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Abstract
A VLSI decomposition of « graph G is a colleclion of isomorphic vertes-disjoint subgraphs (called
building blocks) of G which together span G. This paper gives a sufficient condition Jor a graph 1o be

a building block for deBruiyn graphs, which arc used to build Viterbi decoders.
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1 Introduction

A VLSI decomposition of a graph G is a collection
of isomorphic vertex-disjoint subgraphs of G which
together span (G. A graph H isomorphic to the
subgraphs comprising the decomposition is called a
building block for G. The efficiency of H 1s the frac-
tion of the edges of G which are present in the copies
of H. If H is a building block for any graph in a fam-
ily of graphs {G,}, H is called a universal building
block for {G,}. Finding an efficient building block
for G is corresponding to the design of an efficient
single VLSI chip with the property that many iden-
tical copies of this chip could be wired together to
form a circuit represented by G.

A couple of pioneering works on universal build-
ing blocks for deBruijn graphs can be found in the
literature[1-5]. (The definition of deBruijn graphs
will be given in Section 3.) These works were mo-
tivated by the need to construct large Viterbi de-
coders. Schwabe [5] showed that a special kind of
subgraph of the nth order deBruijn graph B, is a
universal building block for {Bp|m > n} with ef-
ficiency 1 — O(1/n). He also showed that this is
asymptotically optimal by proving that the efficiency
of any universal building block for {B;,|m > n} is
at most 1 — Q(1/n). It is conjectured by Dolinar,
Ko, and McEliece [2,3] that the efficiency of an op-
timal universal building block for {Bn|m > n} is
asymptotically equal to 1 —2/(n+1). While optimal
universal building blocks for { By, |m > n} are known
for n < 4, it remains open to find optimal universal
building blocks for larger values of n.

To solve this problem, some necessary conditions
and relatively more restrictive sufficient conditions
for a graph to be a universal building block for de-
Bruijn graphs have been developed, and based on
these sufficient conditions some relatively efficient
universal building blocks for deBruijn graphs have
been constructed [1,2,3]. However, as far as the au-
thors know, no necessary and sufficient condition is
known.

This paper gives a new relatively less restrictive
sufficient condition for a graph to be a universal
building block for deBruijn graphs, and based on the
condition we give some efficient universal building
blocks for deBruijn graphs.

2 Preliminaries

2.1 Binary Vectors

We define three mappings L,, R, and C, from
{0,1}" to0 {0,1}"~ ! asfollows. If z = (x1, 22, ..., &n)
€ {0,1}" then

Lo(z) = (21,22,...,%8a-1),
Ro(z) = (&2,23,...,25), and
Cu(z) = (p1@@2,22DT3,..., 801D Zn),

where & is the addition modulo 2. We denote the
composition of two mappings f and g by fog. We
also denote Cp_py1 0 Cppyzo...0Cy by C]. For
z,y € {0,1}*, B(z,y) is the length of the largest
block of consecutive components on which z and y
agree. The following two lemmas can be found in the
literature.

Lemmma I [2] Ifn >3 and r > 1 then

Ch_10Lu(z) = LporoCp(x), and
Cr_10 Ba() Rp_p o Cp(2)

il

for any z € {0,1}".

Lemma IT [2] Let 1 <r<n-1andz,y e {0,1}".
If Ct(z) = Ch(y) and B(x,y) > r then x = y.

2.2 Digraphs

Let G be a digraph (directed graph). We denote the
vertex set and arc (directed edge) set of G by V()
and A(G), respectively. An arc from vertex u to v
is denoted by (u,v). Let X = (zo,21,...,7;) be a
sequence of k + 1 vertices, and ¥ = (y1,y2...., %)
be a sequence of k arcs. (X,Y) is called a path of
length k if the following two conditions are satisfied:

1. yi = (2, mi—1) or y; = (@1, ;) for any @ (1 <
i < k),

2. x;i# xj forany iand j with 0 <i<j <k

A path (X,Y) is called a cycle if 2p = x. y; is called
a forward arc if y; = (x;—1,2;), and a backward arc
otherwise. A dipath is a path with no backward arcs.
If a path has f forward arcs and b backward arcs, we
define the net length of the path to be |f—b]. A cycle
is said to be balanced if the net length of the cycle is
equal to 0. A cycle is said to be unbalanced if it is not
balanced. For a cycle (X,Y’), the maximum subnet
length of (X,Y) is defined to be the maximum net
length of a subpath of (X,Y).

2.3 Building Blocks for Digraphs

A digraph H is called a building block for a digraph
G if there exists a spanning subdigraph H of (7 that
is a vertex-disjoint union of several copies of H. The
efficiency of H as a building block for G, denoted by
eff (H : G), is defined to be |A(H)|/|A(G)]. It is easy
to see the following theorem.




Theorem I [3] If H is a building block for G then

L V(GAH))
T :O) = Ao

3 deBruijn Graphs and
Universal deBruijn Building
Blocks

The nth order deBruijn graph B, is a digraph de-
fined as follows:

V(Bn)=1{0,1}",
A(Br) = {(z,y)|z,y € V(By), Ln(z) = Ru(z)}.

It should be noted that |V(B,)] = 2™ and
|A(B,)| = 2! by definition. A universal deBruijn
building block of order n is a spanning subdigraph of
B, that is a building block for any deBruijn graph
By, with m > n. It is shown in [3] and easily derived
from Theorem I that if H is a universal deBruijn
building block of order n then

[AUH)]

G = Bo) = 1305,]

for all m > n. This common value which is indepen-
dent of m is called the efficiency of H as a universal
deBruijn building block.

The following conditions for universal deBruijn
building blocks can be found in the literature.

Theorem II [3] If H is a universal deBruin bwild-
wng block then H does not contain an unbalanced cy-
cle or two vertices u and v such that there are two
dipaths of the same length from u to v.

Theorem III [3] If H is a spanning subdigraph of
B with no unbalanced cycles or paths of net length
>n then H is a untversal deBruign building block of
order n. :

It should be noted that the sufficient condition in
Theorem I is more restrictive than the necessary
condition in Theorem II. We will give in the next
section a relatively less restrictive sufficient condition
for universal deBruijn building blocks.

4 Sufficient Condition for

Universal deBruijn Building
Blocks

We prove in this section the main theorem of the
paper. The cycle space of a digraph G is a vector
space generated by the cycles of G. A basis of the

cycle space is called a fundamental n-basis if the basis
is consisting of fundamental cycles with respect to
a spanning ditree such that the maximum subnet
length of each fundamental cycle is at most n.

Theorem 1 If H is a connected spanning subdi-
graph of Bn, with a fundamental n-basis of the cycle
space and without an unbalanced cycle then H is a
universal deBruijn building block of order n.

It should be noted that the condition in Theorem
1 is less restrictive than the condition in Theorem
III. The rest of the section is devoted to the proof of
Theorem 1.

4.1 Proof of Theorem 1
4.1.1 Spanning Ditrees
First of all, we show the following theorem.

Theorem 2 Any spanning ditree of By 45 a univer-
sal deBruijn building block of order n.

Proof of Theorem 2 Before proving the theorem,
we need some technical lemmas. ’

Lemma 1 Let i be a fized integer (1 < i< n+1).
For any z € {0,1}" and y € {0,1}", there exisls a
unique z = (21,22, .., 2nar) € {0, 1} such that

Criv(z) = and (2, 241, -, Zigr-1) = V.
Proof of Lemma 1 Let z = (21.23,...,2n4.) €
{0,1}**7, and let denote (z;,zit1,...,2i4r—1) by

z(i:i+r—1). For any z € {0,1}"%", we associate
a pair

(Crpr(z)y2(i i r = 1)) €{0,1}" x {0, 1}".
By Lemma IT, if 2z # 2’ then
(Cop (2,200 7= 1)) # (O (1), 2/ ik r— 1),
Since
0.1 = O, 13" x (0,17 = 27+,

we conclude that for any (x,y) € {0,1}" x {0,1}",
there exists a unique z € {0,1}™*" such that
Cri(z)=zand z(i:i+r—1)=y. O

Lemma 2 For any z € {0,1}",
el € 0,11, O () = ) = 2.
Proof of Lemma 2 For any z € {0,1}", let
So = {21z € {0,1)77, oy () = 0.
For any « € {0,1}" and y € {0,1}", define

Toy = {22 € {0, 1}, Gy () = 2, (21, 20) = )



input H: subdigraph of B,,
r: natural number

Step 1: Set S=0and V; = (1 << 2").

Step 2: Choose & € V(H). Let z; be a vertex in V(Bpy,) such that Cf, () =2(1<i<2").

Step 3: Set S=SU{z} and Vi =V;U{z} (1<i<2").

Step 4: If there exists no vertex in V(H) — S connected with a vertex in S by an arc then go to Step 9.

Step 5: Choose z € V(H) — S connected with a vertex, say y, in S.

Step 6: If (y,z) € A(H) then let z; be a vertex in V(Bp4,) such that C5 (z) = x and (w;, 2:) € A(Bngr)

for w; € Vi with €, (w;) = y(1 < i <27).

Step T: If (z,y) € A(H) then let z; be a vertex in V(Bnq,) such that Cf,, (%) = @ and (z,w;) € A(Bnyr)

for w; € V; with Cf, . (wi) = y(1 <i<27).
Step 8: Go to step 3.
Step 9: If S = V(H) then output (Vi,Va, ..
Step 10: Go to step 2.

., Var} and halt.

Figure 1. Algorithm PARTITION.

By Lemma 1,
Tyl =1
Since
Se = U Ty,y, and
y€e{0,1}r
ToyNTyy =0ify £,

we conclude that

1Sel= > |Tuyl=2"

ye{0,1}"
]
Lemma 3 For any (y, ) € A(Bn) and for any w €
V(Bngr) with Cpp.(w) = y, there exists a unique

2 € V(Bngr) such that Cp . (2) = x and (w,z) €
A(Bpyr).

Proof of Lemma 3 By Lemma 1, there ex-

ists a unique z = (21,22,...,%4r) € {0,1}"F"
such that Cj,.(2) = z and (z2,23,...,2r41) =
(w1, w3, ..., w,) . By the definition of z,

B(Lngr (W), Rpyr(2)) 2 7-

Since Ch,,.(2) = &, Ch(w) = y, and (y,2) €
A(Bn), we have

Lo Clyn(w) = Ra 0 Ci(2).
Thus, by Lemma I,

Crr—10 Lotr(w) = Cryp g © Bngr(2).

Therefore we conclude by Lemma II that
Lgr(w) = Ruyr(2),

which means that (w, z) € A(Bpyr).

It remains to show that such z is unique. Assume
that Ch,,.(z1) = Chyp(22) = x and (w,21),(w, 22) €
A(Bp4r) for some 21, 22 € {0, 1}, Since L4, (w)
= Rn+r(zl) = Rn+r(;’2)v

B(zi,zm)2n4+r—1>7
Thus we conclude that z; = 29 by Lemima 1L [}

Similarly, we can prove the following.

Lemma 4 For any (z,y) € A(By) and for any w €
V(Bngr) with C,.(w) = y, there exists ¢ unique
z € V(Bpy,) such that Cj,.(2) = » and (z,w) €
A(Bn+7')‘ O

Now we are ready to prove Theorem 2. It is suf-
ficient to prove the following.

Theorem 3 For any spanning dilree H of By
and o naturel number r, there exists a partition
(V1,Va, ..., Var) of V(Bnyr) that satisfies the follow-
ing two conditions:

1. ¢; : Vi — V(H) is a bijection for any i(1 < i <

27, where ¢; is a restriction of Cp ., to V5,

2. If (z,y) € A(H) then (67%(2),¢7'(y)) €
A(Bpgr) for any i(1 <i<27).



Proof of Theorem 3 Consider an algorithm PAR-
TITION shown in Figure 1. We will show that if
an input H is a spanning ditree of B,, then the out-
put It = (W1, V4, ..., Vo) of PARTITION is a desired
partition of V(By).

Since ¢;, a restriction of C) . to 1}, is a bijection
for any (1 < ¢ < 2") by Lemmas 2, 3, and 4, II
satisfies the first condition. Moreover, since H is
a ditree and has no cycles, II satisfies the second
condition by Lemmas 3 and 4.

It remains to show that 1I is a partition of
V(Bntr). It follows from Lemmas 3 and 4 that
ViN'V; = 0 for any distinct 7 and j. Since H is a
spanning ditree of B, and ¢; is a bijection from V; to
V(H) (1 <i<2), |V =2 for any i(1 < i < 27).
Thus we have

”
S = 2 = |V (Bl

=1
It follows that

97

U Vi = V(Bags),

i=1

and we conclude that II is a partition of V(Bj4.).
a

This completes the proof of Theorem 2.

4.1.2 Proof of Theorem 1

Now we will complete the proof of Theorem 1.

Lemuna 5 Let H be a connected spanning subdi-
graph of B, without unbalanced cycles. Then there
exists a mapping p : V(H) — Z such that p(y) =
p(z)y+ 1 if (v,y) € A(H).

Proof of Lemma 5 We define p as follows: Choose
any a € V(H) and set p(a) = 0; If p(z) is defined
then we define that p(y) = p(z)+1if (2,y) € A(H),
and p(y) = p(z) — 1 if (y,2) € A(H). Since H has
no unbalanced cycles, p is well-defined. O

The mapping p above is called a rank function for
H. To prove Theorem 1, it is sufficient to prove the
following.

Theorem 4 Let H be a connected spanning sub-
digraph of B, with a fundamental n-basis of the
cycle space and without unbalanced cycles. Then
for any natural number r, there exisls a partition
(Vi,Va, ..., Var) of V(Bpyr) that satisfies the follow-
ing two condilions:

1. ¢; - Vi — V(H) is a bijection for any i(1 <1 <
2"), where ¢; is a restriction of C . 1o V;.

2. If (z,y) € A(H) then (¢7'(2),67"(v)) €
A(Bugr) for any i(1 < i <27).

Proof of Theorem 4 The theorem is proved by
induction on the dimension of the cycle space, that is,
the number of fundamental cycles in a fundamental
n-basis.

If a fundamental n-basis of H has no fundamental
cycle, that is, if H is a spanning ditree of B, the
theorem is true for H by Theorem 3.

Assume that the theorem is true for any connected
spanning subdigraph of B, with a fundarnental n-
basis consisting of k—1 fundamental cycles and with-
out unbalanced cycles. Let H be a connected span-
ning subdigraph of B, with a fundamental n-basis
consisting of & fundamental cycles and without un-
balanced cycles. Let H’ be the digraph obtained
from H by deleting an arc (u,v) which is contained
in just one fundamental cycle C in the fundamental
n-basis of H. H'is a connected spanning subdigraph
of B, with a fundamental n-basis consisting of k¥ — 1
fundamental cycles and without unbalanced cycles.
Thus, by the induction hypothesis, there exists a par-
tition (V1, Va, ..., Var) of V(Bp4,) which satisfies the
conditions in the theorem for H'. We will show that
the partition for H' is also a desired partition for H.
To prove this, it is sufficient to show that

(67" (u), 67 *(v)) € A(Bnyr)

for any (1 <4< 2").

Let p be a rank function for H’. p is also a rank
function for H, since H has no unbalanced cycles.
Let u’ be a vertex of C' such that

9 / — 3 .
ple) = g‘l;(nc)p(w)

Since the maximum subnet length of C is at most n,
we have

a1 0<p(u) = p(v') <n, and
( ){ 0< p(v) - plu’) < .

Let
2 = 7:__}1('11’) = (zijl) ey zi,n+1')’
Wi =Py (v) = (wi1, ..., Wintr), and
211 =9; (ul) = 31,',17'~'121{,n+,-)y

for any (1 < ¢ < 2"). It follows from (*) that

(Zi,p(u)—p(u’)+17 ey 3i,p(u)~p(u’)+1')
(T) = uji,p(u)—p(l;,’)-i—l: <o Wi p(u)—p(u)+r

- (zi,lx“ '7zi,r .

Since (u,v) = (C} 4, (%), Cho - (wi)) € A(By), we
have L, 0 C} . (2:) = R o C} . (w;). It follows from
Lemma I that



100%010

10k 110 10k

111 00 000

Figure 2. The most efficient universal deBruijn building block of order 3.

The efficiency is 0.5.

0000 1000><0100
0010

: :1001 1100
0011 0001

0110

1011: :1101
1010 0101

1110 1111 0111

Figure 3. The most efficient universal deBruijn building block of order 4.

The efficiency is 0.594.

Crgro1 0 Lngr(2i) = Oy g © R (1)
for any #(1 < ¢ < 2"). Since
ACh . (wi)) = p(Cryp(20)) + 1,
we have from () that
B(Lntr(2), Ragr(wi)) 2 1.
Thus from Lemma II, we conclude that
Ln,+r(zi) . Rn+7'(wi)a
which means that
(zi,wi) = (67 ' (u), 6 (v)) € A(Bngr),
for any (1 <i<27). O
This completes the proof of Theorem 1.
Figures 2 and 3 show optimal universal deBruijn
building blocks of small orders based on our sufficient

condition. It is still open to find optimal universal
deBruijn building blocks of larger orders.

Acknowledgments The authors are grat-
eful to Prof.Y.Kajitani for his encouragements. The
research is a part of CAD21 Project at TIT.

References
[1] O.Collins, Dolinar, R.McEliece and F.Pollara. A

VISI decompositions of the de Bruijn graphs.
J.ACM, 1992.

(2

S.Dolinar, T.-M. Ko, and R.McEliece. Some
VLSI Decomposition of the de Bruijn graph.
Symp. Discrete Math. Appl., pp. 189-198, Sept.
1992.

S.Dolinar, T.-M. Ko, and R.McEliece. VLSI de-
compositions for de Bruijn graphs. Proc. 1992
International Symp. Clircuils and Syslems, pp.
1855-1858, 1992.

D.K.Pradhan. Fault-Tolerant VLSI Architec-
tures Based on de Bruijn Graphs. DIMACS
Seires in Discrete Mathmatics and Theorem
Compuler Science Volume 5, pp. 183~195, 1991.

E.J.Schwabe. Optimality of a VLSI decompo-
sition scheme for the deBruijn graph. Parallel
Processing Lelters, pp. 261-265, 1993.



