bit-serial
pipeline, where multipliers are actually dominant in
terms of circuit size. Bit-serial multiplier has a lin-

—131—

C++ application software
C++ datapath description
(difference equations)

Bit~serial circuit library I

Bit-serial synthesis routines

circuit generator
~ data-flow graph generator

- pipeline synchronizer

- 10 interface scheduler

- bit-serial control signal router

- pipeline register minimizer

- circuit netlist generator

.

simulation output) (L
C(text. graphic) partitioned XNF) @

Figure 4: Design flow of our bit-serial synthesis sys-
tem. The designer describes the algorithm in terms
of difference equations on C++ using our dedicated
class objects. The C++ program is compiled by a
standard GNU C++ compiler (g++) which produces
an executable file which performs behavioral simula-
tion, circuit generation and circuit partitioning, and
produced circuit-level netlist (partitioned XNF files,
unpartitioned VHDL code).

ear array structure, and therefore requires very little
routing resource. This structural feature is actually
the key in the efficiency of bit-serial circuit layout as
we will discuss later.

2.2 C+4+ Design Capture

The design flow is illustrated in Fig. 4. First,
the designer will enter the design of both the hard-
ware and software using C++ [?]. Software design
description is allowed to use the full capability of
C++, whereas the hardware description is done by
difference equation formulation on C++ using a set
of hardware class variables. This C++ file is com-
piled by a general C++ compiler where the produced
executable file becomes both the behavioral simulator
for the total application (software and hardware) and
also the circuit generator for the hardware design.
The software description can also include breaking
points and text or graphical outputs for debugging
purpose. Any C++ debugger tool can also be used
for this purpose as well.

2.3 Bit-Serial Pipeline Synthesis and
Circuit Partitioning

Our bit-serial pipeline synthesis methodology consists
of capturing the difference equations and converting
them into data-flow graph, converting the data-flow
graph into primary circuit netlist by direct mapping
of the arithmetic operators into bit-serial hardware
modules, pipeline scheduling/optimization, and cir-
cuit partitioning.

Circuit Generation After the design is captured
by C++ by means of difference equations, bit-
serial circuit modules are created for each dis-
tinct arithmetic operation by calling the bit-
serial circuit library and the primary circuit
netlist is constructed.

Minimum Sampling Period Calculation If
there are loops in the datapath, the sampling pe-
riod needs to be long enough so that all the loop
paths have positive weights. This can be done by
iteratively solving the single-source longest paths
problem to find the minimum sampling period.

Pipeline Scheduling Optimization

After the minimum sampling period is deter-
mined, the pipeline network is synchronized by
inserting retiming registers in order to equalize
the latency on every path in the network. At
the same time, the number of retiming registers
are minimized in order to reduce the hardware
overhead. This pipeline scheduling optimization
can be formulated as a linear programming prob-
lem and known to be efficiently solved by simplez
method [?][?].

Bit-serial pipeline partitioning After the final
bit-serial pipeline network has been synthesized,
the network is partitioned into subcircuits in or-
der to fit inside the target FPGA device. Based
on Fiduccia and Mattheyses’ bipartitioning [?],
we formulated a K-way partitioning algorithm
which maximizes logic utilization as well as min-
imizing the IO utilization.

3 Rent’s Rule and Circuit
Routability

In analyzing the circuit structure to evaluate the area
required for VLSI layout, Rent’s rule is commonly
used [?][?][?]. This rule defines the relationship be-
tween the average number of pins and the average
number of logic circuits in a subcircuit. It is expressed
as

P=k-@& (1)

input layer hidden Jayer output layer
X=X A*S+ B,
- J yoi J
multiplication accumulation
(8x8->16bits) (16—>24bits)
input 0 0
: hidden 12x14 12x14
.
Ca output 14x4 14x4
S total 224 224
/

Figure 5: 12-14-4 digital neural network. Topology is
a complete connection between adjacent layer nodes.

where P is the average number of external pins in
a subcircuit, and G is the average number of mod-
ules in a subcircuit. k is the Rent constant which has
empirically been found to correspond to the average
number of pins per module. y is the Rent ezponent
which ranges between 0 and 1. First discovered by
E. F. Rent of IBM in the late 1960’s, Donath {?] de-
rived the same relationship from a stochastic model
of hierarchical design process. From his model which
assumes a two-dimensional layout, he has derived the
average wire length r of the circuit using the Rent pa-
rameters as

f(v) (y<05)
r~< logG - (7=0.5) (2)
G705 (y>05)

where f(v) is a function independent of G. The in-
tuitive explanation for this is that the case v = 0.5
is the transition between planar and non-planar cir-
cuits, and the circuits whose Rent exponent is lower
than 0.5 can be placed such that all connections es-
sentially lie between nearest neighbors with an aver-
age wire length being independent of G. For circuits
where 4 > 0.5, the wire length grows to the power
of v — 0.5 with G. Therefore, the Rent exponent is a
good indicator for estimating the amount of routing
resources needed for the physical layout.

3.1 Routability Analysis of Bit-Serial
Circuits

The bit-serial circuits which is used in this study are

1. “N-12-14-4” : A 3-layer feedforward digital neu-
ral network with 12, 14, 4 nodes on each layer. It
consists of 224 multipliers and 224 adders. Data
precision is 8 bits for multipliers (product out-
put is 16 bits) and 24 bits for adders for overflow

—132—

prevention. It also has external ROM interface
for calculation of the activation function for each
node. Fig. 5 shows the basic architecture of this
digital neural network. The dense interconnec-
tion between layers makes the routing problem
very challenging.

2. “N-8-8-4” : A 3-layer feedforward digital neural
network with 8, 8, 4 nodes. There are 96 multi-
pliers and adders.

3. “1D-FIR-30-11" : A 30-tap 1D FIR filter. Data
precision is 16 bits with double precision (32-bit)
addition.

4. “2D-FIR8x8” : An 8x8-tap 2D FIR filter. Data
precision is 8 bits with double precision (16-bits)
addition.

5. “1D-IIR20-II1” : A 20-th order IIR filter with 2
sampling period lookahead on the feedback loop.
Data precision is 16 bits with double precision
addition.

6. “adapt10T-7” : A 10-tap 1D adaptive FIR filter
where the coeflicient updating cycle delay is 7
sampling periods. Data precision is 8 bits with
double precision addition.

7. “IDCT-I” : An 8-point inverse-DCT. Data pre-
cision is 16 bits with double precision addition.

We have obtained the Rent’s parameters for our
bit-serial designs by applying multi-way partitioning
with different size constraints. The method for de-
riving Rent’s parameters is to plot the average CLB
counts and the average IO counts per partition on the
log-log scale and use linear regression to estimate the
slope and the intercept. Here, CLB is the logic block
of Xilinx 3100A FPGA which is our current target
FPGA architecture. Note that Rent’s rule on log-log
scale forms a linear equation log P = vlog G + logk.
Fig.?? shows the plots for neural network designs.
The Rent’s parameters for other designs are sum-
marized in Table ??. Compared to Landman and
Russo’s work where they reported the Rent’s ex-
ponent to be between 0.47 and 0.75, our bit-serial
circuits have a significantly lower Rent’s exponent
between 0.22 and 0.37. This implies that our bit-
serial circuits are very highly routable circuits on two-
dimensional plane. This was caused mainly by the
dominant bit-serial multiplier circuits. These multi-
pliers whose Rent exponent is 0 absorbed the circuit
complexity in terms of Rent exponent at the high
fanout nodes. There have not been any studies on
logic circuits which reveal such a low Rent’s exponent
for real applications. Our bit-serial circuit design and
our bit-serial pipeline network synthesis strategy led

Table 1: Rent’s parameters for bit-gerial circuits.

design ¥ k

N-12-14-4 0.3724 | 4.916
N-8-8-4 0.3264 | 5.878
1D-FIR30-I1 | 0.2218 | 6.018
2D-FIR8x8 | 0.3245 | 4.665
1D-IIR20-IIT | 0.3264 | 5.878
adapt10T-7 | 0.3735 | 5.150
IDCT-1 0.3394 | 5.493

to such an extremely routing-efficient circuit struc-
ture. Since FPGAs are tuned to implement “hard-to-
route” real circuits having high Rent exponent of over
0.5, we can expect that lack of routing resource on
FPGAs for our bit-serial circuits is unlikely to cause
any problem, which will be strongly confirmed in our
physical layout results described in the next section.

3.2 Physical Layout Results

We have used Xilinx 3100A FPGA architecture as the
target FPGA to actually map our bit-serial designs
and observe the logic resource utilization and perfor-
mance. It has been pointed out that logic utilization
over 80% for “real-life” circuits has little chance of
being routed successfully [?]. In our case, all circuits
were routable at the first run where most of the sub-
circuit had logic utilization of over 95% (in fact more
than half were over 99%). This kind of high logic uti-
lization has never been reported with the use of auto-
mated placer and router. This indicates how efficient
it is to place and route our bit-serial circuits which
is backed up by their low Rent exponent values. Al-
though, unfortunately, because of the variance in the
routing performance, ppr is not capable of producing
stable circuit performance even for our bit-serial cir-
cuits. We have set our performance goal to 40MHz
using the XC3100A FPGA series which is currently
the fastest device available from Xilinx.

4 Pipeline Synthesis with Re-
source Sharing and Resource
Duplication

So far, we have discussed our works on bit-serial
pipeline synthesis system and its advantages on
routability. In our current system, however, we are
only able to produce a.directly-mapped pipeline net-
work which is described in terms of difference equa-
tions. In other words, for each set of difference equa-
tions, only one pipeline network solution is derived.
There are, of course, some freedom in the allocation of

—133—

NI12-14-4 -«
4916 * x ¥* 0.3724 - J
o ?/;
s S
s+ - ol
= o
5 P
=2
=] g
10 : .
100 1000
number of CLBs

100 v
N§-8-4 <
5.878 * x ** 03264 -
T
g o
b o
=
bl e
L Pt
£ o
g s
= e
10 + .
100 1000
number of CLBs

Figure 6: Rent’s exponent approximation for N12-14-4 and N8-8-4. The two axes are log-scale.

Table 2: Synthesis results of bit-serial pipeline networks. “N-12-14-4” is a digital neural network with 12, 14, 4
nodes on each layer. “N-8-8-4” is a digital neural network with 8, 8, 4 nodes on each layer. “1D-FIR-30-11” is a
30-tap 1D FIR filter. “2D-FIR8x8” is an 8x8-tap 2D FIR filter. “1D-IIR20-III” is a 20-tap recursive filter with
2 sampling period lookahead on the feedback loop. “adapt10T-7” is a 10-tap 1D adaptive FIR filter where the
coeficient updating cycle delay is 7 sampling periods. “IDCT-I" is an Inverse-DCT circuit.

the pipeline retiming registers. However, this register
allocation can be optimized using simplex method on
linear programming, which is done in our bit-serial
pipeline synthesis system. We are currently working
on expanding the synthesis system to provide wider
choices of synthesis strategies by allowing resource
sharing or resource duplication. In this section, we
discuss some of the issues regarding resource sharing
and resource duplication.

There are several situations where resource sharing
and resource duplication are very useful (Fig.??.

1. Throughput of the bit-serial pipeline datapath is
determined by the data word length and the crit-
ical loop length, if any exists. Data word length
gives the lower bound of the sampling period,
ie., if data is N bits, it takes N clock cycles
to transmit one data. If there is a critical loop
whose length T is longer than N, T — N clock
cycles would be idle. If T" > 2N, then there is
an opportunity to share the hardware resource
to make the datapath more efficient in terms of

sampling

design signal # CLBs | # gates # chips CLB IO critical | frequency

precision (XC3164A) | util. util. delay | (@40MHz)

N-12-14-4 8 6964 127962 32 97.2% | 30.3% | 24.6ns 5.0MHz
N-8-8-4 8 3082 56465 14 98.3% | 30.7% | 24.6ns 5.0MHz
1D-FIR30-11 16 2004 35813 9 99.4% | 17.4% | 20.3ns 2.5MHz
'2D-FIR8x8 8 2272 39957 11 92.2% | 21.1% | 25.0ns 5.0MHz
1D-ITR20-I1I 16 2132 41165 10 98.1% | 22.9% | 23.4ns 2.5MHz
adapt10T-7 8 871 16036 4 97.5% | 27.3% | 22.8ns 5.0MHz
IDCT-I 16 1038 15909 5 90.4% | 23.7% | 23.2ns-| 2.5MHz

yo

TR

V4
X — ‘b _ v

resource sharing resourca duplication

Figure 7: Resource sharing and resource duplication.

circuit size versus performance. In other cases
where the application can afford to be slower
in exchange for smaller hardware, this resource
sharing can be effective.

2. Resource duplication can be used if the applica-

— 134 —

circuit size
degree of resource
duplication > 1
So
{circuit size with no
resource sharing

|
or duplication) |
i
!
|
| degree of resource
fe—duplication = 1

e
/" degree of resource
e duplication <1
4 (resource sharing)

degree of resource
duplication

{
l
1
|
g |
[
i
i
|
t
|

Figure 8: Relationship of resource sharing and re-
source duplication. Horizontal axis represent the de-
gree of resource duplication. The region where the re-
source duplication is below 1 corresponds to resource
sharing.

tion requires high throughput. If the hardware is
duplicated by K, the sampling period becomes
|N/K|. If there is a critical loop whose length is
T, then the inequality |[N/K| > T needs to be
satified. It is, therefore, essential in this situation
to design the application with care so that the
critical loop length T' becomes as small as pos-
sible. Theoretically, if the application consists
of acyclic computations only, then the degree of
duplication K can be any positive number.

3. In complex applications where the data rate dif-
fers between locations in the data-flow, such
as in multi-rate signal processing applications,
throughput needs to be adjusted throughout the
pipeline network. This can be achieved by either
resource sharing on the low data rate signals, or
resource duplication on the high data rate sig-
nals, or combination of both.

The relation of resource sharing and resource du-
plication against circuit size can be illustrated as in
Fig.??. Horizontal axis represents the degree of re-
source duplication (D,4). The region where the re-
source duplication is below 1 corresponds to resource
sharing. Degree of resource sharing D,., on this re-
gion is given as D,, = 1/R,4. Vertical axis represents
the circuit size. When resource sharing is applied,
the hardware size decrease but also introduces over-
head circuitry for multiplexing the data and control-
ling the data-flow. The number of pipeline retiming
registers may also increase in the case where the sam-
pling period increases as the result of resource shar-
ing. Therefore, when the degree of resource sharing is

D, the circuit size will become larger than Go/D..
Also, as D, increases, the overhead also increases as
well. On the other hand, when resource duplication
is applied, if allowed, then the hardware size grows
in return for higher performance. There are virtu-
ally no overhead circuits for realizing resource dupli-
cation. Moreover, the number of pipeline retiming
registers in this case may decrease since the sampling
period decreases as well. Therefore, when the degree
of resource duplication is D,q, the circuit size may
actually become smaller than Go/D,4.

There are another important aspect of this rela-
tionship of resource sharing and resource duplication.
As we have discussed earlier, high routability is a
very important feature of bit-serial pipeline datapath,
especially when implemented on FPGAs. Resource
sharing involves multiplexing the data-flow which has
a large impact on the locality of interconnections in
bit-serial pipeline circuits. As the degree of resource
sharing increases, the bit-serial circuits tend to be
more globally connected, which increases the Rent
exponent. As a result, this will diminish the very
advantage of using bit-serial circuits. We are inves-
tigating heuristic approaches to handle the schedul-
ing problem of resource sharing which attempts to
minimize the Rent exponent in order to increase the
routability.

5 Conclusion

In this paper, we have introduced our work on bit-
serial pipeline synthesis system which can empirically
guarantee high performance and high logic utiliza-
tion. The significant factor of this system’s capability
is the high routability of our bit-serial circuits. We
have used Rent’s rule to compare the expected wiring
length of the real-life circuits observed in the past
and our bit-serial circuits. Where the average wiring
length of most of those real-life circuits grows with the
circuit size, the average wiring length of our bit-serial
circuits are expected to remain constant with differ-
ent circuit size. We believe that our work provides
some of the key solutions in overcoming the problem
of increasing routing cost with the growth of circuit
size. : :

In particular, FPGA devices which are forced to
handle such hard-to-route real-life circuits have been
increasing the routing resource as the device size
grows, and therefore continues to decrease the sili-
con density even further. The implications of the low
Rent exponent value of bit-serial circuits are:

1. The average wiring length is expected to be in-
dependent of the circuit size. Therefore, we do
not need to increase the routing resource or the
IO pin count as the chip size increases in order to

—135—

utilize 100% of the hardware resource. This sit-
uation is clearly different from the current trend
of FPGA architecture development where addi-
tional long-lines are added for larger chips as in
Xilinx XC4000 series and XC6200 series.

2. Because of the high routability, hardware size
estimation and performance prediction can be
made accurate before the time-consuming lay-
out synthesis. This facilitates the designers to
do designs on high-level and effectively explore
the design space and yet achieve very efficient
designs.

We are in the process of expanding our bit-serial
synthesis system to handle resource sharing and re-
source duplication in order to handle multi-rate sig-
nal processing applications and other complex appli-
cations such as 3D graphics.

Acknowledgement

Authors would like to thank the members of CAD21
Research Body of Tokyo Institute of Technology and
members of FPMCM project of University of Califor-
nia at Santa Cruz for their suggestion and coopera-
tions.

References

{1} B. Landman and R. Russo, “On a Pin Versus Block
Relationship for Partitioning Logic Graphs,” IEEE
Trans. Computers, pp.1469-1479, 1971.

L. Hagen, A. B. Kahng, F. J. Kurdahi, C. Ra-
machandran, “On the Intrinsic Rent Parameter and
Spectra-Based Partitioning Methodologies,” IEEE
Trans. Computer-Aided Design, pp.27-37, Jan. 1994.

R. Jain, F. Catthoor, J. Vanhoof, B. J. S. De Loore, G.
Goossens, N. F. Goncalvez, L. J. M. Claesen, J. K. J.
Van Ginderdeurn, J. Vandewalle and H. J. De Man,
“Custom Design of a VLSI PCM-FDM Transmulti-
plexer from System Specifications to Circuit Layout
Using a Computer-Aided Design System,” IEEE Jo.
Solid-State Circuits, pp.73-84, 1986.

[4] A. F. Murray and P. B. Denyer, “A CMOS Design
Strategy for Bit-Serial Signal Processing,” IEEE Jo.
Solid-State Circuits, pp.746-753, 1985.

Tsuyoshi Isshiki and Wayne Wei-Ming Dai, “Bit-
Serial Pipeline Synthesis for Multi-FPGA Systems
with C++ Design Capture,” Proc. IEEE Symp. FP-
GAs for Custom Computing Machines, April 1996.

S. Kumar, K. Forward and M. Palaniswami, “A Fast-
Multiplier Generator for FPGAs,” Proc. IEEE Int.
Conference on VLSI Design, pp.53-56, 1995.

[7] C. E. Leiserson and J. B. Saxe, “QOptimizing Syn-
chronous Systems,” J. VLSI and Comput. Syst., vol.
1, no. 1, pp. 41-67. Oct. 1983.

[2

B

[5

6

[8] X. Hu, S. C. Bass and R. G. Harber, “Minimizing
the Number of Delay Buffers in the Synchronization
of Pipelined Systems,” IEEE Trans. Computer Aided
Design, pp. 1441-1449, Dec. 1994.

[9] C. M. Fiduccia and R. M. Mattheyses, “A Lenear-
Time Heuristic for Improving Network Partitions,”
Proc. 19th ACM/IEEE Design Automnation Confer-
ence, pp.241-247, 1982.

[10] Wilm E. Donath, “Placement and Average Intercon-
nection Lengths of Computer Logic,” IEEE Trans.
Circuits and Systems, pp.272-277, April 1979.

[11] Abba A. El Gamal, “Two-Dimensional Stochastic
Model for Interconnections in Master Slice Integrated
Circuits,” IEEE Trans. Circuits and Systems, pp.127-
138, Feb. 1981.

[12] M. Feuer, “Connectivity of Random Logic,” IEEE
Trans. Comp., Vol. C-31, pp.29-33, Jan. 1982.

[13] Steve M. Trimberger, “Field-Programmable Gate
Array Technology,” Kluwer Academic Publishers,
1994.

[14] M. Schlag, J. Kong and P. K. Chan, “Routability-
Driven Technology Mapping for Lookup Table-Based
FPGA’s,” IEEE Trans. Computer-Aided Design,
pp.13-26, Jan. 1994.

[15] “The Programmable Gate Array Data Book,” Xil-
inx, 1994.

- 136 —

